

Codename One Developer Guide

Contents
Preface. 1

1. Introduction. 5

1.1. Build Cloud . 5

1.1.1. Why Build Servers? . 6

1.1.2. How does Codename One Work? . 6

Lightweight Architecture . 7

Why ParparVM . 8

Windows Phone/UWP . 8

JavaScript Port . 9

Desktop and Android . 9

1.1.3. Versions In Codename One. 9

1.2. History . 9

1.3. Core Concepts of Mobile Programming. 10

1.3.1. Density. 10

1.3.2. Touch Interface . 12

1.3.3. Device Fragmentation . 13

1.3.4. Performance. 13

App Size. 13

Power Drain . 13

1.3.5. Sandbox and Permissions. 14

1.4. Installing Codename One . 14

1.5. IntelliJ/IDEA . 14

1.6. NetBeans . 15

1.7. Eclipse . 16

1.8. Hello World Application . 17

1.8.1. Running. 19

1.8.2. The Source Code Of The Hello World App . 20

1.8.3. Building and Deploying On Devices . 24

Signing/Certificates. 25

Build and Install . 30

1.9. Kotlin . 32

1.9.1. Hello Kotlin. 32

2. Basics: Themes, Styles, Components and Layouts . 37

2.1. Components . 37

2.1.1. Layout Managers. 38

Terse Syntax . 43

Flow Layout . 43

Box Layout . 45

Border Layout . 47

Grid Layout. 49

2.1.2. Table Layout. 50

The Full Potential . 52

TextMode Layout. 54

2.1.3. Layered Layout . 55

Insets and Reference Components . 56

auto Insets . 57

% Insets . 58

Insets, Margin, and Padding. 58

Component References: Linking Components together . 59

2.1.4. GridBag Layout . 62

2.1.5. Group Layout . 64

2.1.6. Mig Layout . 66

2.2. Themes and Styles . 66

2.2.1. Theme . 68

Native Theme. 72

2.3. GUI Builder. 76

2.3.1. Hello World . 78

NetBeans . 78

IntelliJ/IDEA . 79

Eclipse . 80

Basic Usage . 81

Events. 84

Underlying XML . 85

2.3.2. Auto-Layout Mode. 87

The Inset Control. 87

Auto Snap . 88

Smart Insets . 88

The Widget Control Pad. 88

Keyboard Short-Cuts . 89

Sub-Containers . 89

The Canvas Resize Tool . 90

3. Theme Basics . 91

3.1. Understanding Codename One Themes . 91

3.2. Customizing Your Theme . 92

3.3. Customizing The Title . 95

3.3.1. Background Priorities and Types . 95

3.3.2. The Background Behavior and Image . 96

3.3.3. The Color Settings . 105

3.3.4. Alignment . 106

3.3.5. Padding and Margin. 106

3.3.6. Borders . 107

3.3.7. 9-Piece Image Border. 108

Customizing The 9-Piece Border . 111

3.3.8. Horizontal/Vertical Image Border. 113

3.3.9. Empty Border. 114

3.3.10. Round Border . 114

3.3.11. Rounded Rectangle Border. 115

3.3.12. Bevel/Etched Borders. 115

3.3.13. Derive . 116

3.3.14. Fonts . 117

Font Effects . 121

4. Advanced Theming . 123

4.1. Working With UIID’s . 123

4.2. Theme Layering . 123

4.3. Override Resources In Platform . 124

4.4. Theme Constants . 125

4.5. Native Theming. 136

4.6. Under the Hood of the Theme Engine . 136

4.7. Understanding Images and Multi-Images . 138

4.8. Use Millimeters for Padding/Margin and Font Sizes . 140

4.8.1. Fractions of Millimeters . 140

4.9. Creating a Great Looking Side Menu . 141

4.10. Converting a PSD To A Theme. 145

4.10.1. Breaking Down the PSD . 147

Removing the Noise . 149

The Camera Button. 150

4.10.2. The Code . 153

4.10.3. Styling The UI . 156

Not Quite There Yet . 158

5. CSS . 159

5.1. Activating CSS . 159

5.2. Supported CSS Selectors . 160

5.2.1. Inheriting properties using cn1-derive . 161

5.3. Special Selectors . 161

5.3.1. #Device . 161

5.3.2. #Constants . 161

5.3.3. Default . 163

