
Get the full book from https://uber.cn1.co/

Get the full book from https://uber.cn1.co/

For online information and ordering of this and other books, please visit
www.codenameone.com.

©2018 by Codename One LTD. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Codename One
was aware of a trademark claim, the designations have been printed in initial caps or all
caps. Uber is a Trademark of Uber Technologies Inc. Java is a trademark of Oracle
corporation.

Get the full book from https://uber.cn1.co/

Create an Uber Clone
in 7 Days

Shai Almog
Codename One Academy

BUILD A REAL WORLD FULL STACK MOBILE APP IN JAVA

Get the full book from https://uber.cn1.co/

Get the full book from https://uber.cn1.co/

Contents
Preface

Audience

1

Prerequisites

2

What you don’t need to Know

2

Get this Book for FREE!

2

How to Read this Book?

3

Software Prerequisites

4

Getting Help

4

Using the Code

4

Important Notice About Cloning and Copyrights

5

Thanks and Acknowledgments

5

Hello World

1.1. What’s Codename One?

7

1.1.1. Build Cloud

8

1.2. Getting Started

8

1.2.1. New Project

9

Running

11

The Source Code

12

1.2.2. Run on Device

18

Signing

18

Build and Install

25

1.3. How Does it Work?

26

1.3.1. Mobile is Different

27

Density (DPI/PPI)

27

1.3.2. Performance

30

App Size

30

Power Drain

31

1.3.3. Sandbox and Permissions

31

1.4. Summary

32

1

*

Get the full book from https://uber.cn1.co/

2.1. The Todo App 35

2.2. Layouts and Hierarchy 37

2.2.1. Layout Managers 46

Terse Syntax 49

2.2.2. Styles 49

Designer Tool 52

2.2.3. Event Handling 70

Observers and Event Types 71

Event Dispatch Thread 73

2.2.4. IO and Storage 74

2.3. Summary

76

3.1. What’s Spring Boot? 77

3.2. Why Spring Boot 78

3.3. What will we Use? 78

3.4. Summary

79

4.1. Deconstructing Uber 81

4.1.1. Portrait Only UI 83

4.1.2. iOS and Android Look Almost Identical 83

4.1.3. Inconsistent Titles and Simple Design 84

4.2. The UI Elements 84

4.2.1. Setup 84

Common Styles 86

4.2.2. Countries Button 89

4.2.3. CountryPickerForm 92

initBlackTitleForm 95

4.2.4. Login 98

Shadow 104

4.2.5. Social Login 106

4.2.6. Enter Mobile Number 107

4.2.7. SMS Verification 110

4.2.8. Enter Password 116

4.3. Summary 118

Core Concepts2

Spring Boot Overview3

Day 1: The Mockup4

Get the full book from https://uber.cn1.co/

5.1. The Map 119

5.1.1. Map Layout 120

5.1.2. The MapForm 127

5.1.3. Navigation UI 133

Navigation UI - Destination 141

5.1.4. The Side Menu 147

5.2. Summary 151

6.1. Server Features 153

6.2. Storage Schema 155

6.2.1. The User Object 155

JPA 159

6.2.2. Ride and Waypoint 164

6.2.3. Rating 167

6.2.4. CRUD Interfaces 168

6.2.5. Data Access Objects (DAO) 170

6.3. UserService 172

6.3.1. SecurityConfiguration 177

6.4. UserWebservice 178

6.5. Location Updates Through WebSockets 183

6.5.1. WebSocketConfig 184

6.5.2. LocationService 185

6.5.3. WebSocket Handler 187

6.6. Summary 191

7.1. Before we Begin 193

7.2. User and Properties 196

7.2.1. UserService 199

7.2.2. SMS Activation Process 205

7.3. Location and WebSockets 211

7.3.1. Updating the Map 221

7.4. Lets See it Working 224

7.5. Summary 224

Day 1: The Mockup – Night Hack5

Day 2: The Server6

Day 3: Connecting the Client/Server and SMS Activation7

Get the full book from https://uber.cn1.co/

8.1. SearchService 228

8.1.1. Reverse Geocoding 229

8.1.2. Places Autocomplete 232

8.1.3. Directions 239

decodePolyline 240

DirectionResults 242

The Directions Method 242

8.2. Search 243

8.2.1. AutoCompleteAddressInput 244

8.2.2. CompletionContainer 251

8.2.3. MapForm 256

8.3. Summary 265

 9.1. Route 267

9.1.1. Tags 268

BlackAndWhiteBorder 272

9.1.2. Navigation Mode 277

9.2. Hail a Car 283

9.2.1. BlinkDot 285

9.2.2. LocationService 287

9.3. Summary 295

Day 4: Search Route and Hailing8

Day 4: Search Route and Hailing – Night Hack9

Get the full book from https://uber.cn1.co/

10.2. The Driver App 315

10.2.1. How does the Appstore Identify the App? 315

10.2.2. Customizing the Driver App 317

10.2.3. Push Notification 319

Before we Begin with Push 319

Push Registration and Interception 319

10.2.4. DriverService and Ride 321

10.2.5. SearchService Changes 323

10.2.6. UserService Changes 324

10.2.7. MapForm Changes 327

10.3. Summary 339

11.1. Billing 341

11.1.1. Braintree 342

11.1.2. Server Side 343

BraintreeService 344

The nonce 346

The Actual Payment 347

11.1.3. Client Side 349

11.2. Social Login 351

11.2.1. Client Side 353

11.2.2. Driver and User Apps 354

11.2.3. Facebook Login 354

iOS Wizard 354

Android Wizard 355

integration 356

11.2.4. Full Integration 358

11.2.5. Google Login 362

11.3. Summary 364

Day 6: Billing and Social Activation11

10.1. Server 297

10.1.1. User 297

10.1.2. RideDAO 298

10.1.3. Ride, RideRepository and Waypoint 299

Ride 300

RideRepository 301

Waypoint 301
10.1.4. RideService 302

10.1.5. RideWebservice 305

10.1.6. UserService, LocationService and UserWebservice 307
10.1.7. Handler 310

Day 5: Driver App and Push10

Get the full book from https://uber.cn1.co/

13.1. Congratulations 393

13.2. Key Takeaways and Lessons Learned 394

13.3. Different Approaches and Next Steps 395

13.3.1. TDD (Test Driven Development) 395

13.3.2. GUI Builder 395

13.3.3. CSS 396

13.3.4. WebSockets Everywhere 396

13.3.5. Kotlin 396

13.4. Summary 396

A.1. IntelliJ/IDEA 397

A.2. NetBeans 398

A.3. Eclipse 399

B.1. MySQL Setup 401

B.2. Setup Spring Boot Project 402

12. Day 7: Transitions and Refinement 365

12.1. Login Form Rotation Animation 365

12.2. Cover and Material Transition 370

12.2.1. Morph Transitions 370

12.2.2. Cover Transition 373

Day 7: Transitions and Refinement12

Summary and Moving Forward13

Appendix A: Setup Codename OneA

Appendix B: Setup Spring Boot and MySQLB

12.3. Circle Animated FloatingActionButton 375

12.4. User Information 379

12.4.1. Settings Form 379

12.4.2. EditAccountForm 385

Avatar 390

12.5. Summary 391

Get the full book from https://uber.cn1.co/

E.3.1. Google 419

E.3.2. Apple 419

E.4. Push Registration and Interception 420

423

F.1. Lightweight Architecture 424

C.1. Getting Started with CSS 408

407

C.1.1. Selectors 409

C.1.2. Properties 410

C.1.3. Images 411

C.2. Summary 412

413

E.1. What Is Push? 417

E.2. Various Types of Push Messages 418

E.3. Push Details 419

Appendix C: Styling Codename One Apps with CSSC

Appendix D: Installing cn1libsD

Appendix E: Push NotificationE

Appendix F: How Does Codename One Work?F

Get the full book from https://uber.cn1.co/

Get the full book from https://uber.cn1.co/

Last year we launched the Codename One Academy. As part of that offering we surveyed the
Codename One community and asked them: “what would you like to learn?”.

The response was was overwhelmingly: “How to build an app like Uber!”.

At first I thought about creating something in the style of Uber but I eventually settled on building
something that looks really close to the native app. Almost a clone.

My motivation for going for a clone instead of coming up with a completely new design was driven by
this line of thinking:

• I wanted the design to look professional and you can’t go wrong with a design from a top tier
vendor

• People can learn a lot by understanding the decisions Uber made — I know I did

• If I would have built something different I might have given myself “discounts” that don’t exist in
the real world

I used the word clone to indicate the similarity but not to indicate a carbon copy. Uber is a huge and
nuanced app and I had only one week to write all the relevant applicable code.

My goal was to do the “hard stuff ” and gloss over some of the deeper details. The goal is to teach with
a strong focus on the mobile side. I wanted to create a book that would show you how to build a fully
functional MVP (Minimum Viable Product) within a week. I wanted to illustrate the shortcuts that
make sense and those that don’t. This is a powerful approach whether you are building a startup or
working within a large corporation.

I think developers can’t deliver truly innovative ideas if we are constantly doing the same app over
and over. By making this process simpler I hope that developers will adopt innovative ideas faster
rather than re-do the same apps all over again.

Audience
My bookshelf is overflowing with programming books. Most of them revolve around teaching a
specific technology (e.g. Java). A few discuss architecture or other big concepts. None of them teach
how to build the whole thing.

1

Preface *

Get the full book from https://uber.cn1.co/

These books demonstrate through small localized samples. The results don’t look like a professional
production app. They skip details like servers and business logic or client UI nuances. I didn’t want to
write that book. This book tries to address the whole thing, the full stack. Even if you don’t want to
become a full-stack developer, understanding the whole picture is often helpful.

Prerequisites

If you think you have basic understanding of the following you should be able to follow this book:

• Java – a basic/intermediate Java level should be enough. You will need familiarity with one of the
top 3 Java IDE’s (NetBeans, IntelliJ/IDEA or Eclipse)

• Maven – basic understanding we won’t do anything too fancy

• REST/JSON – we will create JSON based web services with HTTP GET/POST methods. This is
explained in the book but I don’t explain HTTP GET/POST or JSON

!
This book is “code heavy” due to its nature, if you have a difficulty reading listings
this book might be difficult to follow

What you don’t need to Know

While it goes without saying that we don’t need to know everything. I wanted to clarify some specific
details you don’t need to know:

• Codename One - the book teaches the parts of Codename One that are applicable to the book

• Spring Boot - we’ll discuss the parts of Spring Boot that matter. This isn’t a book about Spring Boot
so I won’t get too deep into that but you should be able to work with it after reading the book

• SQL/MySQL/JPA - MySQL is used for storage in the book and we abstract it via JPA. While you will
need to install MySQL you won’t need to know SQL or how to work with it as we’ll use JPA. I will
cover JPA at a high level within the book while discussing the elements of interest

Get this Book for FREE!
This book contains the Uber clone part of the online course “Build Real World Full Stack Mobile Apps
in Java” available here: codenameone.teachable.com/p/build-real-world-full-stack-mobile-apps-in-java

.

That course is much bigger and constantly growing. Currently it covers the process of creating a
Facebook Clone, a restaurant menu application and will cover more apps in the near future (e.g. a
WhatsApp Clone). The Uber clone portion of the course is over 5 hours of videos and presentations.

2

Get the full book from https://uber.cn1.co/

The total amount of materials in the course contains more than 15 hours of materials that grow on a
monthly basis!

The course will also include the full book as part of the Uber clone module once exclusivity expires. If
you bought this book you can use the coupon code [REDACTED] to get a 10% discount on the price of
the course.

! This offer is limited and will expire on October 31st 2018!

How to Read this Book?
Most tech books allow you to skip ahead or just browse through the index to find what you are looking
for.

That might not work as effectively with this book. This book describes a real world app and as such
you might find it difficult to skip ahead. By its nature the book is “code heavy”.
That’s unavoidable due to the basic premise of the book.

Some materials that are more general purpose were placed in appendices to make them more
accessible.
The first few chapters prepare you for the journey ahead. The rest of the book is divided into seven
days and three night-hacks. This division matches my experience in prototyping and building similar
projects over the years.

You can skip the first chapters if you are familiar with the materials within, however I suggest paying
special attention to the styling portion. In the styling section I explain the style syntax I used through
the entire book.

I divided the days so each day fills in a different piece of the puzzle:

• After day one you can run a mockup of the client side UI. You can even run it on the device and it
will all work. I find that having something you can “touch” is a huge motivator so I always start
with the UI

• After day two the backend server will work and run

• After day three the server and the client will work with each other and you will be able to connect
from the client to the server

• After day four you will be able to search for a location and see a route

• After day five hailing will work and you’ll have the second app for the driver side

3

• After day six billing will be plugged in and you’ll be able to login with Facebook or Google

• After day seven settings will work, transitions and animations would be more refined

Get the full book from https://uber.cn1.co/

Software Prerequisites
You will need JDK 8 (Java 8) to run the current code in the book. Notice that at this time Codename
One doesn’t support JDK 9 but this will probably change before 2019.

You will need a Java IDE: NetBeans, IntelliJ/IDEA or Eclipse. With the Codename One plugin installed
from the Codename One website. Check out Appendix A for more details on setting up Codename One.

Getting Help
This book is dense with information and listings. It also mixes concepts from several tiers into one
relatively short book. It’s easy to miss a detail and it’s probable I missed details when writing this
book.

I’m always here to answer your questions, just ask a question in the Codename One discussion forum:
www.codenameone.com/discussion-forum.html

Or on StackOverflow with the codenameone tag: stackoverflow.com/tags/codenameone

!
I prefer StackOverflow but their moderators can be unwelcoming for some question
types

Using the Code
The code for the hello world and TODO app built in the first two chapters is available for download
here: www.codenameone.com/files/HelloWorldAndTodo.zip

The code for the Uber clone application build throughout the book is available to download here:
[REDACTED…]

You may use the code from this book freely for any purpose with no restrictions or attribution. You
can provide attribution if you wish to do so (and it would be appreciated).

Since it’s code and there is no way to verify it I can’t require that you purchase the book (or the online
course) to use the code. Doing so would require restrictions that would potentially impact people who

4

bought the book and I don’t want to do that. So please consider this a moral imperative, if you make
use of the source please buy the book or the course.

Get the full book from https://uber.cn1.co/

Important Notice About Cloning and Copyrights
Uber ™ is a trademark of Uber Technologies Inc.

This work is intended strictly for educational purposes. We don’t condone the misuse of Uber’s
intellectual property!