5.4. Standard CSS Properties . 163

5.5. Custom Properties . 164

5.6. CSS Variables . 164

5.7. CSS Properties . 165

5.7.1. text-decoration . 165

5.7.2. border . 166

Round Borders. 166

5.7.3. background . 168

Background Images . 168

Gradients. 168

5.7.4. cn1-background-type . 174

5.8. Images . 175

5.8.1. Image DPI and Device Densities . 175

5.8.2. Multi-Images vs Regular Images . 176

5.8.3. Multi-Images as Inputs . 176

5.8.4. Image Constants . 177

5.9. Image Recipes . 178

5.9.1. Import Multiple Images In Single Selector . 178

5.9.2. Loading Images from URLs . 179

5.9.3. Generating 9-Piece Image Borders . 179

5.9.4. Image Backgrounds . 180

Example Setting Background Image to Scale Fill . 181

5.10. Image Compression . 181

5.11. Fonts . 181

5.11.1. font-family . 182

Using TTF Fonts . 182

5.11.2. font-size . 183

5.11.3. text-decoration . 183

5.11.4. Some Sample CSS Directives . 184

5.12. Media Queries . 188

5.12.1. Compound Media Queries . 189

5.12.2. Order or Precedence . 190

5.12.3. Font Scaling Constants. 190

6. The Components of Codename One. 193

6.1. Container . 193

6.1.1. Composite Components. 193

6.2. Form . 194

6.3. Dialog. 196

6.3.1. Styling Dialogs . 197

6.3.2. Tint and Blurring . 198

6.3.3. Popup Dialog . 200

Styling The Arrow Of The Popup Dialog . 200

6.4. InteractionDialog . 201

6.5. Label . 202

6.5.1. Label Gap . 203

6.5.2. Autosizing Labels . 203

6.6. TextField and TextArea. 204

6.6.1. Masking. 207

6.6.2. The Virtual Keyboard. 207

Action Button Client Property . 208

Next and Done on iOS . 208

6.6.3. Clearable Text Field . 209

6.7. TextComponent. 209

6.7.1. Error Handling . 210

6.7.2. InputComponent and PickerComponent . 211

6.7.3. Underlying Theme Constants and UIID’s . 212

6.8. Button . 213

6.8.1. Uppercase Buttons . 214

6.8.2. Raised Button. 214

6.8.3. Ripple Effect . 215

6.9. CheckBox/RadioButton . 216

6.9.1. Toggle Button . 217

6.10. ComponentGroup. 218

6.11. MultiButton . 219

6.11.1. Styling The MultiButton . 221

6.12. SpanButton . 221

6.13. SpanLabel. 221

6.14. OnOffSwitch . 222

6.14.1. Validation . 223

6.15. InfiniteProgress . 224

6.16. InfiniteScrollAdapter and InfiniteContainer . 225

6.16.1. The InfiniteContainer . 227

6.17. List, MultiList, Renderers & Models. 228

6.17.1. InfiniteContainer/InfiniteScrollAdapter vs. List/ContainerList. 228

6.17.2. Why Isn’t List Deprecated?. 229

6.17.3. MVC In Lists . 229

6.17.4. Understanding MVC. 229

Why is this useful? . 230

6.17.5. Important - Lists & Layout Managers . 231

6.17.6. MultiList & DefaultListModel. 231

Going Further With the ListModel . 233

6.17.7. List Cell Renderer . 235

6.17.8. Generic List Cell Renderer . 237

Custom UIID Of Entry in GenenricListCellRenderer/MultiList . 240

Rendering Prototype . 240

6.17.9. ComboBox . 241

6.18. Slider . 242

6.19. Table . 243

6.19.1. Sorting Tables . 249

6.20. Tree . 249

6.21. ShareButton. 252

6.22. Tabs . 254

6.23. MediaManager & MediaPlayer . 256

6.24. ImageViewer . 258

6.25. ScaleImageLabel & ScaleImageButton . 261

6.26. Toolbar . 262

6.26.1. Search Mode . 265

6.26.2. South Component . 267

6.26.3. Title Animations . 267

6.27. BrowserComponent & WebBrowser . 269

6.27.1. BrowserComponent Hierarchy . 271

6.27.2. NavigationCallback . 271

6.27.3. JavaScript . 272

So what was wrong with the old API? . 273

The New API. 273

Synchronous Wrappers. 274

Multi-use Callbacks. 275

Passing Parameters to Javascript . 275

Proxy Objects . 276

Legacy JSObject Support . 277

The JavaScript Bridge . 278

6.27.4. Cordova/PhoneGap Integration. 280

6.28. AutoCompleteTextField . 281

6.28.1. Using Images In AutoCompleteTextField . 283

6.29. Picker. 285

6.30. SwipeableContainer. 289

6.31. EmbeddedContainer . 290

6.32. MapComponent . 290

6.33. Chart Component . 293

6.33.1. Device Support . 293

6.33.2. Features. 294

6.33.3. Chart Types . 294

6.33.4. How to Create A Chart . 296

6.34. Calendar . 297

6.35. ToastBar . 298

6.35.1. Actions In ToastBar . 300

6.36. SignatureComponent. 301

6.37. Accordion . 301

6.38. Floating Hint . 302

6.39. Floating Button . 303

6.39.1. Using Floating Button as a Badge . 304

6.40. SplitPane. 304

7. Animations . 307

7.1. Layout Reflow . 307

7.2. Layout Animations. 307

7.2.1. Unlayout Animations . 311

7.2.2. Hiding & Visibility . 312

7.2.3. Synchronicity In Animations . 312

Animation Fade and Hierarchy . 313

7.2.4. Sequencing Animations Via AnimationManager . 314

Animation Manager to the Rescue . 315

7.3. Low Level Animations . 315

7.3.1. Why Not Just Write Code In Paint?. 316

7.4. Transitions . 316

7.4.1. Replace . 317

7.4.2. Slide Transitions . 318

7.4.3. Fade and Flip Transitions . 320

7.4.4. Bubble Transition . 321

7.4.5. Morph Transitions . 323

7.4.6. SwipeBackSupport . 323

8. The EDT - Event Dispatch Thread. 325

8.1. What Is The EDT . 325

8.2. Call Serially (And Wait) . 326

8.2.1. callSerially On The EDT. 327

8.3. Debugging EDT Violations . 327

8.4. Invoke And Block . 328

9. Monetization . 333

9.1. Google Play Ads. 333

9.2. In App Purchase . 333

9.2.1. The SKU . 333

9.2.2. Types of Products . 334

9.2.3. The "Hello World" of In-App Purchase . 334

9.2.4. Making it Consumable. 338

9.2.5. Non-Renewable Subscriptions. 339

9.2.6. The Server-Side . 340

The Receipts API . 340

9.2.7. The "Hello World" of Non-Renewable Subscriptions . 340

Implementing the Receipt Store . 341

Synchronizing Receipts . 345

Expiry Dates and Subscription Status . 346

Allowing the User to Purchase the Subscription. 347

9.2.8. subscribe() vs purchase() . 349

Handling Purchase Callbacks. 349

9.2.9. Screenshots . 349

9.2.10. Summary . 351

9.2.11. Auto-Renewable Subscriptions . 351

9.2.12. Auto-Renewable vs Non-Renewable. Best Choice? . 352

9.2.13. Learning By Example . 352

9.2.14. Building the IAP Demo Project . 352

Setting up the Client Project . 352

Setting up the Server Project . 353

Setting up the Database. 353

Testing the Project . 354

9.2.15. Looking at the Source of the App . 357

Client Side . 357

Server-Side . 359

9.2.16. The CN1-IAP-Validator Library . 361

9.2.17. The validateAndSaveReceipt() Method . 362

9.2.18. Google Play Setup . 365

Creating the App in Google Play . 365

Testing The App. 367

Creating Google Play Receipt Validation Credentials . 367

9.2.19. iTunes Connect Setup . 371

Setting up In-App Products. 371

Creating Test Accounts . 371

Setting up Receipt Verification . 372

10. Graphics, Drawing, Images & Fonts. 373

10.1. Basics - Where & How Do I Draw Manually?. 373

10.2. Glass Pane . 375

10.3. Shapes & Transforms . 376

10.4. Device Support . 376

10.5. A 2D Drawing App . 376

10.5.1. Implementing addPoint() . 378

10.5.2. Using Bezier Curves . 378