The goal of this book is to teach via familiarity. Since the Uber application is well designed and
familiar we chose it as our target but the book isn’t meant as a “copy Uber” cookbook.

Many applications are built around ideas similar to Uber and utilize designs inspired by Uber. It’s our
assumption that you can learn a lot by understanding how to build something “like” Uber.

In this case we make use of Uber copyrighted work under “fair use” for teaching purposes. Shipping
an application with the exact designs/logos or any similar markings goes against copyright law and
might get you in trouble. That is why the demos in this book aren’t available on the appstores. They
would be illegal to ship.

This book is intended as a homage to Uber and their bold UI choices. As I wrote this book I developed
a deep sense of respect to the nuanced work of the team that built the Uber app and I hope this is
conveyed within the book.

Thanks and Acknowledgments
This work wouldn’t have been possible without the immense help I got from Chen Fishbein and
Steve Hannah. Both of whom supported the process of the books development throughout. Steve
practically edited the book and deserves co-author credit!
This book literally wouldn’t exist without both of them!

5

I’d also like to thank the reviewers whose feedback improved this book immensely, I would thank
you each personally by name but since early reviews were anonymized I don’t have access to your
names!

Thank you for taking the time to read the earlier rough drafts and provide valuable feedback that
undoubtedly improved this book immensely.

I do have a few names for late stage reviewers who sent feedback and words of encouragement.
Special thanks goes out to: Francesco Galgani, Rémi Tournier & Steve Nganga.

Get the full book from https://uber.cn1.co/6

Get the full book from https://uber.cn1.co/

This chapter covers:
• What is Codename One?

• Creating a hello world application

• Signing a mobile application and building the native app

• Core concepts of mobile development, why mobile is different

I didn’t teach my kids swimming by throwing them in the pool (that’s my story and I’m sticking to it).
But I think it’s a wonderful way to teach a new technology so we’ll start with a trivial hello world to
understand the basics. I tried to write a fluent book that doesn’t burden the reader with every detail
but this is a tight rope to walk. I’ve listed further resources in the end of the chapter if you need
further information.

What’s Codename One?
Codename One is a Write Once Run Anywhere mobile development platform for Java/Kotlin
developers. It integrates with IntelliJ/IDEA, Eclipse or NetBeans to provide seamless native mobile
development.

The things that make it stand out from other tools in this field are:

• Write Once Run Anywhere support with no special hardware requirements and 100% code reuse

• Compiles Java/Kotlin into native code for iOS, UWP (Universal Windows Platform), Android and
even JavaScript/PWA

• Open Source and Free with commercial backing/support

• Easy to use with 100% portable Drag and Drop GUI builder

• Full access to underlying native OS capabilities using the native OS programming language (e.g.
Objective-C) without compromising portability

7

Hello World 1

1.1

• Provides full control over every pixel on the screen

• Lets you use native widgets (views) and mix them with Codename One components within the
same hierarchy (heavyweight/lightweight mixing)

• Supports seamless Continuous Integration out of the box

Get the full book from https://uber.cn1.co/

Codename One can trace its roots to the open source LWUIT project started at Sun Microsystem in

2007 by Chen Fishbein (co-founder of Codename One). It’s a huge project that’s been under constant

development for over a decade!

As such I’ll only scratch the surface of the possibilities within this book.

Build Cloud
1.1.1

1.2

One of the things that make Codename One stand out is the build cloud approach to mobile

development. iOS native development requires a Mac with xcode. Windows native development

requires a Windows machine. To make matters worse, Apple, Google and Microsoft make changes to

their tools on a regular basis…

This makes it hard to keep up.

When we develop an app in Codename One we use the builtin simulator when running and

debugging. When we want to build a native app we can use the build cloud where Macs create the

native iOS apps and Windows machines create the native Windows apps. This works seamlessly and

makes Codename One apps native as they are literally compiled by the native platform. E.g. for iOS

builds the build cloud uses Macs running xcode (the native Apple tool) to build the app.

! Codename One doesn’t send source code to the build cloud, only compiled bytecode!

Notice that Codename One also provides an option to build offline which means corporations that

have policies forbidding such cloud architectures can still use Codename One with some additional

overhead/complexity of setting up the native build tools. Since Codename One is open source some

developers use the source code to compile applications offline but that’s outside the scope of this book.

For a more thorough explanation of the underlying architecture and principals of Codename One

check out Appendix F (page 415).

Getting Started
The following instructions assume you installed the Codename One plugin into your IDE. If you didn’t

do that you can check out the install instructions in Appendix A (page 389).

8

1

Get the full book from https://uber.cn1.co/

New Project
Before we get to the code there are few important things we need to go over with the new project
wizard.

We need to create a new project. We need to pick a project name and I’ll leave that up to you although
it’s hard to go wrong with HelloWorld . The following four values are important:

• App Name - This is the name of the app and the main class, it’s important to get this right as it’s
hard to change this value later

• Package Name - It’s crucial you get this value right. Besides the difficulty of changing this after
the fact, once an app is submitted to iTunes/Google Play with a specific package name this can’t be
changed! See the sidebar Picking a Package Name

• Theme - There are various types of builtin themes in Codename One, for simplicity I pick Native
as it’s a clean slate starting point

• Template - There are several builtin app templates that demonstrate various features, for
simplicity I always pick Bare Bones which includes the bare minimum

9

1.2.1 1

Get the full book from https://uber.cn1.co/

Figure 1. 1. The New App Wizard

10

IntelliJ

NetBeans

Eclipse

Package
Name

Main Class
Name

Theme

Template

Package
Name

Main Class
Name

Theme

Template

Package
Name

Main Class
Name

Theme Template

1

Get the full book from https://uber.cn1.co/

allow you to have more than one app on a domain

Picking a Package Name

Apple, Google and Microsoft identify applications based on their package names. If you use a
domain that you don’t own it’s possible that someone else will use that domain and collide with
you. In fact some developers left the default com.mycompany domain in place all the way into
production in some cases.

This can cause difficulties when submitting to Apple, Google or Microsoft. Submitting to one of
them is no guarantee of success when submitting to another.

To come up with the right package name use a reverse domain notation. So if my website is
goodstuff.co.uk my package name should start with uk.co.goodstuff . I highly recommend the
following guidelines for package names:

• Lower Case – some OS’s are case sensitive and handling a mistake in case is painful. The
Java convention is lower case and I would recommend sticking to that although it isn’t a
requirement

• Avoid Dash and Underscore – You can’t use a dash character (-) for a package name in Java.
Underscore (_) doesn’t work for iOS. If you want more than one word just use a deeper
package e.g.: com.mydomain.deeper.meaningful.name

• Obey Java Rules – A package name can’t start with a number so you can’t use
com.mydomain.1sler. You should avoid using Java keywords like this, if etc.

• Avoid Top Level – instead of using uk.co.goodstuff use uk.co.goodstuff.myapp. That would

Running

We can run the HelloWorld application by pressing the Play or Run button in the IDE for NetBeans or
IntelliJ. In Eclipse we first need to select the simulator .launch file and then press run. When we do
that the Codename One simulator launches. You can use the menu of the simulator to control and
inspect details related to the device. You can rotate it, determine it’s location in the world, monitor
networking calls etc.

With the Skins menu you can download device skins to see how your app will look on different
devices.

!
Some skins are bigger than the screen size, uncheck the Scrollable flag in the
Simulator menu to handle them more effectively

11

1

Get the full book from https://uber.cn1.co/

Debug works just like Run by pressing the IDE’s debug button. It allows us to launch the simulator in
debug mode where we can set breakpoints, inspect variables etc.

Figure 1. 2. HelloWorld Running on the Simulator with an iPhone X Skin

Simulator vs. Emulator

Codename One ships with a simulator similarly to the iOS toolchain which also has a simulator.
Android ships with an emulator. Emulators go the extra mile. They create a virtual machine
that’s compatible with the device CPU and then boot the full mobile OS within that environment.
This provides an accurate runtime environment but is painfully slow.

Simulators rely on the fact that OS’s are similar and so they leave the low level details in place
and just map the API behavior. Since Codename One relies on Java it can start simulating on top
of the virtual machine on the desktop. That provides several advantages including fast
development cycles and full support for all the development tools/debuggers you can use on the
desktop.

Emulators make sense for developers who want to build OS level services e.g. screensavers or
low level services. Standard applications are better served by simulators.

The Source Code

After clicking finish in the new project wizard we have a HelloWorld project with a few default
settings. I’ll break the class down to small pieces and explain each piece starting with the enclosing
class:

12

1

Get the full book from https://uber.cn1.co/

Listing 1. 1. HelloWorld Class

public class HelloWorld {

 private Form current;

 private Resources theme;

 // ... class methods ...
}

This is the main class, it’s the entry point to the app,
notice it doesn’t have a main method but rather callback
which we will discuss soon

Forms are the “top level” UI element in Codename One.
Only one Form is shown at a time and everything you see
on the screen is a child of that Form

Every app has a theme, it determines how everything
within the application looks e.g. colors, fonts etc.

Next let’s discuss the first lifecycle method init(Object). I discuss the lifecycle in depth in the
Application Lifecycle Sidebar (page 16).

Listing 1. 2. HelloWorld init(Object)

In case of a network error the code in this block
would run, you can customize it to handle
networking errors effectively. consume()
swallows the event so it doesn’t trigger other
alerts, it generally means “we got this”

Crash protection automatically sends device crash
logs through the cloud

This enables the Toolbar API by default, it
allows finer control over the title bar area

public void init (Object context) {

 updateNetworkThreadCount(2);

 theme = UIManager. initFirstTheme("/theme");

 Toolbar.setGlobalToolbar (true);

 Log.bindCrashProtection(true);

 addNetworkErrorListener (err -> {

 err.consume();

 if(err.getError() != null) {
 Log. e(err.getError ());
 }

Log.sendLogAsync();

 Dialog . show("Connection Error",
 "There was a networking error in the connection to "

+
 err . getConnectionRequest().getUrl (), "OK" , null);
 });

}

init is the first of the four lifecycle methods. It’s
responsible for initialization of variables and values

13

By default Codename One has one thread that
performs all the networking, we set the
default to two which gives better performance

The theme determines the appearance of the
application. We’ll discuss this in the next chapter

Not all errors include an exception, if we have
an exception we can log it with this code

This will email the log from the device
to you if you have a pro subscription

This shows an error dialog to the user, in
production you might want to remove that code

1

Get the full book from https://uber.cn1.co/

init(Object) works as a constructor to some degree. We recommend avoiding the constructor for the

main class and placing logic in the init method instead. This isn’t crucial but we recommend it since

the constructor might happen too early in the application lifecycle.

In a cold start init(Object) is invoked followed by the start() method. However, start() can be
invoked more than once if an app is minimized and restored, see the sidebar Application Lifecycle
 (page 16):

Listing 1. 3. HelloWorld start()

public void start () {
 if (current != null) {

current.show();
return;

 }

 Form hi = new Form("Hi World" , BoxLayout.y());

hi . add(new Label ("Hi World"));

 hi.show();
}

If the app was minimized we usually don’t want to do much,
just show the last Form of the application

14

current is a Form which is the top most visual element. We can
only have one Form showing and we enforce that by using the
show() method

We create a new simple Form
instance. It has the title “Hello
World” and arranges elements
vertically (on the Y axis)

We add another Label below the title, see figure 1.3 (page
15). I discuss component hierarchy later in section 2.2
(page 37)

The show() method places the Form on the screen. Only one Form can be shown at a time

1

Get the full book from https://uber.cn1.co/

Figure 1. 3. Title and Label in the UI

15

Title

Label

There are some complex ideas within this short snippet which I’ll address later in this chapter when
talking about layout. The gist of it is that we create and show a Form. Form is the top level UI
element, it takes over the whole screen. We can add UI elements to that Form object, in this case the
Label. We use the BoxLayout to arrange the elements within the Form from top to the bottom
vertically.

1

Get the full book from https://uber.cn1.co/

Application Lifecycle

A few years ago Romain Guy (a senior Google Android engineer) was on stage at the Google IO
conference. He asked for a show of hands of people who understand the Activity lifecycle
(Activity is similar to a Codename One main class). He then proceeded to jokingly call the
audience members who lifted their hands “liars” claiming that after all his years in Google he
still doesn’t understand it…

Lifecycle seems simple on the surface but hides a lot of nuance. Android’s lifecycle is
ridiculously complex. Codename One tries to simplify this and also make it portable. Sometimes
complexity leaks out and the nuances can be difficult to deal with.

Simply explained an application has three states:

• Foreground – it’s running and in the foreground which means the user can physically
interact with the app

• Suspended – the app isn’t in the foreground, it’s either paused or has a background process
running

• Not Running – the app was never launched, was killed or crashed

The lifecycle is the process of transitioning between these 3 states and the callbacks invoked
when such a transition occurs. The first time we launch the app we start from a “Cold Start” (Not
Running State) but on subsequent launches the app is usually started from the "Warm Start"
(Suspended State).

16

1

Get the full book from https://uber.cn1.co/

Figure 1. 4. Codename One Application Lifecycle

Codename One has four standard callback methods in the lifecycle API:

• init(Object) – is invoked when the app is first launched from a Not Running state

• start() – is invoked for two separate cases. After start() is finished the app transitions to
the Foreground state.

◦ Following init(Object) in case of a cold start. Cold start refers to starting the app from a
Not Running state.

◦ When the app is restored from Suspended state. In this case init(Object) isn’t invoked

• stop() – is invoked when the app is minimized e.g. when switching to a different app. After
stop() is finished the app transitions to the Suspended state.

• destroy() – is invoked when the app is destroyed e.g. killed by a user in the task manager.
After destroy() is finished the app is no longer running hence it’s in the Not Running state.

!
destroy() is optional there is no guarantee that it would be invoked. It should
be used only as a last resort

Now that we have a general sense of the lifecycle lets look at the last two lifecycle methods:

17

init()

start()

The app is running
in the foreground

Foreground

Cold Start stop()

destroy()User killed the app
or didn’t run it

Not Running

The app is
minimized and

possibly running
in the background

Suspended
Warm Start

Minimize

App Exit

1

Get the full book from https://uber.cn1.co/

Listing 1. 4. HelloWorld stop() and destroy()

public void stop() {
 current = getCurrentForm();
 if (current instanceof Dialog) {
 ((Dialog) current).dispose ();
 current = getCurrentForm();
 }
}

public void destroy () {
}

stop() is invoked when the app is minimized
or a different app is opened

As the app is stopped we save the current
Form so we can restore it back in start() if
the app is restored

Dialog is a bit of a special case restoring a Dialog might block the
proper flow of application execution so we dispose them and then
get the parent Form

destroy() is a very special case. Under normal
circumstances you shouldn’t write code in destroy().
stop() should work for most cases

That’s it. Hopefully you have a general sense of the code. It’s time to run on the device.