10.5.3. Detecting Platform Support . 380

10.6. Transforms. 380

10.6.1. Device Support . 381

10.7. Example: Drawing an Analog Clock. 381

10.7.1. The AnalogClock Component. 382

10.7.2. Setting up the Parameters . 382

10.7.3. Drawing the Tick Marks . 383

10.7.4. Drawing the Numbers . 385

10.7.5. Drawing the Hands . 387

10.7.6. The Final Result . 390

10.7.7. Animating the Clock. 390

10.8. Starting and Stopping the Animation . 391

10.9. Shape Clipping . 391

10.10. The Coordinate System . 393

10.10.1. Relative Coordinates . 394

10.10.2. Transforms and Rotations . 395

10.10.3. Event Coordinates . 398

10.11. Images. 398

10.11.1. Loaded Image . 398

10.11.2. The RGB Image’s . 399

Internal . 399

RGBImage class . 399

10.11.3. EncodedImage. 400

10.11.4. MultiImage. 401

10.11.5. FontImage & Material Design Icons . 401

Material Design Icons . 402

10.11.6. Timeline . 403

10.11.7. Image Masking . 403

10.11.8. URLImage. 404

Mask Adapter. 406

URLImage In Lists. 406

11. Events . 409

11.1. High Level Events. 409

11.1.1. Chain Of Events. 409

11.1.2. Action Events . 409

Types Of Action Events . 410

Source Of Event. 410

Event Consumption . 410

NetworkEvent . 411

11.1.3. DataChangeListener. 412

11.1.4. FocusListener. 412

11.1.5. ScrollListener. 413

11.1.6. SelectionListener . 413

11.1.7. StyleListener . 414

11.1.8. Event Dispatcher. 414

11.2. Low Level Events . 414

11.2.1. Low Level Event Types . 415

11.2.2. Drag Event Sanitation . 416

11.3. BrowserNavigationCallback . 416

12. File System, Storage, Network & Parsing . 419

12.1. Jar Resources. 419

12.2. Storage . 419

12.2.1. The Preferences API. 422

12.3. File System . 423

12.3.1. File Paths & App Home . 423

12.3.2. Storage vs. File System . 425

12.4. SQL. 426

12.5. Network Manager & Connection Request . 428

12.5.1. Threading . 430

12.5.2. Arguments, Headers & Methods . 430

Arguments . 430

Methods. 431

Headers . 431

Server Headers . 432

Error Handling . 432

Error Stream . 433

12.5.3. GZIP . 434

12.5.4. File Upload . 434

12.5.5. Parsing . 435

Parsing CSV. 435

JSON . 436

XML Parsing . 439

XPath Processing. 440

Properties Files . 446

12.6. Debugging Network Connections . 447

12.6.1. Simpler Downloads . 447

Downloading Images . 447

12.7. Rest API. 449

12.7.1. Rest in Practice - Twilio . 449

12.8. Webservice Wizard . 451

12.9. Connection Request Caching . 455

12.9.1. getCachedData() . 456

12.9.2. cacheUnmodified() . 456

12.9.3. purgeCache & purgeCacheDirectory . 457

12.10. Cached Data Service . 457

12.11. Externalizable Objects . 457

12.12. UI Bindings & Utilities . 462

12.13. Logging & Crash Protection . 463

12.14. Sockets . 463

12.15. Properties. 465

12.15.1. Properties in Java . 467

Encapsulation . 467

Introspection & Observability . 468

12.15.2. The Cool Stuff . 468

Constructors . 469

Seamless Serialization . 470

Seamless SQL Storage . 471

Preferences Binding . 473

UI Binding. 474

UI Generation. 476

13. Push Notifications . 479

13.1. Understanding Push Notifications . 479

13.2. Implementing Push Support . 479

13.3. The Push Lifecycle . 480

13.3.1. Registration . 480

13.3.2. Sending a Push Notification. 481

13.3.3. Receiving a Push Notification . 481

13.4. Testing Push Support. 481

13.5. Push Types and Message Structure . 484

13.5.1. Example Push Type 1. 485

13.5.2. Example Push Type 2. 485

13.5.3. Example Push Type 3. 486

13.5.4. Example Push Type 4. 486

13.5.5. Example Push Type 5. 487

13.5.6. Example Push Type 100 . 487

13.5.7. Example Push Type 101 . 487

13.6. Rich Push Notifications. 488

13.6.1. Image Attachment Support . 488

13.6.2. Notification Actions . 490

13.7. Deploying Push-Enabled Apps to Device . 493

13.7.1. The Push Bureaucracy - Android . 493

13.7.2. The Push Bureaucracy - iOS . 496

13.7.3. The Push Bureaucracy - UWP (Windows 10) . 498

13.7.4. The Push Bureaucracy - Javascript. 499

13.8. Sending Push Messages . 500

13.8.1. Sending a Push Message From Codename One. 501

13.8.2. Sending Push Message From A Java or Generic Server . 502

Server JSON Responses . 503

14. Miscellaneous Features . 505

14.1. Phone Functions . 505

14.1.1. SMS. 505

14.1.2. Dialing . 506

14.1.3. E-Mail. 506

14.2. Contacts API. 507

14.3. Localization & Internationalization (L10N & I18N) . 510

14.3.1. Localization Manager . 511

14.3.2. RTL/Bidi. 512

14.4. Location - GPS . 513

14.4.1. Location In The Background - Geofencing . 514

14.5. Background Music Playback . 516

14.6. Capture - Photos, Video, Audio . 516

14.6.1. Capture Asynchronous API . 523

14.7. Gallery. 523

14.8. Analytics Integration. 524

14.8.1. Application Level Analytics . 525

14.8.2. Overriding The Analytics Implementation . 525

14.9. Native Facebook Support . 525

14.9.1. Getting Started - Web Setup . 525

14.9.2. IDE Setup . 528

14.9.3. The Code . 528

14.9.4. Facebook Publish Permissions . 529

14.10. Google Sign-In . 530

14.10.1. iOS Setup Instructions. 530

14.10.2. Android Setup Instructions . 533

14.10.3. OAuth Setup (Simulator and REST API Access) . 536

Client ID, Client Secret and Redirect URL . 536

14.10.4. Javascript Setup Instructions. 537

14.10.5. The Code . 537

14.11. Lead Component . 538

14.11.1. Blocking Lead Behavior . 539

14.12. Pull To Refresh . 541

14.13. Running 3rd Party Apps Using Display’s execute. 541

14.14. Automatic Build Hint Configuration . 542

14.15. Easy Thread. 543

14.16. Mouse Cursor . 544

14.17. Working With GIT . 544

14.17.1. cn1lib’s . 544

14.17.2. Resource Files . 545

14.17.3. Eclipse Version . 545

14.17.4. IntelliJ/IDEA . 546

15. Performance, Size & Debugging . 549

15.1. Reducing Resource File Size . 549

15.2. Improving Performance . 550

15.3. Performance Monitor . 551

15.4. Network Speed . 552

15.5. Debugging Codename One Sources . 553

15.6. Device Testing Framework/Unit Testing. 553

15.7. EDT Error Handler and sendLog . 554

15.8. Kitchen Sink Case Study . 555

15.8.1. Scroll Performance - Threads aren’t magic . 556

16. Advanced Topics/Under the Hood . 559

16.1. Sending Arguments To The Build Server . 559

16.2. Offline Build . 574

16.2.1. Prerequisites for iOS Builds . 574

16.2.2. Prerequisites for Android Builds . 575

16.2.3. Installation . 575

16.2.4. Building. 576

16.2.5. FAQ. 577

Should I use the Offline Builder? . 577

Can I Move/Backup my Builders? . 577

Can I install the builders for all our developers? . 577

What Happens if I Cancel? . 578

When are Versions Released? . 578

Are Version Numbers Sequential? . 578

Why is this Feature Limited to Enterprise Subscribers?. 578

How Different is the Code From Cloud Builds? . 578

16.3. Android Permissions . 578

16.3.1. Permissions Under Marshmallow (Android 6+) . 579