Run on Device
1.2.2

Now that we have a HelloWorld and a basic understanding of the lifecycle lets discuss building apps
for devices. I’ll only discuss Android and iOS for simplicity.

!
While Codename One supports Windows and a few other platforms the focus of this
book is on Android/iOS to keep things manageable. Windows is a more significant
player in the tablet market which isn’t as applicable for this app

Signing

All of the modern mobile platforms require signed applications but they all take radically different
approaches when implementing it.

Signing is a process that marks your final application for the device with a special value. This value
(signature) is a value that only you can generate based on the content of the application and your

18

certificate. Effectively it guarantees the app came from you. This blocks a 3rd party from signing their
apps and posing as you to the appstore or to the user. It’s a crucial security layer.

A certificate is the tool we use for signing. Think of it as a mathematical rubber stamp that generates a
different value each time. Unlike a rubber stamp a signature can’t be forged!

1

Get the full book from https://uber.cn1.co/

Signing on Android

Android uses a self signed certificate approach. You can just generate a certificate by describing who
you are and picking a password!

Anyone can do that. However, once a certificate is generated it can’t be replaced…

!
If you lose an Android certificate it can’t be restored and you won’t be able to update
your app!

If this wasn’t the case someone else could potentially push an “upgrade” to your app. Once an app is
submitted with a certificate to Google Play this app can’t be updated with any other certificate.

With that in mind generating an Android certificate is trivial.

" The following chart illustrates a process that’s identical on all IDE’s

19

#
Your certificate will generate into the file Keychain.ks in your home directory

Make sure to back that up and the password as losing these can have dire
consequences

1

Get the full book from https://uber.cn1.co/

Figure 1. 5. Process of Certificate Generation for Android

Should I Use a Different Certificate for Each App?

In theory yes. In practice it’s a pain… Keeping multiple certificates and managing them is a pain
so we often just use one.

The drawback of this approach occurs when you are building an app for someone else or want
to sell the app. Giving away your certificate is akin to giving away your house keys. So it makes
sense to have separate certificates for each app.

20

Alias is a simple ID for the
certificate e.g. codenameone

The other details will be visible to
the users of the app when they
inspect your apps signature

Checking this will decrease the
likelyhood of anyone forging this
certificate in the forseeable future.
Notice that the current likelyhood
is very low. The new 512bit
certificates only work on Android
4.1 or newer

Right click the project and select “Codename One Settings”

Click “Android Cetificate Generator”

Press OK
when you are
done

Don’t forget
the password

1

Get the full book from https://uber.cn1.co/

Signing and Provisioning iOS

Code signing for iOS relies on Apple as the certificate authority. This is something that doesn’t exist on
Android. iOS also requires provisioning as part of the certificate process and completely separates the
process for development/release.

But first let’s start with the good news:

• Losing an iOS certificate is no big deal - in fact we revoke them often with no impact on shipping
apps

• Codename One has a wizard that hides most of the pain related to iOS signing

In iOS Apple issues the certificates for your applications. That way the certificate is trusted by Apple
and is assigned to your Apple iOS developer account. There is one important caveat: You need an iOS
Developer Account and Apple charges a 99USD Annual fee for that.

!
The 99USD price and requirement have been around since the introduction of the iOS
developer program for roughly 10 years at the time of this writing. It might change at
some point though

Apple also requires a “provisioning profile” which is a special file bound to your certificate and app.
This file describes some details about the app to the iOS installation process. One of the details it
includes during development is the list of permitted devices.

21

1

Get the full book from https://uber.cn1.co/

Figure 1. 6. The Four Files Required for iOS Signing and Provisioning

We need 4 files for signing. Two certificates and two provisioning profiles:

1. Production - The production certificate/provisioning pair is used for builds that are uploaded to
iTunes

2. Development - The development certificate/provisioning is used to install on your development
devices

22

Development

Development
Certificate

Development
Provisioning Profile

Development binary
can only be installed

on list of devices
mentioned in the

provisioning profile

Distribution
Provisioning Profile

Distribution binary can be uploaded to
itunes but can’t be installed on the device

Appstore

Distribution Certificate

Itunes connect should be used to
upload binary

The certificate wizard automatically creates these 4 files and configures them for you.

1

Get the full book from https://uber.cn1.co/

Figure 1. 7. Using the iOS Certificate Wizard Steps 1 and 2

Figure 1. 8. Using the iOS Certificate Wizard Steps 3 and 4

23

In Codename One Settings click iOS
Certificate Wizard

These are the Apple iOS developer
program email and password pair. Not
the Codename One password!

21

Next to

proceed

If you have an existing certificate
you will be offered to revoke it

If your existing certificate is fine, you shouldn’t
revoke just share the single P12 file between
projects

Here we have the list of devices that you can
add to the provisioning profile. You can install
your app on these devices

Y o u c a n a d d
devices us ing
this menu option

4

Phone Name

3

1

Get the full book from https://uber.cn1.co/

Figure 1. 9. Using the iOS Certificate Wizard Steps 5 and 6

!

If you have more than one project you should use the same iOS P12 certificate files in
all the projects and just regenerate the provisioning. In this situation the certificate
wizard asks you if you want to revoke the existing certificate which you shouldn’t
revoke in such a case. You can update the provisioning profile in Apple’s iOS
developer website.

One important aspect of provisioning on iOS is the device list in the provisioning step. Apple only
allows you to install the app on 100 devices during development. This blocks developers from skipping
the appstore altogether. It’s important you list the correct UDID for the device in the list otherwise
install will fail.

"
There are several apps and tools that offer the UDID of the device, they aren’t
necessarily reliable and might give a fake number!

You are shown the details of the files that
should be generates

The final form shows a summary of what
was performed by the wizard

65

24

1

Get the full book from https://uber.cn1.co/

Figure 1. 10. Get the UDID of a Device

! You can right click the UDID and select copy to copy it

The simplest and most reliable process for getting a UDID is via itunes. I’ve used other approaches in
the past that worked but this approach is guaranteed.

"
Ad hoc provisioning allows 1000 beta testers for your application but it’s a more
complex process that I won’t discuss here

Build and Install

Before we continue with the build we should sign up at www.codenameone.com/build-server.html
where you can soon follow the progress of your builds. I discuss this further in section 1.3 (page 26).
You need a Codename One account in order to build for the device.

Now that we have certificates the process of device builds is literally a right click away for both OS’s.
We can right click the project and select Codename One → Send iOS Debug Build or
Codename One →

25

The serial number turns to the UDID. Notice that this is in the same UI view. The serial number

updates to the UDID when you click on it

To get the UDID connect your iDevice to
your computer and launch iTunes. Then
click on the device icon

1 2

3

Click the serial number of the device

Send Android Build.

1

Get the full book from https://uber.cn1.co/

!
The first time you send a build you will be prompted for the email and password
you provided when signing up for Codename One

Once you send a build you should see the results in the build server page:

Figure 1. 11. Build Results

"
On iOS make sure you use Safari when installing, as 3rd party browsers might have
issues

Once you go through those steps you should have the HelloWorld app running on your device. This
process is non-trivial when starting so if you run into difficulties don’t despair and seek help at
codenameone.com. Once you go through signing and installation, it becomes easier.

How Does it Work?

Let’s step back a bit from the HelloWorld app and explain what we just did.

As a developer, your view of Codename One is relatively simple:

• You develop your app in Java and the Codename One API

• You debug the app with the Codename One device Simulator

• When you need a native app you can right click the project and select Send Build for iOS (or
Android, Windows etc.)

26

Failed
builds are
red

1.3

You can email the
install link to yourself
or just get a direct
install link from here

Successful builds are green

You can use a QR
scanner app to
directly scan and
install the build on
your device

That’s it. There is quite a lot more to it but the basic premise is pretty close.

1

Get the full book from https://uber.cn1.co/

Figure 1. 12. What Happens in the Build Servers in Broad Strokes

This should give a general sense of the process under the hood. For a more thorough explanation
check out Appendix F (page 415).

Mobile is Different

Before we proceed I’d like to explain some universal core concepts of mobile programming that might
not be intuitive. These are universal concepts that apply to mobile programming regardless of the
tools you are using.

Density (DPI/PPI)

Density is also known as DPI (Dots Per Inch) or PPI (pixels or points per inch). Density is confusing,
unintuitive and might collide with common sense. E.g. an iPhone 7 plus has a resolution of
1080x1920 pixels and a PPI of 401 for a 5 inch screen. On the other hand an iPad 4 has 1536x2048
pixels with a PPI of 264 on a 9.7 inch screen… Smaller devices can have higher resolutions!

27

Translate bytecode
t o a n a t i v e C
p r o j e c t u s i n g
P a r p a r V M .
Compile, Sign and
package the app

Translate bytecode
u s i n g i K V M t o
native visual studio
project. Compile,
sign and package
app using Visual
Studio

Use Mac
Server

Use
Windows

Server

Final App
Available for

Download

Develop in the local IDE
using the Codename One
Plugin & API’s

Debug on the
Simulator locally

Build to Device sends
bytecode to the build
cloud

Package bytecode
i n t o A n d r o i d
g r a d l e p r o j e c t .
Compile sign and
package app using
the Android SDK

Android

Windows
(UWP)

iOS

Use
Linux
Server

Build Type?

1.3.1

1

Get the full book from https://uber.cn1.co/

As the following figure shows, if a Pixel 2 XL had pixels the size of an iPad it would have been twice
the size of that iPad. While in reality it’s nearly half the height of the iPad!

Figure 1. 13. Device Density vs. Resolution

Differences in density can be extreme. A second generation iPad has 132 PPI, where modern phones
have PPI that crosses the 600 mark. Low resolution images on high PPI devices will look either small
or pixelated. High resolution images on low PPI devices will look huge, overscaled (artifacts) and will
consume too much memory.

28

iPad 4
9.4x6.6 inches
2048x1536 pixels
263 density I f t h e

iPhone had
t h e s a m e
density as
the iPad

If the Google Pixel 2 XL had
the same density as the
iPad

iPhone 8 Scaled to
physical size
5.65x2.79 inches
1334x750 pixels
326 dpi

Google Pixel 2 XL
scaled to physical size
6.22x3.02 inches
2880x1440 pixels
538 dpi

In
ch
es

5
10

15
20

25

1

Get the full book from https://uber.cn1.co/

Figure 1. 14. How the Same Image Looks in Different Devices

The exact same image will look different on each device, sometimes to a comical effect. One of the
solutions for this problem is multi-images. All OS’s support the ability to define different images for
various densities. I will discuss multi-images in Chapter 2.

This also highlights the need for working with measurements other than pixels. Codename One
supports millimeters (or dips) as a unit of measurement. This is highly convenient and is a better
representation of size when dealing with mobile devices.

But there is a bigger conceptual issue involved. We need to build a UI that adapts to the wide
differences in form factors. We might have fewer pixels on an iPad but because of its physical size we
would expect the app to cram more information into that space so the app won’t feel like a blown up
phone application. There are multiple strategies to address that but one of the first steps is in the
layout managers.

I’ll discuss the layout managers in depth in Chapter 2 but the core concept is that they decide where a

29

iPhone 8 Sized to Scale

iPad 4 Sized to Scale

Google Pixel 2 XL
Sized to Scale

1

Get the full book from https://uber.cn1.co/

UI element is placed based on generic logic. That way the user interface can adapt automatically to the
huge variance in display size and density.

Touch Interface

The fact that mobile devices use a touch interface today isn’t news… But the implications of that aren’t
immediately obvious to some developers.

UI elements need to be finger sized and heavily spaced. Otherwise we risk the “fat finger” effect. That
means spacing should be in millimeters and not in pixels due to device density.

Scrolling poses another challenge in touch based interfaces. In desktop applications it’s very common
to nest scrollable items. However, in touch interfaces the scrolling gesture doesn’t allow such nuance.
Furthermore, scrolling on both the horizontal and vertical axis (side scrolling) can be very
inconvenient in touch based interfaces.

Device Fragmentation

Some developers single out this wide range of resolutions and densities as “device fragmentation”.
While it does contribute to development complexity for the most part it isn’t a difficult problem to
overcome.

Densities aren’t the cause of device fragmentation. Device fragmentation is caused by multiple OS
versions with different behaviors. This is very obvious on Android and for the most part relates to the
slow rollout of Android vendor versions compared to Googles rollout. E.g. 7 months after the Android
8 (Oreo) release in 2018 it was still available on 1.1% of the devices. The damning statistic is that 12%
of the devices in mid 2018 run Android 4.4 Kitkat released in 2013!

This makes QA difficult as the disparity between these versions is pretty big. These numbers will be
out of date by the time you read this but the core problem remains. It’s hard to get all device
manufacturers on the same page so this problem will probably remain in the foreseeable future
despite everything.

Performance
Besides the obvious need for performance and smooth animation within a mobile app there are a
couple of performance related issues that might not be intuitive to new developers: size and power.

App Size

Apps are installed and managed via stores. This poses some restrictions about what an app can do. But
it also creates a huge opportunity. Stores manage automatic update and to some degree the

30

1.3.2

marketing/monetization of the app.

1

Get the full book from https://uber.cn1.co/

A good mobile app is updated once a month and sometimes even once a week. Since the app
downloads automatically from the store this can be a huge benefit:

• Existing users are reminded of the app and get new features instantly

• New users notice the app featured on a “what’s new” list

If an app is big it might not update over a cellular network connection. Google and Apple have
restrictions on automatic updates over cellular networks to preserve battery life and data plans. A
large app might negatively impact users perception of the app and trigger uninstalls e.g. when a
phone is low on available space.

Power Drain

Desktop developers rarely think about power usage within their apps. In mobile development this is a
crucial concept. Modern device OS’s have tools that highlight misbehaving applications and this can
lead to bad reviews.

Code that loops forever while waiting for input will block the CPU from sleeping and slowly drain the
battery.

Worse. Mobile OS’s kill applications that drain the battery. If the app is draining the battery and is
minimized (e.g. during an incoming call) the app could be killed. This will impact app performance
and usability.

Sandbox and Permissions
Apps installed on the device are “sandboxed” to a specific area so they won’t harm the device or its
functionality. The filesystem of mobile applications is restricted so one application can’t access the
files of another application. Things that most developers take for granted on the desktop such as a “file
picker” or accessing the image folder don’t work on devices!

This means that when your application works on a file it belongs only to your application. In order to
share the file with a different application you need to ask the operating system to do that for you.

Furthermore, some features require a “permission” prompt and in some cases require special flags in
system files. Apps need to request permission to use sensitive capabilities e.g. Camera, Contacts etc.
Historically Android developers just declared required permissions for an app and the user was
prompted with permissions during install. Android 6 adopted the approach used by iOS of prompting
the user for permission when accessing a feature.

31

1.3.3

1

Get the full book from https://uber.cn1.co/

This means that in runtime a user might revoke a permission. A good example in the case of an Uber

app is the location permission. If a user revokes that permission the app might lose its location.

Ubers Permission Controversy

1.4

While working on this book I was surprised that the Uber app didn’t include some common

functionality in Android applications (namely SMS intercept). As I researched this it seems that

in the past the Uber app used to have a huge set of permissions. This raised privacy concerns

among power users and produced backlash of users calling for a ban.

It seems that Uber decided to take permissions seriously. They don’t ask for permissions even if

it comes at the expense of reduced functionality. I think that decision was made prior to Android

6 which gives end users more control over permissions and Uber should probably revisit this

policy.

I think this is an important thing to keep in mind when thinking about permissions. It might be

advantageous to avoid a feature if it has problematic permissions.

Summary
In this chapter, we learned:

• How we can correctly define package names so vendors such as Apple and Google identify/update

our app correctly

• How we should use the mobile application lifecycle to handle app state changes

• How various mobile device screen sizes impact your UI, and how to work around that to make

your app work across PPI limitations

• How to understand the mobile development landscape and differentiate between it and desktop

programming

• How to sign/provision a mobile app so we can build and run on a mobile device

I barely scratched the surface of Codename One in this chapter… It’s a huge framework. I will go into

more details in the next chapter.

32

1

Get the full book from https://uber.cn1.co/

Further Reading

Codename One has over a decade’s worth of code and knowledge. I made an effort to make this
book “all inclusive”, but there are still limits to this medium. New platforms and tools are always
a challenge, that’s why we try to help with any question. So please engage with the online
community if something doesn’t work…

• Codename One Developer Guide – www.codenameone.com/manual/

• JavaDocs – www.codenameone.com/javadoc/

• Technical Support – stackoverflow.com/tags/codenameone or
www.codenameone.com/discussion-forum.html

• Short Video Tutorials – www.codenameone.com/how-do-i.html

• Online course – codenameone.teachable.com/

33

1

Get the full book from https://uber.cn1.co/34

Get the full book from https://uber.cn1.co/

This chapter covers:

• Laying out a UI, component hierarchy and nesting

• Using the Themes in the Codename One Designer tool to style an app

• Events processing, the event dispatch thread and Storage

Now that we have a general sense of how a hello world works and some broad stroke overview of

mobile development, lets see how this all fits into the concepts of Codename One. We’ll accomplish

that by building a small Todo list app. While we do that I’ll try to explain how everything works

together in the grand scheme of things…

I’ll try to keep this short so we will have all the tools we need to build the Uber app client by the end of

the chapter.

The Todo App
This is what we should end up with before this chapter is finished:

35

Core Concepts 2

2.1

Get the full book from https://uber.cn1.co/

Figure 2. 1. Final Result of the Todo App

I chose to create a similar UI in this case but still respected some platform conventions e.g. notice the
title is aligned differently on Android and iOS. This is intentional. I’ll discuss this more in the theming
section.

I’ll start by creating a new project just like the hello world project before but I’ll name it “TodoApp”.

36

iOS Simulator Android Simulator

2

Get the full book from https://uber.cn1.co/

Figure 2. 2. The new Project Wizard for the TodoApp

We’ll start by going over the hierarchy of the application.

Layouts and Hierarchy

Every button, label or element you see on the screen in a Codename One application is a Component.
This is a highly simplified version of this class hierarchy:

37

2

2.2

Get the full book from https://uber.cn1.co/

Figure 2. 3. The Core Component Class Hierarchy

A Codename One application is effectively a series of forms, only one Form can be shown at a time.
The Form includes everything we see on the screen. Under the hood the Form is comprised of a few
separate pieces:

38

2

ContainerContainer

FormFormSpanLabelSpanLabel

Button and quite a few other
classes derive from Label

this allows them to provide
common functionality such

as icons, alignment etc.

Component is the base class for all
the UI elements in Codename One

Container is a Component that
can hold within it other

components. Since a Container
is a Component itself it can hold

other Containers within. This
allows elaborate hierarchies

Form is a Container that can be
“shown” it’s the root of the

Container hierarchy all
applications must have a Form.

It’s where the UI is placed

SpanLabel isn’t
important but I included
it here to show that some
components derive from

Container instead of
Component. This lets us

build elaborate
components by

assembling simpler
components together in

a Container

Component

LabelLabel TextAreaTextArea

TextFieldTextFieldButtonButton

TextField derives from
TextArea both allow

user input using a
virtual keyboard (or
physical keyboard)

Get the full book from https://uber.cn1.co/

Figure 2. 4. Structure of a Form

• Content Pane - this is literally the
body of the Form. When we add a
Component into the Form it goes
into the content pane. Notice that
Content Pane is scrollable by
default on the Y axis!

• Title Area - we can’t add directly
into this area. The title area is
managed by the Toolbar class.
Toolbar is a special component that
resides in the top portion of the
form and abstracts the title design.
The title area is broken down into
two parts:

◦ Title of the Form and its
commands (the buttons on the
right/left of the title)

◦ Status Bar - on iOS the area on the top includes a special space so the notch, battery, clock
etc. can fit. Without this the battery indicator/clock or notch would be on top of the title

Now that we understand this let’s look at the new project we created and open the Java file
TodoApp.java. In it we should see the lines that setup the UI in the start() method:

Listing 2. 1. The Default Form of TodoApp

Form hi = new Form("Hi World", BoxLayout.y());
hi.add(new Label("Hi World"));
hi.show();

This is the same code we had in the
hello world app…

I’ll circle back to the layout code soon. Right now I want to create a new Form for the todo app.

39

2
Title Area and

Toolbar
Title

Command
Status Bar

Content Pane

Get the full book from https://uber.cn1.co/

Figure 2. 5. The Initial Step - Not much
to see here…

We can start with something like this:

Listing 2. 2. The Default Form of TodoApp

Form todoApp = new Form("Todo App", BoxLayout.y());

todoApp
.
show();

I changed the title/name and removed the hi world label

I think it would make more sense to separate the code to a
different class. For convenience I will derive the Form class.
This is a common practice in UI frameworks although it
isn’t a requirement, e.g. in the hello world app we just used
the Form without inheriting it. First I’ll need to allocate and
show the new class in the TodoApp class:

Listing 2. 3. TodoApp: Create and Show the new Form

new TodoForm(). show();

40

2

Notice I don’t need to save the instance of the TodoForm, I just show it immediately. I can create a
Form field but there is no need for that since the Form is shown immediately.

Get the full book from https://uber.cn1.co/

Then I can implement the barebones TodoForm class. This obviously needs to reside in a new
TodoForm.java file as required for public Java classes:

Listing 2. 4. TodoForm Create and Show the new Form

public class TodoForm extends Form {
 public TodoForm() {
 super("Todo App", BoxLayout. y());
 }
}

This code is equivalent to the one we
had before specifically new Form("Todo
App", BoxLayout.y());

I separated the code to a separate class for
convenience so I can encapsulate specif ic
functionality. Specifically API’s such as adding items,
the floating action button etc.

Figure 2. 6. Step 2 - The Floating Action
Button That Adds Entries

41

2

The second step is adding entries into the todo list.
For that I’ll use the FloatingActionButton (AKA FAB),
this is a staple of Google’s material design.

!
Material design is Google’s all encompassing UI design paradigm. It specifies how all
UI elements should look/behave. It’s the UI standard on Android. The Uber app uses
its principles on iOS and on Android

Get the full book from https://uber.cn1.co/

Before I add this I’ll add a stub method so the FloatingActionButton can trigger an event:

Listing 2. 5. TodoForm.addNewItem() Stub

private void addNewItem() {}

We’ll fill this method soon…

Now I can add this to the TodoForm constructor using the code:

Listing 2. 6. TodoForm Constructor Floating Action Button

FloatingActionButton fab = FloatingActionButton.
 createFAB (FontImage.MATERIAL_ADD);

fab.bindFabToContainer(this);

fab.addActionListener(e -> addNewItem());

FloatingActionButton creates the round
floating button, it accepts a FontImage
constant which I’ll cover soon

We usually add items to containers but a
FAB floats on top, this method handles
the “floating” aspect. this means the
current Form instance.

When the FAB is clicked we invoke the addNewItem() method, I’ll
discuss event handling soon

FontImage and Material Icons

Material design defines several standard icons that you can find here: material.io/icons/

These icons are integrated into Codename One via an icon font. That effectively means they take
up very little RAM and can adapt in terms of size/color without a problem. They are used
extensively in the code because they are so convenient and powerful.

42

2

Get the full book from https://uber.cn1.co/

The next step would be implementing the
addNewItem method that we added before.

Figure 2. 7. Step 3 - Add a New Item

Listing 2. 7. TodoForm.addNewItem()

private void addNewItem() {
 TodoItem td = new TodoItem("" , false);

 add(td);

 revalidate ();

 td.edit();
}

We create a new object instance for each item,
we’ll discuss that soon

We invoke Form’s
add method to add
the item to the UI

When a Form is showing and
we make a change to it we
need to let the Form know we
finished making changes by
invoking revalidate()

We launch the device virtual keyboard so the
user can start typing the text into the new
item immediately

43

2

The most confusing aspect in the code would be the revalidate() call. Why do we need it and why
doesn’t Codename One revalidate every time we add an item?

revalidate() is an expensive operation. If Codename One did it every time the UI changed it would
be very slow. In fact platforms such as web do it all the time (reflow) and that’s considered one of the
major performance penalties inherent in web development. The revalidate operation is expensive
since it needs to recursively loop through all components, if one of them changes its size we need to
rerun this recursive loop over again. There are shortcuts to make it faster but it’s still an inherently
slow process.

You won’t see the virtual keyboard on the simulator since you would use your desktop’s keyboard
but, when running on the device, the keyboard would pop up instantly and let you type.

Get the full book from https://uber.cn1.co/

We can clarify this with an example. Lets say we have this code:

Listing 2. 8. Why Revalidate Matters

add(componentX);
// possibly some processing
add(componentY);

With automatic revalidate (reflow) we’d have to run revalidate twice which would make things slow.

Another benefit of revalidate() is layout animations. We can change the UI and instead of revalidate
we can ask Codename One to animate the UI into place e.g.:

Listing 2. 9. Layout Animation

add(componentX);
animateLayout(150);

This will move componentX into it’s place in the layout within 150 milliseconds. It’s equivalent to
revalidate in effect but does that logic with “style”. I’ll discuss layout animations again later in this
chapter.

Before that lets look at the TodoItem class:

44

2

Get the full book from https://uber.cn1.co/

Listing 2. 10. The TodoItem class

public class TodoItem extends Container {
 private TextField nameText;
 private CheckBox done = new CheckBox();
 public TodoItem(String name, boolean checked) {
 super(new BorderLayout ());
 nameText = new TextField (name);

nameText.setUIID("Label");

done. checkedsetSelected();

 add(CENTER, nameText);
 add(EAST, done);

 }
 public void edit () {
 nameText. startEditingAsync();
 }
 public boolean isChecked() {
 return done.isSelected();
 }
 public String getText() {
 return nameText.getText();
 }
}

Inheriting Container makes it
easy to detect if a TodoItem is
checked

TextField accepts user text
input with the virtual
keyboard

CheckBox can be toggled
between selected and
unselected states

With BorderLayout we can position a
component in one of 5 places: CENTER,
EAST, WEST, NORTH and SOUTH

We don’t want the text field to look like a
text field, we want it to look like a label
which we can do by setting the UIID We’ll
discuss this in the styling section soon

We place the text field in the center of
the layout area and the check box to the
right (EAST)

This launches the text editing, on the device
and opens the virtual keyboard

We’ll need the last two method when we’ll
save the data to to device storage (flash)

45

2

!
The BorderLayout constants and other constants are defined in the
com.codename1.ui.CN class which we import statically into every Java source file
with the code import static com.codename1.ui.CN.*; I assume in the code that this
static import exists in all client side files!

This brings me to the discussion of layout managers. We’ve used two so far: BoxLayout and
BorderLayout Let’s dig deeper.

Get the full book from https://uber.cn1.co/

Layout Managers
A layout manager is an algorithm that decides the size and location of the components within a
Container . Every Container has a layout manager associated with it. The default layout manager is
FlowLayout.

To understand layouts we need to understand a basic concept about Component. Each component has
a “preferred size”. This is the size in which a component “wants” to appear. E.g. for a Label the
preferred size will be the exact size that fits the label text, icon and padding of the component.

A layout manager places a component based on its own logic and the preferred size (sometimes
referred to as “natural size”). A FlowLayout will just traverse the components based on the order they
were added and size/place them one after the other. When it reaches the end of the row it will go to
the new row.

!
Use FlowLayout Only for Simple Things

FlowLayout is great for simple things but has issues when components change their
sizes dynamically (like a text field). In those cases it can make bad decisions about
line breaks and take up too much space

46

2
2.2.1

Flow Layout sizes components based on
their preferred size and arranges them
from left to right. When we reach the end
of the line it breaks a line

Flow layout has several modes including a
center mode that center aligns elements.
It can align elements to the right and align
vertically as well

Figure 2. 8. Layout Manager Primer Part I

Get the full book from https://uber.cn1.co/

Figure 2. 9. Layout Manager Primer Part II

!
There are a few other interesting layouts in Codename One such as TableLayout ,
GridBagLayout , MigLayout etc. but I don’t use them in the book

Scrolling doesn’t work well for all types of layouts as the positioning algorithm within the layout might
break. Scrolling on the Y axis works great for BoxLayout Y which is why I picked it for the TodoForm:

Table 2. 1. Scrolling in Layout Managers

Layout Scrollable

Flow Layout Possible on Y axis only

Border Layout Scrolling is blocked

Box Layout Y Scrollable only on the Y axis

47

2

EA
ST

EA
ST

W
EST

W
EST

CENTER CENTER

NORTH NORTH

SOUTH SOUTH SOUTH SOUTH

NORTH NORTH

Border Layout can posi t ion
elements in the NORTH, SOUTH,
E A S T, W E S T a n d C E N T E R .
Components take their preferred
size on the opposing axis. Center
takes up the available space by
default

Border Layout has several
modes including absolute
center mode where the
center component takes
up only its preferred size

CENTER CENTER

W
EST

W
EST

EA
ST

EA
ST

B o x L a y o u t Y a r r a n g e s
components vertically, giving
them the available width and
their preferred height

B o x L a y o u t X a r r a n g e s
components horizontal ly,
giving them the available
height and their preferred
width

G r i d L a y o u t a r r a n g e s
components in a grid and
gives every element the same
size to match the preferred
size of the largest elements

L a y e r e d L a y o u t p l a c e s
components one on top of
the other. They have some
spacing here so you can see
the layers below

Get the full book from https://uber.cn1.co/

Layout Scrollable

Box Layout X Scrollable only on the X axis

Grid Layout Scrollable

LayeredLayout Not scrollable (usually)

Nesting Scrollable Containers

Only one element can be scrollable within the hierarchy, otherwise if you drag your finger
over the Form Codename One won’t know which element you are trying to scroll. By default
form’s content pane is scrollable on the Y axis unless you explicitly disable it (setting the layout
to BorderLayout implicitly disables scrolling).