Enabling Permissions . 580

Permission Prompts . 580

Code Changes . 582

Simulating Prompts . 583

AndroidNativeUtil’s checkForPermission. 583

16.4. On Device Debugging . 583

16.4.1. Android Studio Debugging (Easy Way) . 584

16.4.2. Android Studio Debugging the Hard Way . 584

16.5. Native Interfaces . 585

16.5.1. Introduction. 585

Use the Android Main Thread (Native EDT). 588

Gradle Dependencies . 589

16.5.2. Objective-C (iOS) . 590

Using the iOS Main Thread (Native EDT) . 591

Use Cocoapods For Dependencies. 592

16.5.3. Javascript . 592

JavaScript Examples. 594

16.5.4. Native GUI Components . 595

16.5.5. Type Mapping & Rules. 596

16.5.6. Android Native Permissions . 598

16.5.7. Native AndroidNativeUtil . 599

16.5.8. Broadcast Receiver. 599

Listening & Permissions . 602

16.5.9. Native Code Callbacks . 603

Accessing Callbacks from Objective-C . 604

Accessing Callbacks from Javascript . 605

Callbacks of the SMS Receiver . 606

Asynchronous Callbacks & Threading. 607

16.6. Libraries - cn1lib . 608

16.6.1. Why Not Use JAR?. 609

16.6.2. How To Use cn1libs? . 609

16.6.3. Creating a Simple cn1lib . 610

16.6.4. Build Hints in cn1libs . 610

16.7. Integrating Android 3rd Party Libraries & JNI . 614

16.8. Drag & Drop. 615

16.9. Continuous Integration & Release Engineering . 617

16.10. Android Lollipop ActionBar Customization . 617

16.11. Intercepting URL’s On iOS & Android . 618

16.11.1. Passing Launch Arguments To The App . 618

16.12. Native Peer Components . 619

16.12.1. Why does Codename One Need Native Widgets at all? . 619

16.12.2. So what’s the problems with native widgets? . 620

16.12.3. So how do we show dialogs on top of Peer Components? . 620

16.12.4. Why can’t we combine peer component scrolling and Codename One scrolling? . . . 620

16.12.5. Native Components In The First Form . 620

16.13. Integrating 3rd Party Native SDKs. 620

16.13.1. Step 1 : Review the FreshDesk SDKs . 621

16.13.2. Step 2: Designing the Codename One Public API . 621

16.13.3. Step 3: The Architecture and Internal APIs . 621

Things to Notice. 623

16.13.4. Step 4: Implement the Public API and Native Interface . 623

Adapting Method Signatures . 623

Callbacks . 624

Initialization. 626

The Resulting Public API . 627

The Native Interface. 629

Connecting the Public API to the Native Interface . 631

Implementing the Glue Between Public API and Native Interface. 632

16.13.5. Step 5: Implementing the Native Interface in Android. 633

16.13.6. Step 6: Bundling the Native SDKs . 635

The FreshDesk SDK. 635

Dependencies. 635

16.13.7. Step 7 : Injecting Android Manifest and Proguard Config . 637

Proguard Config . 639

Troubleshooting Android Stuff . 640

16.14. Part 2: Implementing the iOS Native Code. 640

16.14.1. Using the MobihelpNativeCallback . 641

16.14.2. Bundling Native iOS SDK . 641

16.14.3. Troubleshooting iOS . 642

16.14.4. Adding Required Core Libraries and Frameworks . 642

16.15. Part 3 : Packaging as a cn1lib . 643

16.16. Building Your Own Layout Manager. 643

16.16.1. Porting a Swing/AWT Layout Manager . 645

16.17. Port a Language to Codename One . 645

16.17.1. What is a JVM Language? . 645

16.17.2. How Hard is it to Port a JVM Language to Codename One?. 646

Step 1: Assess the Language . 646

Step 2: Convert the Runtime Library into a CN1Lib . 651

Step 3: Hello World. 652