It’s important to notice that it’s OK to have non-scrollable layouts, e.g. BorderLayout , as items
within a scrollable container type. E.g. in the TodoApp we added TodoItem which uses
BorderLayout into a scrollable BoxLayout Form.

Layouts can be divided into two distinct groups:

• Constraint Based - BorderLayout (and a few others I won’t discuss in this book such as
GridBagLayout , MigLayout and TableLayout)

• Regular - All of the other layout managers

When we add a Component to a Container with a regular layout we do so with a simple add method:

Listing 2. 11. Adding to a Regular Container

cnt . add(new Label ("Just Added"));

This works great for regular layouts but might not for constraint based layouts. A constraint based
layout accepts another argument. E.g. BorderLayout needs a location for the Component:

Listing 2. 12. Adding to a Regular Container

cnt . add(NORTH, new Label ("Just Added"));

This line assumes you have an import static com.codename1.ui.CN.*; in the top of the file. In
BorderLayout (which is a constraint based layout) placing an item in the NORTH places it in the top of

48

2

the Container .

Get the full book from https://uber.cn1.co/

Terse Syntax
Almost every layout allows us to add a component using several variants of the add method:

Listing 2. 13. Versions of add

Container cnt = new Container (BoxLayout. y());
cnt . add(new Label ("Just Added"));
cnt . addAll (new Label ("Adding Multiple"),
 new Label ("Second One"));

cnt . add(new Label ("Chaining")).
 add(new Label ("Value"));

Regular add

addAll accepts several components
and adds them in a batch

add returns the parent Container
instance so we can chain calls like that

In the race to make code “tighter” we can make this even shorter. Almost all layout managers have
their own custom terse syntax style e.g.:

Listing 2. 14. Terse Syntax

Container boxY = BoxLayout. encloseY(cmp1, cmp2);
Container boxX = BoxLayout. encloseX(cmp3, cmp4);
Container flowCenter = FlowLayout.
 encloseCenter (cmp5, cmp6); Most layouts have a version of enclose

to encapsulate components within

FlowLayout has variants that support
aligning the components on various axis

To sum this up, we can use layout managers and nesting to create elaborate UI’s that implicitly adapt
to different screen sizes and device orientation.

Styles

The next stage in the evolution of the application is making it look good. To understand what that
means I need to introduce you to 3 important terms in Codename One: Theme, Style and UIID.

49

2

2.2.2

Get the full book from https://uber.cn1.co/

Figure 2. 10. Themes as Layers

Themes are very similar conceptually to CSS, in fact they can be created with CSS syntax as explained
in Appendix C (page 399). The various Codename One ports ship with a native theme representing
the appearance of the native OS UI elements. Every Codename One application has its own theme
that derives the native theme and overrides behavior within it.

If the native theme has a button defined, we can override properties of that button in our theme. This
allows us to customize the look while retaining some native appearances. This works by merging the
theme to one big theme where our application theme overrides the definitions of the native theme.
This is pretty similar to the cascading aspect of CSS if you are familiar with that.

Themes consist of a set of UIID definitions. Every component in Codename One has a UIID associated
with it. UIID stands for User Interface Identifier. This UIID connects the theme to a specific
component. You may recall we wrote this code before:

Listing 2. 15. setUIID on TextField

nameText.setUIID ("Label");

50

2
Button

OS #2 Native
Theme

Button Foreground

App Theme

BUTTON

OS #1 Native
Theme

BUTTON

App Running
On OS #1

Platform Ports

Application Code

This is a text field component that will look like a Label

Get the full book from https://uber.cn1.co/

Effectively we told the text field that it should use the UIID of Label when it’s drawing itself. That way
the text field looks like a Label . It’s very common to do tricks like that in Codename One. E.g.
button.setUIID("Label") which would make a button appear like a label and allow us to track clicks
on a “Label”.

The UIID’s translate the theme elements into a set of Style objects. These Style objects get their initial
values from the theme but can be further manipulated after the fact. So if I want to make the text
field’s foreground color red I could use this code:

Listing 2. 16. setUIID on TextField

nameText.getAllStyles().setFgColor(0xff0000);

The color is in hexadecimal RRGGBB format so 0xff00 would be green and 0xff0000 would be red.

getAllStyles() returns a Style object but why do we need “all” styles?

Each component can have one of 4 states and each state has a Style object. This means we can have 4
style objects per Component:

• Unselected - used when a component isn’t touched and doesn’t have focus. You can get that object
with getUnselectedStyle() .

• Selected - used when a component is touched or if focus is drawn for non-touch devices. You can
get that object with getSelectedStyle() .

• Pressed - used when a component is pressed. Notice it’s only applicable to buttons and button
subclasses usually. You can get that object with getPressedStyle().

• Disabled - used when a component is disabled. You can get that object with getDisabledStyle().

The getAllStyles() method returns a special case Style object that lets you set the values of all 4
styles from one class so the code before would be equivalent to invoking all 4 setFgColor methods.
However, getAllStyles() only works for setting properties not for getting them!

!

Don’t use getStyle() for manipulation. getStyle() returns the current Style object
which means it will behave inconsistently. The paint method uses getStyle() as it
draws the current state of the Component but other code should avoid that method.
Use the specific methods instead: getUnselectedStyle(), getSelectedStyle(),
getPressedStyle() , getDisabledStyle() and getAllStyles()

51

2

As you can see, it’s a bit of a hassle to change styles from code which is why the theme is so appealing.

Get the full book from https://uber.cn1.co/

Designer Tool
As I mentioned before, we can customize the theme using a CSS like syntax which I discuss in
Appendix C (page 399). Here I’ll explain the usage of Codename One Designer and the simulator
theming tools to customize the look of components.

The theme is stored in the theme.res file in the src root of the project. We load the theme file using
this line of code in the init(Object) method in the main class of the application:

Listing 2. 17. Theme Loading Code

theme = UIManager. initFirstTheme("/theme");

This code is shorthand for resource file loading and for the installation of theme. You could technically
have more than one theme in a resource file at which point you could use initNamedTheme() instead.
The resource file is a special file format that includes inside it several features:

• Themes

• Images

• Localization Bundles

• Data files

It also includes some legacy features such as the old GUI builder.

!
I’m mentioning these for reference only I don’t discuss the new/old GUI builders in
this book

We can open the designer tool by double clicking the res file. The UI can be a bit overwhelming at first
so I’ll try to walk slowly through the steps.

52

2

Get the full book from https://uber.cn1.co/

Figure 2. 11. Codename One Designer Feature Map

Lets start with something simple, like the title design of the app. For this we will need the
todo-title.jpg file or equivalent. In my case the file is an 800x356 image but any reasonably sized
image with the right colors will do.

Figure 2. 12. todo-title.jpg

your image in the file chooser.

The first step is to add the image. In the designer tool we go to the Images → Add Image menu. Pick

53

Right click context menu on UIID’s
includes a lot of features such as
the ability to derive styles. We can
define the unselected style and
use Derive All to create matching
styles in the other UIID’s

When we are in one of the style UIID tabs these will
add/edit a UIID entry. When we are in the constants
tab they will add/edit a constant entry

The preview here is
impacted by the native
theme entry there. It
defines the base native
theme we can preview
although it’s not as
accurate as a simulator

Save

We can
have more
than one
theme in a
resource
file

The 4 style types, when we
add/edit in one tab it
applies to that specific style

Theme constants let us
manipulate some of
the default behaviors
of Codename One

We c a n i n s t a n t l y
preview our changes
to the theme in this
preview window

With these
options
we can
view the
entries
within the
resource
file
specificall
y the
images
within,
the
localizatio
n
resources
etc.

The two important
features from the
images menu are the
Quick Add Multi
Image and the Add
Images feature. We
won’t touch the rest.
They do exactly that,
add images into the
resource file

2

Get the full book from https://uber.cn1.co/

!

Make sure to pick a JPEG or PNG image. It shouldn’t be huge , 1024px wide would be
plenty for this. Notice that if you pick a different format (e.g. Jpeg2000, tiff, svg, gif
etc.) it might not work. Some images, specifically those from cell phone cameras,
include orientation information and that would be ignored. If your image is
flipped, make sure to edit it first

Figure 2. 13. Add a New Image

54

2

2 Pick the image in the
file picker dialog box

1
Select the Images
menu and click Add
Images

3
You should be able to
see the image in the
Main Images section
in the designer tool

Get the full book from https://uber.cn1.co/

Multi Images

As I mentioned before, images look radically different on devices with different densities. A

common solution is to bundle multiple versions of the image; One for each DPI. Codename One

takes that same approach and also simplifies it with multi-images.

A Multi Image is a concept that exists only within the resource file. When we read a Multi Image

from the file, it’s indistinguishable from a regular image. During the resource file loading

process only the image closest to the current DPI is loaded and the rest of the images are

skipped.

This begs the question: why not use a regular image and just scale it?

• Scaling images on the device produces some artifacts in scaling as the high quality scaling

algorithms are very slow

• To scale we’d want the largest possible image as scaling down is superior to scaling up, this

would be memory intensive

Still there is an obvious tradeoff of application size when working with Multi Images so use this

feature with care.

Codename One supports the following densities for multi-images:

Table 2. 2. Densities

Constant Density Example Device

DENSITY_VERY_LOW ~ 88 ppi

DENSITY_LOW ~ 120 ppi Android ldpi devices

DENSITY_MEDIUM ~ 160 ppi iPhone 3GS, iPad, Android

mdpi devices

DENSITY_HIGH ~ 240 ppi Android hdpi devices

DENSITY_VERY_HIGH ~ 320 ppi iPhone 4, iPad Air 2, Android

xhdpi devices

DENSITY_HD ~ 540 ppi iPhone 6+, Android xxhdpi

devices

DENSITY_560 ~ 750 ppi Android xxxhdpi devices

DENSITY_2HD ~ 1000 ppi

DENSITY_4K ~ 1250ppi

55

2

Get the full book from https://uber.cn1.co/

!
The most common devices at the time of this writing (mid 2018) range between
DENSITY_HIGH and DENSITY_560.

To add a Multi Image we usually create the resource for a high DPI device we then use the menu
option Images → Quick Add Multi Image to pick said image and select its DPI from the list of
DPI’s. E.g. we can ask our designer for a resource designed for the Pixel 2 XL which is a
DENSITY_HD device. Then use the Quick Add Multi Image menu and select DENSITY_HD in the
following prompt.

The system automatically generates all the other DPI’s by scaling down from the DENSITY_HD
image and scaling up to the higher DPI’s. You can then select the Multi Image entry in the
designer and customize individual images within if necessary.

Since scaling is done on the desktop it uses the high quality scale algorithm. Notice you can
manually customize individual resolutions of the Multi Image as well.

Now we can go back to the theme view in the designer tool and press the Add button in the
Unselected tab.

Figure 2. 14. The Add Button

After pressing that button we should see something that looks like this:

56

2

Add Theme Entry

Get the full book from https://uber.cn1.co/

Figure 2. 15. Add the Theme Entry for the Toolbar

! Don’t forget to press the save button in the designer
after making changes

There are several other options in the add theme entry dialog.
Lets go over them and review what we should do for each tab in
this UI:

57

There are many background type options.
Here I pick IMAGE_SCALED_FILL which
will scale the image to take up all the
available space and keep aspect ratio

The UIID we are adding or editing.
You can type in any arbitrary name
when adding. You can also pick from
pre-existing options in the combo box.
Right now we can type Toolbar here

We are adding an
entry in the Unselected
state

When Derive is checked we derive this
specific attribute from the native theme

To set the background
image of the Toolbar we
need to uncheck “Derive”

We can pick the
background image
from the combo box.
Notice that the
gradient values are
ignored unless the
background type is a
gradient

SCALED

SCALED TO FIT

SCALED TO FILL

Background Type: IMAGE_SCALED_FILL

2

Get the full book from https://uber.cn1.co/

Figure 2. 16. The Rest of the Add Theme Entry Dialog - Part I

58

2

The background
color is only
applicable if the
component doesn’t
have a border and
doesn’t have a
background type

Transparency of 255 indicates completely

opaque and 0 indicates complete

transparency. It’s best to define it to 255

as the image we show is opaque

Margin is the space between this

component and the other components

next to it. We often set it to 0 when we

want to take up available space

Padding is the extra space the component

takes beyond its “natural size”. It can be

expressed in millimeters, pixels or

percentage of the screen size. We almost

always use millimeters for padding. Notice

that in the screenshot below I ignore the

right margin as the title on Android is

aligned to the left

The foreground color of the component e.g.

the text color of a label in this case we don’t

need the foreground as we’ll style it in the

“Title” UIID

Alignment can be left/right or center.

This isn’t applicable to all components

and will only work for components

deriving from Label or TextArea.

Margin

BUTTON 1

BUTTON 2

Margin

Get the full book from https://uber.cn1.co/

Figure 2. 17. The Rest of the Add Theme Entry Dialog - Part II

Triggers This

Derive inherits the styling of the given UIID
you can type the UIID on the left and select
the right state on the right

T o o l b a r d o e s n ’ t
need a font since it
doesn’t have text so
I chose to show the
font styling for Title
because fonts are
important

The Font UI is somewhat confusing due
to a heavy dose of legacy features. For
modern applications it makes sense to
pick a native true type font from the
c o m b o b o x h e r e a n d s i z e i t i n
millimeters

When a border is defined it overrides the
background and color. That’s why it’s
important to define it as “Empty”
sometimes. The Toolbar has a shadow
border defined on Android. We want to
disable that so our background image will
show. We can edit the border with the “…”
button and we can create a 9-piece border
using the “Image Border Wizard”

T h e r e a r e m u l t i p l e
simple border types in
t h e b o r d e r e d i t i n g
dialog but the ones we
use most of all are the
R o u n d , R o u n d R e c t ,
Line, Underline and
Image (AKA 9-piece)

When we select the
Round Border we
can create either a
circle or a pill shape
(by activating the
rectangle flag)

This is a round border
w e u s e i n t h e
FloatingActionButton 2

59

Get the full book from https://uber.cn1.co/

Listing 2. 18. Toolbar Styling

Background Type: IMAGE_SCALED_FILL
Transparency: 255
Padding Left: 3mm
Padding Right: 3mm
Padding Top: 6mm
Padding Bottom: 3mm
Margin: 0px
Border: Empty

Notice I enumerate the padding for each side

Since the margin is identical on all
sides I only list it as margin

I ignore everything that I didn’t derive. This is far more concise and in some regards much simpler
than the images!

If you are still in doubt, you can use the project sources and open the file using the designer tool to
review the settings in the resource file.

60

Let’s pause for a moment. We can’t go through the entire book and post images like this for every
UIID we run into… It would turn into a picture book!

Furthermore, you might prefer to work with CSS instead of using the designer tool. So we need a more
concise way to express the settings in the designer tool. In this case I can write the settings for the
Toolbar UIID like this:

2

Get the full book from https://uber.cn1.co/

Figure 2. 18. Style Shorthand Explained Visually

For those of us who are more comfortable with a step by
step guide this is the exact process to produce this style:

• Double click the theme.res file in the src directory to open the designer tool

• Click Theme on the left hand side

• Click the Add button on the bottom of the screen. You should see the Add dialog box with the
Background tab selected

Background Type: IMAGE_SCALED_FILL

61

2

Background Type: IMAGE_SCALED_FILL

Transparency: 255

Padding Left: 3mm

Padding Right: 3mm

Padding Top: 6mm

Padding Bottom: 3mm

Margin: 0px

Border: Empty

Pick the type from
the combo box

Implicitly indicates we
need to click “Derive”

1 2

3

4Implies
derive The

transparency
value

5 Implies derive for padding

6

Each padding entry
maps to the number in
this UI. mm indicates
millimeter and px
indicates pixels

7

Margin implies derive by
specifying margin alone
we indicte the value
should apply to all sides

8

This implicitly indicates we
need to uncheck derive

9

We need to click
here to launch the

border editor
We need to pick

Empty as the
border type

10

Get the full book from https://uber.cn1.co/

• Pick IMAGE_SCALED_FILL in the Type combo box. This assumes you already added a single image to
the theme, it should be selected already in the Image combo box

Transparency: 255

• Switch to the Color tab

• Uncheck the Derive Transparency checkbox

• Type into the Transparency spinner 255

Padding Left: 3mm
Padding Right: 3mm
Padding Top: 6mm
Padding Bottom: 3mm

• Switch to the Padding tab

• Uncheck the Derive checkbox

• Fill into the spinners the values 3, 3, 6 and 3 in this order

• In all the combo boxes pick Millimeters (approximate)

Margin: 0px

• Switch to the Margin tab

• Uncheck the Derive checkbox

• Fill into all the spinners the value 0

Border: Empty

• Switch to the Border tab

• Uncheck the Derive checkbox

• Click the … button on the right hand side. This should open a Border dialog

• Pick Empty in the Type combo box

• Click OK to accept the dialog

62

2
• Uncheck the Derive check box

Get the full book from https://uber.cn1.co/

• Click OK to add the new entry

• Select File → Save to save your changes

Picking the Right Font

Before we proceed I’d like to take a moment to discuss fonts. Codename One lets you place a TTF
font file in the project and work with that. If I was aiming for 100% pixel perfect UI I might have
done that but for most cases the native OS font is the best option.

Codename One has several builtin “native:” font families that map to the OS native font for the
various platform e.g. on iOS 9+ this will map to the San Francisco font and in older OS’s to
Helvetica Neue. On Android this will use Roboto and so forth. There are multiple types of
“native” font options ranging in weight and style but I mostly use the “light” version (named
native:MainLight in the designer tool) which closely resembles the Uber font.

Discovering UIID’s and Edit In Place

You know that the Toolbar is the UIID for the title area because I
told you so. But how would you have discovered that on your
own?

For that we need the Component Inspector tool which you
can launch from the simulator’s Simulate → Component
Inspector menu option.

Once launched, you should see the inspector UI and you
can gain insight into the layout/theme of the running
application.

Figure 2. 19. Launching the
Component Inspector

63

2

Get the full book from https://uber.cn1.co/

Figure 2. 20. The Component Inspector Tool

Now that we have a grasp of the tools and we understand how to theme the UI, let’s go over the other
elements. First we have the Title which I already mentioned before. The Toolbar UIID contains the
background image but the Title UIID contains the text of the title.

The Title UIID is much simpler:

Listing 2. 19. Title Styling

Foreground Color: 0xffffff

Transparency: 0

Font: native:MainLight 7mm

White text for the title, notice you can just type the hex
value into the foreground color field in the designer

Transparent background means we don’t need a
background color

That’s a relatively thin large font, standard fonts are
usually between 2.5mm to 3mm

64

2 When we select an entry
in the tree we can see
and manipulate it here

Class Name

Name determined with
setName(String)

UIID Layered
Pane

We can edit the UIID to a different name and
instantly see the impact of the change

Edit launches the Theme Entry UI from
the designer and allows you to edit the
UIID without launching the designer.
Notice that it changes the resource file
so don’t use it if the designer is running
in the background!

R e s t o f t h e
values are read
only but very
h e l p f u l f o r
debugging the
appearance of
the application
a n d g a i n i n g
insight into a
layout

Get the full book from https://uber.cn1.co/

Figure 2. 21. Title on Android Hence the Left
Alignment

!
Notice that the title in iOS would be center aligned because the alignment attribute is
derived from the native OS theme

The title looks almost done. Let’s move to the design of the body, I’ll split the design of the body into
two steps to simplify it.

Figure 2. 22. What we have now and the Next Step

Let’s start with the obvious. The image on the left is compact and demonstrates clearly the
importance of good padding/font choices!

As you recall we styled the text fields with the Label UIID. We can fix the padding and font by using
the following style on Label :

Listing 2. 20. Label Styling

Padding Left: 3mm
Padding Right: 3mm
Padding Top: 4mm
Padding Bottom: 4mm
Font: native:MainLight 3.5mm

"
Use Derive All in the designer tool to apply this style to the other style modes. When
I don’t say otherwise do it by default on every Component UIID that can be
selected/edited

65

2
Once this is done the Todo title is very close to the
final result. You can see what we have so far here
on the right.

What we Have Right Now The Next Step

Get the full book from https://uber.cn1.co/

Figure 2. 23. Why Underline on Label isn’t what we Want

All this work brought us close to our
final destination. The next part of the
change would be the lines between the
entries. Our gut reaction might be to
define an underline for Label. That
would work but since the Label doesn’t
reach the edge of the Form we would
have a gap.

So what we really want is to underline
the whole TodoItem entry. We can do

that in code using this code in the TodoItem constructor:

Listing 2. 21. Underline the TodoItem Using Java Code

Style s = getAllStyles();
s. setPaddingUnit (Style . UNIT_TYPE_PIXELS);
s. setPadding (0, 2, 0, 0);
s. setBorder (Border. createLineBorder (2, 0xcccccc));

Changes made to this object will automatically apply to
all 4 style objects

We want to define padding in pixels
so we can draw a 2 pixel border

Padding is defined as top/
bottom/left/right order. We
leave a two pixel padding for
the borderWe draw a gray underline

2 pixel border

! We don’t need this code if we use the styling approach through setUIID()

Currently a TodoItem has the Container UIID. When we set the Style object value we change it on an
individual object instance. So these changes don’t impact other Container instances.

"
Customizing the Container UIID in the theme is a bad idea. A lot of things rely on the
Container UIID and if you change it the impact could be wide

66

2
Gap

Get the full book from https://uber.cn1.co/

TodoItem class like this:

Listing 2. 22. Underline the TodoItem Using the Theme

setUIID ("Task");

Then I can define the style in the designer tool as such:

Listing 2. 23. Task Styling

Padding Left: 0px
Padding Right: 0px
Padding Top: 0px
Padding Bottom: 2px
Border: Underline 0xcccccc 2px

And this brings us almost to the last stage of the design changes. We have two more items we’d need to
add/change to reach the final design.

Figure 2. 24. Final UI Changes for the Todo App

These two final changes to the UI combine code and theming. Lets start with the checkboxes. I used
the CheckBox class to represent those. I could customize the image of the CheckBox using the theme,
but that isn’t very flexible. Instead I chose to add these lines to the TodoItem constructor:

Listing 2. 24. CheckBox to Toggle Button in the TodoItem Constructor

done.setToggle (true);
FontImage.setMaterialIcon(done,
 FontImage.MATERIAL_CHECK, 4);

CheckBox can look like a toggle button and
effectively hide the default check mark

We set the icon for the checkmark manually
from the material icons

67

2

Still I’d rather do things in the theme normally and we can, we just need to change the UIID of the

Clear Command

Checkboxes/Toggle Buttons

Get the full book from https://uber.cn1.co/

Both CheckBox and RadioButton can act as if they are a
button and hide the checkmark symbol. This allows a lot
of flexibility. However, this also means we need to
customize the styling. Once we enable the toggle mode of
a Checkbox its UIID changes from CheckBox to
ToggleButton.

To make this look like the desired image we need to do
the following: Figure 2. 25. The Current Result Looks

Like This

Listing 2. 25. ToggleButton Styling

Foreground Color: 0xcfcfcf
Transparency: 0
Border: Empty

We don’t want a background color as
we’ll use the background of the parent

The border drawn around the button by
default should be disabled explicitly

We also need to override the selected and pressed states of the ToggleButton class:

Listing 2. 26. ToggleButton Selected and Pressed Styling

Foreground Color: 0x6868FD
Border: Empty
Derive: ToggleButton Unselected

We set the foreground when a button is
pressed which will make it purple

We define an empty border as the toggle
button has a border too

We derive other settings from the unselected
version of the component

This makes the toggle checkboxes act like the ones in the finished version and the only thing that
remains is the clear command.

68

2

Get the full book from https://uber.cn1.co/

Listing 2. 27. TodoForm Constructor Adding the Clear Command

getToolbar().addMaterialCommandToRightBar("" ,
 FontImage.MATERIAL_CLEAR_ALL, e -> clearAll());

Adds a command with
a material icon

We pick the icon as clear all and invoke
the clearAll method when it’s clicked

I’ll get to clearAll() soon but I want to finish the styling first.

There are many ways to add commands and they don’t have to use the material icons. It’s just
convenient.

Figure 2. 26. Title Command Before Styling

If you look at the UI before we apply the style you will notice the command image is also much
smaller. The FontImage class uses the size of the existing font in the style to define the size of the
icon. So if we increase the size of the font in the TitleCommand UIID it should apply to the icon too.

Listing 2. 28. TitleCommand Styling

Foreground Color: 0xffffff
Transparency: 0
Font: native:MainLight 5mm The title was styled as 7mm so this is reasonably smaller

With this, the application should now look like it does in figure 2.1(page 36) and the UI design aspect
is complete!

But before we move on to event handling let’s cover the clearAll method. In order to do that I’ll also
need to stub save and load methods which I’ll implement later in the persistence section:

69

2

The commands fit into the toolbar and are added using syntax such as this:

AndroidiOS

Get the full book from https://uber.cn1.co/

Listing 2. 29. TodoForm

private void clearAll() {
 int cc = getContentPane().getComponentCount();
 for (int i = cc - 1 ; i >= 0 ; i --) {
 TodoItem t = (TodoItem)getContentPane().getComponentAt (i);
 if (t . isChecked()) {
 t . remove();
 }
 }
 save();
 getContentPane().animateLayout(300);
}
private void load() {}
private void save() {}

Clear all removes all of the checked Todo items

We’re looping backwards from the end.
That means that if we remove a
component the offset still won’t change

If an item is checked we remove it
from its parent (the content pane)

This is a type of revalidate() that animates. After
the components are removed the remaining
components will slide into place for 300ms

We’ll implement these later in the
chapter, for now a stub will do

And with this, clear will work as well by clearing the checked items from our todo list.

Event Handling

Now that we have the UI working lets dig deeper into the functionality and events. I’ve used events
before in the code but skimmed over them e.g. this is code we had for handling the click event on the
FloatingActionButton:

Listing 2. 30. TodoForm Constructor The FloatingActionButton Event

fab.addActionListener (e -> addNewItem());

If you are new to Java or haven’t used it in a while this code might look weird. It’s a lambda
expression which was added to Java 8. The equivalent code in Java 5 would be:

70

2

2.2.3

Get the full book from https://uber.cn1.co/

Listing 2. 31. The FloatingActionButton Event Without Lambda

fab.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 addNewItem();
 }
});

Action listener is an interface from
com.codename1.ui.events

This is the same addNewItem call we had
in the lambda, the rest is boilerplate

You will notice that the lambda expression strips away a lot of the “dead weight code”. If we have
more than one line of code to write we can still use a lambda expression with curly brackets as such:

Listing 2. 32. The FloatingActionButton Event Lambda with Brackets

fab. addActionListener (e -> {
 addNewItem();
});

Notice we also had to add a semicolon

Observers and Event Types
The approach of adding a listener is called the observer pattern and it’s common for most modern UI
frameworks/OS’s. We can register an interest in receiving an event and deregister that interest when
we no longer need the event (e.g. removeActionListener).

!
We usually don’t need to remove a listener to “cleanup”. The garbage collector will
remove both the component and the listener together when we are done with both

ActionListener is the workhorse of events in Codename One but there are also some other similar
event types such as DataChangedListener which is used to monitor changes to the TextField as you
type etc.

We can demonstrate event handling in our app by adding the infrastructure for persistence support.
You might notice that the UI of the app doesn’t include a save button. Mobile apps usually save
automatically. This makes sense… You might work on something, get a phone call and forget about it.
Saving implicitly makes a lot of sense for a mobile device.