Step 4: A More Complex Hello World. 653

Step 5: Automation and Integration . 653

16.18. Update Framework . 655

16.18.1. How does it Work? . 655

16.18.2. What isn’t Covered. 656

17. Signing, Certificates & Provisioning . 657

17.1. Common Terms In Signing & Distribution . 657

17.1.1. What Is A Certificate? . 657

17.1.2. What Is Provisioning? . 657

17.1.3. What’s a Signing Authority? . 657

17.1.4. What is UDID? . 657

17.1.5. Should I Reuse the Same Certificate for All Apps? . 658

17.2. iOS Signing Wizard . 658

17.2.1. Logging into the Wizard . 658

17.2.2. Selecting Devices . 659

17.2.3. Decisions & Edge Cases . 660

17.2.4. App IDs and Provisioning Profiles . 661

17.2.5. Installing Files Locally. 662

17.2.6. Building Your App . 663

17.3. Advanced iOS Signing . 663

17.4. Provisioning Profile & Certificates Visual Guide . 664

17.4.1. iOS Code Signing Failure Checklist . 667

17.5. Android. 669

17.5.1. Generating an Android Certificate Manually . 669

17.6. RIM/BlackBerry. 670

17.7. J2ME. 670

18. Working with iOS. 671

18.1. Troubleshooting iOS Debug Build installs . 671

18.2. The iOS Screenshot/Splash Screen Process . 672

18.2.1. Size . 673

18.2.2. Mutable first screen . 673

18.2.3. Unsupported component . 674

18.3. Launch Screen Storyboards. 674

18.3.1. Launch Storyboard vs Launch Images . 674

18.4. Local Notifications on iOS and Android . 674

18.4.1. Sending Notifications. 675

Example Sending Notification . 675

18.4.2. Receiving Notifications . 675

Example Receiving Notification . 676

18.4.3. Canceling Notifications . 676

18.5. iOS Beta Testing (Testflight) . 677

18.6. Accessing Insecure URL’s . 677

18.7. Using Cocoapods. 677

18.7.1. Including Multiple Pods . 678

18.7.2. Other Pod Related Build Hints. 678

18.7.3. Converting PodFile To Build Hints . 678

18.8. Including Dynamic Frameworks . 679

19. Working with JavaScript . 681

19.1. Limitations of the Javascript Port . 681

19.1.1. No Multithreaded Code inside Static Initializers . 681

19.2. Troubleshooting Build Errors . 682

19.3. ZIP, WAR, or Preview. What’s the difference? . 683

19.4. Setting up a Proxy for Network Requests. 685

19.4.1. Step 1: Setting up a Proxy . 685

19.4.2. Step 2: Configuring your Application to use the Proxy . 685

19.5. Using the CORS Proxy for Same Origin Requests . 686

Using Apache as a Proxy . 687

19.6. Customizing the Splash Screen . 687

19.7. Debugging . 687

19.8. Including Third-Party Javascript Libraries . 688

19.8.1. Libraries vs Resources. 688

19.8.2. The Javascript Manifest File. 689

How to NOT generate the <script> tag . 690

Library Directories . 690

Including Remote Libraries . 691

Including CSS Files . 692

Embedding Variables in URLs . 693

19.9. Browser Environment Variables . 693

19.10. Changing the Native Theme . 694

19.10.1. Example: Using Android Theme on Android . 695

19.11. Disabling the 'OnBeforeUnload' Handler . 695

19.11.1. Example: Toggling the BeforeUnload Prompt On/Off . 695

19.12. Deploying as a Progressive Web App . 696

19.12.1. Customizing the App Manifest File . 697

19.12.2. Related Applications . 697

19.12.3. Device/Browser Support for PWAs. 698

19.13. Playing Media and Opening Links . 699

20. Working with UWP . 701

20.1. Deploying Outside of the Windows App Store (Sideloading). 701

20.1.1. Side-loading to Windows 10 Mobile Devices . 701