71

2

Get the full book from https://uber.cn1.co/

I mentioned the save() method before. I’d like to create event handlers that invoke it whenever data
changes. To do this I’ll need to first change some things in TodoForm:

Listing 2. 33. Event Changes to TodoForm

public class TodoForm extends Form {
 private ActionListener saver;
 public TodoForm() {
 // most of the constructor didn't change
 load();
 }
 private ActionListener getAutoSave() {
 if (saver == null) {
 saver = (e) -> save();
 }
 return saver ;
 }
 private void addNewItem() {
 TodoItem td = new TodoItem("", false,
 getAutoSave());
 // rest of the method didn't change
 }
 // rest of the class didn't change
}

We will add a load() method soon
similar to the save() method

saver is an ActionListener
that invokes save()

saver is passed to the TodoItem where
it receives change notifications

This implies changes to the TodoItem:

72

2

Listing 2. 34. Event Changes in the TodoItem

public class TodoItem extends Container {
 public TodoItem(String name, boolean checked, ActionListener onChange) {
 // most of the constructor didn't change
 nameText.addActionListener(onChange);
 done.addActionListener(onChange);
 }
 // rest of the class didn't change
}

We use the action listener and bind
it directly to the saver call

This code invokes save on any UI change without an explicit action from the user.

Get the full book from https://uber.cn1.co/

Event Dispatch Thread
Codename One is single threaded. All events and almost all method calls occur on a single thread
called the Event Dispatch Thread (EDT). By using just one thread Codename One can avoid complex
synchronization code and focus on simple functionality that assumes only one thread.

!
You can assume that all code will occur on a single thread and avoid complex
synchronization logic within your own code

Every call you receive from Codename One will occur on the EDT. E.g. every event, calls to paint(),
lifecycle calls (start() etc.) always occurs on the EDT.

This is pretty powerful, however it means that as long as your code is processing nothing else can
happen in Codename One!

"
If your code takes too long to execute then no painting or event processing will occur
during that time, so a call to Thread.sleep() will actually stop everything!
This is commonly known as “blocking the EDT” and would grind your performance to
a halt

When you need to run a CPU intensive task you should spawn a Thread and do the work there.

For that purpose we have two methods:

callSerially(Runnable) – a thread can invoke callSerially to execute the given Runnable object
on the EDT

callSeriallyAndWait(Runnable) – identical to callSerially but it returns when the Runnable
finished its execution

Codename One’s networking code automatically spawns its own network thread and performs all
networking on separate threads. However, this also poses a problem…

Codename One assumes all modifications to the UI are performed on the EDT but if we spawned a
separate thread (or did networking). How do we force our modifications back into the EDT?

73

2

•

•

Get the full book from https://uber.cn1.co/

Listing 2. 35. callSerially Sample

myButton. addActionListener(e -> {
 new Thread() {
 public void run() {
 runIntenseComputation();
 callSerially(() -> updateTheUI());
 }
 }.start();
});

We are on the EDT in the event

callback, we launch a new thread

This is a CPU intensive method that

doesn’t change the UI

updateTheUI will run on the EDT as

it’s invoked from a callSerially

This allows us to use a thread for a CPU intensive task and get back into the UI when we are done.

!
Codename One supports a more elaborate tool called invokeAndBlock which spawns
a thread while “legally” blocking the EDT

IO and Storage
There are 3 standard storage locations in Codename One:

• Storage - This is an OS specific storage location that’s closely coupled to the app. It’s normally very
portable and also simple, things such as directories or paths aren’t supported

• FileSystemStorage - This is often confused with storage because in some OS’s there is an overlap.
This is the native OS File System. It provides more capabilities such as directories. The downside is
complexity and potential compatibility issues due to device differences. This system always
expects a full file path

• SQLite - The standard SQL database built into iOS, Android and Windows devices

74

2

2.2.4

I’ll only focus on Storage right now as we won’t use the others in this application. Lets look at the

implementation of save() and load().

Get the full book from https://uber.cn1.co/

The ToastBar class presents a small notification typically
at the bottom of the Form. These notifications expire by
default after a few seconds

The first time we run the input file won’t exist

Exceptions aren’t likely for this case but
if they happen we log them and show
an error message using the ToastBar

Listing 2. 36. Save and Load in TodoForm

private void save() {
 try (DataOutputStream dos = new DataOutputStream(
 createStorageOutputStream("todo-list-of-items"))) {
 dos.writeInt(
 getContentPane().getComponentCount());
 for(Component c : getContentPane()) {
 TodoItem i = (TodoItem)c;
 dos.writeBoolean(i.isChecked());
 dos.writeUTF(i.getText());
 }
 } catch(IOException err) {
 Log.e(err);
 ToastBar.showErrorMessage("Error saving todo list!");
 }
}
private void load() {
 if(existsInStorage("todo-list-of-items")) {
 try(DataInputStream dis = new DataInputStream(
 createStorageInputStream("todo-list-of-items"));) {
 int size = dis. readInt();
 for(int iter = 0 ; iter < size ; iter++) {
 boolean checked = dis. readBoolean();
 TodoItem i =
 new TodoItem(dis.readUTF (), checked, getAutoSave();
 add(i);
 }
 } catch (IOException err) {
 Log.e(err);
 ToastBar.showErrorMessage("Error loading todo list!");
 }
 }
}

This opens a storage file for
writing with the given name

DataOutputStream provides
convenient methods like
writeInt and writeUTF

75

2

We write the values of every
component in binary form

Notice that this is the exact
inverse of the write method

Get the full book from https://uber.cn1.co/

I could have used the JSON parser or some other tool for writing/reading the data but I chose to do
something simple right now.

We can now run the Todo App and it will remember everything we add and change within the
application. The Todo app is now complete!

Summary
In this chapter, we learned:

• How to manage layout and scrolling behavior so we can build complex component hierarchies

• Styling components using the designer tool and UIID’s to create elaborate looks for our
applications

• How to use background threads with Codename One and go back and forth to the main event
dispatch thread. We can thus create more performant applications by leveraging the CPU more
effectively

• How to save and load information from persistent storage so our application can retain data
between executions

After this chapter you should have enough understanding of Codename One to get you through the
book. I’ll still take detours along the way to explain some things I didn’t get to in these first two
chapters but I’m anxious to dive into the Uber app as I’m sure you are!

There is still one small chapter and then we can get started…

76

2

2.2.3

Get the full book from https://uber.cn1.co/

Shai Almog
For the full book go to
https://uber.cn1.co/

Get the full book from https://uber.cn1.co/

This section is divided into the three separate IDE’s supported by Codename One: IntelliJ/IDEA,
NetBeans and Eclipse.

Before you begin make sure to install JDK 8. We recommend the version from Oracle. If you
install OpenJDK make sure to install JavaFX support as well.

!
As of this writing JDK 9 isn’t supported yet!
Support for newer JDK’s is planned for Codename One 5.0 so this might change by the
time you read this. Check out www.codenameone.com/download.html for the
current status

Since the IDE runs on top of a JDK instance we recommend running the IDE itself on JDK 8 to avoid
problems.

"
The screenshots are from Mac OS but the process should work exactly the same on
Windows and Linux

A.1. IntelliJ/IDEA
Codename One recommends IntelliJ/IDEA 2016 or newer.

#
Codename One doesn’t support Android Studio! You can use IntelliJ/IDEA
community edition instead

397

Appendix A: Setup
Codename One A

A.1

Get the full book from https://uber.cn1.co/

Figure 14. 1. IntelliJ Installation Instructions

NetBeans

NetBeans install is pretty simple although the default “plugin center” for NetBeans is notoriously
unreliable. That’s why we recommend using the Codename One plugin center:
www.codenameone.com/files/netbeans/updates.xml

398

Type in “Codename” in the search field select the result and click “Install”3

Launch IntelliJ, Click Configure and
Select “Plugins”

Click “Browse repositories…”

A
A.2

21

Get the full book from https://uber.cn1.co/

Figure 14. 2. NetBeans Installation Instructions

!
Make sure you are using a NetBeans version that includes Java support, don’t
download a version for Ruby/PHP or J2ME and make sure the IDE runs on top of JDK
8

Eclipse
Codename One supports Eclipse Neon 2 or newer. There are a few pitfalls that can happen with an
Eclipse install specifically when other JVM versions are installed on your machine.

A.3

399

A

Select “Avai lable Plugins” and type
“Codename” in the search field check the
“CodenameOnePlugin” and click Install

5
Follow the wizard until the IDE
restart: Codename One is installed

1

4

2
S e l e c t
T o o l s - >
Plugins

Select “Settings” and click “Add” 3

Fill in Name: “Codename
One” URL:
https://www.codenameone.com/

files/netbeans/updates.xml

Get the full book from https://uber.cn1.co/

your JDK 8 install. See this site for help with editing the eclipse.ini file: wiki.eclipse.org/Eclipse.ini

Figure 14. 3. Eclipse Installation Instructions

! In order to run the app in Eclipse make sure to select the .launch file in Eclipse

"
If you are new to Java, Eclipse might be intimidating. It’s a very powerful IDE but its
configuration is rough

Make sure your JAVA_HOME environment variable points at JDK 8 and that the path to the JDK 8 bin
directory is first in the PATH statement. If all else fails edit the eclipse.ini file to force Eclipse to use

400

A

1

2 3

Click “Help” -> “Eclipse Marketplace…”

Type “Codename” into the
find field then click “Install”

A c c e p t t h e l i c e n s e
a g r e e m e n t a n d f o l l o w
through the install process

Get the full book from https://uber.cn1.co/

This chapter covers:

• How to setup MySQL/MariaDB and map it to Spring Boot

• How to setup a Spring Boot with the Maven build process

We use Spring Boot for the server and use Maven to build it. When I developed the code for the book
1.5.7 was the latest stable version of Spring Boot so I stuck to that. However, the followup Facebook
clone application worked with 2.0 without a problem and only required minor adjustments so this
should be reasonably easy to migrate if you choose to do so.

All 3 major Java IDE’s have Maven plugins or builtin support, so working with Maven should be
simple.

MySQL Setup
We begin by installing MySQL or MariaDB on the development machine. I use MySQL during
development since it has an easy to use Mac OS installer. However, in production of apps on Linux I
tend to prefer MariaDB which is compatible with MySQL. Both should be practically interchangeable
as MariaDB is a fork of MySQL.

Installation of both databases is trivial, Oracle provides a free community edition of MySQL here:
dev.mysql.com/downloads/mysql/

You can download MariaDB from: downloads.mariadb.org/

Both sites include detailed setup instructions that you should follow.

Once installed you can launch the MySQL command prompt:

401

Appendix B: Setup
Spring Boot and

MySQL
B

B.1

Get the full book from https://uber.cn1.co/

Listing 15. 1. Launch MySQL Unix/Linux

The syntax is identical on Windows except for the path to the MySQL executable.

You need to provide the password given to you during the install process when the app prompts you.
At this point you should have a MySQL prompt.

!
A Simpler Way

You can use a visual tool such as NetBeans or Toad to connect to the MySQL database
and manage it

In the prompt create the new Uber database:

Listing 15. 2. Create Database

CREATE DATABASE uberapp;

It’s possible the database will make you set the password the first time around. You can do it with this
code:

Listing 15. 3. Set new Password

Setup Spring Boot Project
One of the best ways to start with Spring Boot is through one of the IDE plugins that offer instant setup
wizards. At the time of this writing I found these IDE plugins but check your IDE for updated
developments:

• NetBeans - plugins.netbeans.org/plugin/67888/nb-springboot

• IntelliJ - www.jetbrains.com/help/idea/2016.3/creating-spring-boot-projects.html

• Eclipse - spring.io/tools/sts/all

You can use the Spring Boot Initializer to generate a project with the following options:

402

B

B.2

/usr/local/mysql/bin/mysql -h localhost -u root -p

Password=PASSWORD('your_new_password') WHERE User='root';

Get the full book from https://uber.cn1.co/

• Cloud Security

• Web Services

• Websocket

• JPA

• MySQL

• Jersey

Alternatively you can just use this maven project which does the same thing and automatically fetches

the dependencies:

Listing 15. 4. Maven Spring Boot pom.xml build file

403

B

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.codename1.uberclone</groupId>
 <artifactId>UberClone</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>UberClone</name>
 <description>Uber style application</description>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.5.7.RELEASE</version>
 <relativePath/>
 <!-- lookup parent from repository -->
 </parent>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8
 </project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 </properties>
 <dependencies>

This is standard Maven

boilerplate project

header with no real data

The following couple of

lines include descriptive

strings about the app. Since

this is internal to the server

they don’t really matter

Get the full book from https://uber.cn1.co/404

B

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jersey</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-websocket</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.braintreepayments.gateway</groupId>
 <artifactId>braintree-java</artifactId>
 <version>2.71.0</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>

These are the modules
we need for this book

Get the full book from https://uber.cn1.co/

The basic main class for a Spring Boot application is trivial. If you used the Spring Boot initializer then
the main class is created for you. If not you can use this code:

Listing 15. 5. Main Source file for Spring Boot app

You will notice there isn’t much here.
Everything else is automatically wired

We do need to configure the properties file for Spring specifically:

405

B

 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <fork>true</fork>
 <executable>true</executable>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

@SpringBootApplication
public class UberCloneApplication {
 public static void main(String[] args) {
 SpringApplication.run(UberCloneApplication.class, args);
 }
}

This packages Spring Boot
as an executable JAR we
can run on the server very
easily

Get the full book from https://uber.cn1.co/

Listing 15. 6. application.properties file

spring.datasource.url=jdbc:mysql://localhost/uberapp
spring.datasource.username=root
spring.datasource.password=DatabasePassword

spring.jpa.hibernate.ddl-auto=update
spring.jpa.generate-ddl=true

spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.jpa.database-platform=org.hibernate.dialect.MySQL5InnoDBDialect

spring.http.multipart.max-file-size=800KB
spring.http.multipart.max-request-size=2048KB

This driver and following
syntax declaration work
for MariaDB too

Once we do this we should have Spring Boot and it should map seamlessly to our locally installed SQL
databases.

406

B

This is the URL for the
database. Here it’s hosted on
the same machine but you can
point at a different machine.
You can provide a different
database name as well

These 2 lines indicate that we
want the database created and
updated automatically based on
our Java JPA objects

We define the maximum file size
for file upload to the server. Limits
are important to prevent an
attacker from uploading huge files
and crashing our servers

Get the full book from https://uber.cn1.co/

To enable CSS support in Codename One you need to flip a switch in Codename One Settings.

Figure 16. 1. The CSS Option in Codename One Settings Part I

407

Appendix C:
Styling Codename

One with CSS
C

Get the full book from https://uber.cn1.co/

Figure 16. 2. The CSS Option in Codename One Settings Part II

Once enabled your theme.res file will regenerate from a CSS file that resides under the css directory.
Changes you make to the CSS file will instantly update the simulator as you save. However, there are
some limits to this live update so in some cases a simulator restart would be necessary.

!
This appendix assumes you are familiar with CSS and typical CSS terms such as
selectors

Getting Started with CSS
We can now add css files into the css directory. If we add the file css/theme.css when we compile the
project, it will generate the src/theme.res file. So changes you make to the resource file in the
designer tool will get overwritten!

A most basic hello CSS file would look like this:

408

C

C.1

Get the full book from https://uber.cn1.co/

Listing 16. 1. Hello CSS

Theme constants can be defined
in this special selector

This is a crucial constant. Otherwise
the native theme won’t load

Selectors
All CSS selectors are effectively UIID’s. There is no support for most of the complex selectors e.g. you
can’t do something like this:

Listing 16. 2. Nesting Doesn’t Work

Since CSS is statically compiled it can’t support features that don’t exist in Codename One and complex
selectors aren’t supported.

You can however override a specific state of the selector using the suffixes: .pressed , .selected,
.unselected or .disabled.

Listing 16. 3. Set the Button Pressed Styling

409

C

C.1.1

#Constants {
 includeNativeBool: true;
}

Label {
 color: blue;
}

ContentPane Button {
 /* ... */
}

Button.pressed {
 /* ... */
}

The selector matches the UIID so this is
the same as defining the Label UIID

Standard CSS attributes should work as expected, color matches
foreground and the typical constants work (e.g. blue)

Get the full book from https://uber.cn1.co/

! The default targets all states

You can also select multiple targets at once:

Listing 16. 4. Applying Styling to Multiple Types

There are a few extra features I didn’t mention which you can read about here: github.com/shannah/
cn1-css/wiki/Supported-CSS-Selectors

Properties
The following table lists the main supported properties and notes related to them. For a full list and
more details check out github.com/shannah/cn1-css/wiki/Supported-Properties

Table 16. 3. Main Supported Properties

Property Notes

padding

margin

border Supports the border property and most of its
variants (e.g. border-width, border-style, and
border-color. It will try to use native CN1 styles
for generating borders if possible. If the border
definition is too complex, it will fall-back to
generating a 9-piece image border at compile-
time.

border-radius

background

background-color

background-repeat

background-image

font For more about fonts check out github.com/
shannah/cn1-css/wiki/Fonts

font-family font-family: "native:MainLight";

410

C

C.1.2

Button.selected, TextField, MyComponent {
 /* ... */
}

Get the full book from https://uber.cn1.co/

Property Notes

font-style

font-size font-size: 3mm;

color Foreground color

text-align

text-decoration One of: underline , overline , line-through , none,
cn1-3d, cn1-3d-lowered, cn1-3d-shadow-north

opacity

Most of the entries include their respective variants e.g. both margin-top: and margin: 1px 1px 1px
1px; would work.

Images C.1.3
To add images to the resource file you can place them in the css folder commonly under the images
folder within.

Listing 16. 5. Simple Image Usage in CSS

This special property defines
the source DPI of the image

This effectively creates a Multi Image in the resource file and automatically scales the image to all the
various resolutions. 480 is effectively an HD DPI image.

We can also generate 9-patch borders using images e.g.:

Listing 16. 6. Cutting a 9-patch Border in CSS

The distance for
cutting from the edge

411

C

SomeStyle {
 background-image: url(images/my-image.png);
 cn1-source-dpi: 480;
}

MyStyle {
 background-image: url(myimage.png);
 cn1-9patch: 5px 8px 4px 10px;
}

Get the full book from https://uber.cn1.co/

Summary
I just barely scratched the surface of the CSS functionality in Codename One. We plan to include
thorough coverage of CSS in the Codename One Developer guide version 5.0.

412

C

C.2

Get the full book from https://uber.cn1.co/

Installing a cn1lib is a relatively easy, as illustrated here:

Figure D. 1. Overview of the cn1lib Install Process 1 & 2

413

Appendix D:
Installing cn1libs D

2

Right click the project and select
“Codename One” -> “Codename One
Settings”

Click “Extensions”

1

Get the full book from https://uber.cn1.co/

Figure D. 2. Overview of the cn1lib Install Process 3 & 4

Figure D. 3. Overview of the cn1lib Install Process 5 & 6

Installing a cn1lib is usually seamless:

• Launch Codename One Settings

• Click Extensions

• Select the extension which is downloaded for you (you can type in the search box)

414

D

3
Type the name of the extension you are looking for in

the search field and click the Download Button

Close Settings. Right-click the

project and select “Codename

One” -> “Refresh cn1lib files”

4

6

You might be done already. If your

cn1lib needs custom build hints (e.g.

Google Maps) relaunch Codename One

Settings and click “Build Hints”

You can edit the values in the build hints.

Specifically, the google maps requires adding

entries like android.xapplication which you can

add by pressing the “Add Hint” button below
5

• Select Refresh Cn1Libs in the right click menu

Get the full book from https://uber.cn1.co/

There are a few cn1libs that require additional configuration and the native Google Maps is one of
those cn1libs as it requires several build hints that can’t be picked in runtime. Specifically the build
hints are:

The reason these are needed is due to the key values that must be present during build time. The key
values are values you need to retrieve from the Google Cloud Console as explained here: github.com/
codenameone/codenameone-google-maps/

415

D

javascript.googlemaps.key=YOUR_JAVASCRIPT_API_KEY android.xapplication=<meta-data
 android:name="com.google.android.maps.v2.API_KEY"
 android:value="YOUR_ANDROID_API_KEY"/> ios.afterFinishLaunching=[GMSServices
 provideAPIKey:@"YOUR_IOS_API_KEY"];

Get the full book from https://uber.cn1.co/416

D

Get the full book from https://uber.cn1.co/

A huge part of the driver app is the push notification process, that’s how we notify a driver that there
is a ride pending. But what is push and why should we use it in this case?

Push notification allows us to send a notification to a device while the application might be in the
background. This is important both as a marketing tool and as a basic communications device. In this
case the driver might be in a different app but we still want him to notice that we are looking for a
ride…

Why Push and Not Polling/WebSocket?

The biggest problem is that a polling application will be killed by the OS as it is sent to the
background to conserve OS resources. While this might work in some OS’s and some cases this
isn’t something you can rely on. E.g. Android 6+ tightened the background process behavior
significantly.

The other issue is battery life, new OS’s expose battery wasting applications and as a result
might trigger uninstalls. This makes even foreground polling less appealing.

What Is Push?

For iOS push is mostly a visual notification triggered by the server to draw attention to new
information inside an app. These don’t sound very different until you realize that in Android you can

417

Appendix E: Push
Notification E

E.1

Polling the server (periodically asking the server for an update) seem like sensible time proven
strategy. However, there are many complexities related to that approach in mobile phones.

If you are new to mobile development then you might have heard a lot of buzzwords and very little
substance. The problem is that iOS and Android have very different ideas of what push is and should
be. For Android, push is a communication system that the server can initiate. E.g. the cloud can send
any packet of data, and the device can process it in rather elaborate ways.

Get the full book from https://uber.cn1.co/

receive/process a push without the awareness of the end user. In iOS a push notification is displayed
to the user, but the app might be unaware of it!

!
Background Push in iOS is Different

iOS will only deliver the push notification to the app, if it is running or if the user
clicked the push notification popup!

Codename One tried to make both OS’s “feel” similar so background push calls act the same in iOS and
Android as a result.

"

Push isn’t 100% Reliable

You shouldn’t push important data. Push is lossy and shouldn’t include a payload that
MUST arrive!
Instead, use push as a flag to indicate that the server has additional data for the app to
fetch

For this case we use push to let the drivers know, but pass the actual important information within the
socket connection.

Various Types of Push Messages
In the driver app we send a push type 3 message which might have been a bit unclear. Before we
proceed I think it’s a good time to discuss the various types of push messages.

• 0, 1 – The default push types. They work everywhere and present the string as the push alert to
the user

• 2 – hidden, non-visual push. This won’t show any visual indicator on any OS!
In Android this will trigger the push(String) call with the message body. In iOS this will only
happen if the application is in the foreground otherwise the push will be lost

• 3 – allows combining a visual push with a non-visual portion. Expects a message in the form: This
is what the user won’t see;This is something he will see. E.g. you can bundle a special ID
or even a JSON string in the hidden part while including a friendly message in the visual part.
When active this will trigger the push(String) method twice, once with the visual and once with
the hidden data.

• 4 – Allows splitting a visual push request based on the format title;body to provide better visual
representation in some OS’s.

• 5 – Sends a regular push message but doesn’t play a sound when the push arrives

418

E

E.2

Get the full book from https://uber.cn1.co/

• 100 – Applicable only to iOS. Allows setting the numeric badge on the icon to the given number.
The body of the message must be a number e.g. unread count.

• 101 – identical to 100 with an added message payload separated with a space. E.g. 30 You have 30
unread messages will set the badge to “30” and present the push notification text of “You have 30
unread messages”.

Push Details
When sending a push message we need some details in order to send a push message to the right
device. These details provide us with the authorization required for push. Otherwise, anyone could
send a push notification to any device…
Google and Apple have very different approaches to push. In the following sections I describe how to
get the values you need from them. In the Uber Clone app we set these values in the Globals class
constants.

Google
Android Push goes thru Google servers, and to do that, we need to register with Google to get keys for
server usage.

We need one important value: GOOGLE_PUSH_AUTH_KEY (for the Globals class). To generate this
value follow these steps:

• Login to console.cloud.google.com/

• Select APIs & Services

• Select Library

• Select Developer Tools

• Select Google Cloud Messaging

• Click Enable and follow the instructions

• The value we need is the API key, which you can see under the credentials entry

Apple
You will need to re-run the certificate wizard for the driver project. If you generated certificates
before say no to the step that asks you to revoke them and copy your existing credentials (certificate
P12 file and password) to the new project. Make sure to check the Include Push flag in the wizard so
the generated provisioning includes push data.

419

E

E.3

E.3.1

E.3.2

Get the full book from https://uber.cn1.co/

Once this is done you should receive an email that includes the certificate details. This will include
URL’s for the push certificates we generated for you and the passwords for those certificates.

Apple has two push servers:

• Sandbox - use this during development

• Production - this will only work for shipping apps

You need to toggle the APNS_PRODUCTION flag (in the Globals class) when building a release version
 of the app.

E.4. Push Registration and Interception
Once this is out of the way we can start handling the push messages. To do that we need to implement
the PushCallback interface in the main class of our app.

!
This MUST be in the Main Class

The PushCallback interface must be defined in the main class. Otherwise it won’t
work correctly

A simple push listener works similarly to this code. Notice I trimmed the boilerplate so the push code
stands out:

420

E

E.4

Get the full book from https://uber.cn1.co/

Listing 18. 1. DriverApp with Push

If there was an error in registration
this method is invoked

The push callback is invoked when
push is received from the server

The push key is what we use to
identify this device and send push
messages to it. This method usually
sends that key to the server so we can
receive push messages here

421

E

public class MyApp implements PushCallback {
 public void init(Object context) {
 // trimmed init code
 }
 public void start() {
 // trimmed start code
 callSerially(() -> {
 registerPush();
 });
 }
 public void stop() {
 // trimmed stop code
 }
 public void destroy() {
 // trimmed destroy code
 }
 public void push(String value) {
 Log.p("Received push callback: " + value);
 }
 public void registeredForPush(String deviceId) {
 Log.p("Registered for push device key: " +
 Push.getPushKey());
 }

 public void pushRegistrationError(String error,
 int errorCode) {
 Log.p("Error registering for push: " + error);
 }
}

We need to implement the PushCallback
interface in the main class

registerPush should be invoked every time. Notice I use
callSerially to defer the permission prompt so it appears
after the Form is shown

When registration succeeds this
method is invoked. Notice the deviceId
isn’t the push key! It’s the native OS
key, it’s here for compatibility only

Get the full book from https://uber.cn1.co/422

E

Get the full book from https://uber.cn1.co/

Codename One uses a SaaS based approach so the information in this appendix might (and probably

will) change in the future to accommodate improved architectures. I included this information for

reference only, you don’t need to understand this in order to follow the content of the book…

Since Android is already based on Java, Codename One is already native to Android and “just works”

with the Android VM (ART/Dalvik).

On iOS, Codename One built and open sourced ParparVM, which is a very conservative VM. ParparVM

features a concurrent (non-blocking) GC and it’s written entirely in Java/C. ParparVM generates C

source code matching the given Java bytecode. This effectively means that an xcode project is

generated and compiled on the build servers. It’s as if you handcoded a native app and is thus “future

proof ” for changes that Apple might introduce. E.g. Apple migrated to 64bit and later introduced

bitcode support to iOS. ParparVM needed no modifications to comply with those changes.

!
Codename One translates the bytecode to C which is faster than Swift/Objective-C.

The port code that invokes iOS API’s is hand coded in Objective-C

For Windows 10 desktop and Mobile support, Codename One uses iKVM to target UWP (Universal

Windows Platform) and has open sourced the changes to the original iKVM code.

JavaScript build targets use TeaVM to do the translation statically. TeaVM provides support for

threading using JavaScript by breaking the app down in a rather elaborate way. To support the

complex UI Codename One uses the HTML5 Canvas API which allows absolute flexibility for building

applications.

For desktop builds Codename One uses javafxpackager, since both Macs and Windows machines are

available in the cloud the platform specific nature of javafxpackager is not a problem.

423

Appendix F: How
Does Codename

One Work?
F

Get the full book from https://uber.cn1.co/

Lightweight Architecture
What makes Codename One stand out is the approach it takes to UI: “lightweight architecture”.

Lightweight architecture is the “not so secrete sauce” to Codename One’s portability. Essentially it
means all the components/widgets in Codename One are written in Java. Thus their behavior is
consistent across all platforms and they are fully customizable from the developer code as they don’t
rely on OS internal semantics. This allows developers to preview the application accurately in the
simulators and GUI builders.

One of the big accomplishments in Codename One is its unique ability to embed “heavyweight”
widgets into place among the “lightweights”. This is crucial for apps such as Uber where the cars and
widgets on top are implemented as Codename One components yet below them we have the native
map component.

Codename One achieves fast performance by drawing using the native gaming API’s of most platforms
e.g. OpenGL ES on iOS. The core technologies behind Codename One are all open source including
most of the stuff developed by Codename One itself, e.g. ParparVM but also the full library, platform
ports, designer tool, device skins etc.

424F

F.1