Enabling Developer Mode on Device . 701

Building App for UWP . 703

Installing App On Device. 703

20.1.2. Side-loading to Windows 10 Desktop Devices . 704

Enabling Developer Mode on PC. 704

Building the App . 705

Installing the App . 706

20.1.3. Building for the Windows Store . 707

20.2. Debugging UWP Apps . 710

20.2.1. No Line Numbers in Stack Traces. 710

20.3. Customizing the Status Bar . 712

20.4. Associating App with File Types . 712

21. Working with Mac OS X . 715

21.1. Mac OS Desktop Build Options . 715

21.1.1. Bundle Types . 715

21.1.2. Understanding Mac Certificates . 715

21.1.3. Obtaining Certificates . 716

21.1.4. Exporting Certificates as P12 . 717

21.1.5. Entitlements. 718

22. Security. 719

22.1. Constant Obfuscation . 719

22.2. Storage Encryption . 721

22.3. Disabling Screenshots . 722

22.4. Blocking Copy & Paste . 722

22.5. Blocking Jailbreak . 722

22.6. Strong Android Certificates . 723

22.6.1. The Bad News . 723

22.6.2. The Good. 724

22.7. Certificate Pinning . 724

22.7.1. Certificate Pinning . 724

23. Travis CI Integration . 727

23.1. Quick Start . 727

23.1.1. Enabling Travis . 727

Activating/Deactivating Jobs . 729

23.1.2. Pushing to GitHub . 730

23.1.3. Activate Repository On Travis . 731

23.1.4. Setting Environment Variables . 731

23.1.5. Testing Travis Script . 732

23.1.6. Writing Unit Tests. 733

Disabling Travis. 733

24. Working with Codename One Sources . 735

24.1. Checking out the Sources . 735

24.2. Building Sources. 735

24.3. Running Unit Tests. 735

24.4. Running iOS Unit Tests . 735

24.4.1. Installing npm . 736

24.4.2. Installing and Running Appium . 736

24.4.3. Running the Unit tests . 736

24.4.4. Overriding the Codename One Build Server Target . 736

Preface
This developer guide is automatically generated from the wiki pages at
https://github.com/codenameone/CodenameOne/wiki [https://github.com/codenameone/CodenameOne/

wiki].

You can edit any page within the wiki pages using AsciiDoc. Your changes might make it (after
review) into the official documentation available on the web here: https://www.codenameone.com/
manual/ and available as a PDF file here: https://www.codenameone.com/files/developer-guide.pdf
[https://www.codenameone.com/files/developer-guide.pdf].

Occasionally this book is updated to the print edition available here: https://www.amazon.com/dp/
1549910035

We also recommend that you check out the full JavaDoc [https://www.codenameone.com/javadoc/]
reference for Codename One which is very complete.

You can download the full Codename One source code from the Codename One git repository
[https://github.com/codenameone/CodenameOne/] where you can also edit the JavaDocs and submit pull
requests to include new features into Codename One [https://www.codenameone.com/blog/how-to-use-the-

codename-one-sources.html].

1

https://github.com/codenameone/CodenameOne/wiki
https://www.codenameone.com/manual/
https://www.codenameone.com/manual/
https://www.codenameone.com/files/developer-guide.pdf
https://www.amazon.com/dp/1549910035
https://www.amazon.com/dp/1549910035
https://www.codenameone.com/javadoc/
https://github.com/codenameone/CodenameOne/
https://www.codenameone.com/blog/how-to-use-the-codename-one-sources.html

Authors

This document includes content from multiple authors and community wiki edits. If you edit pages
within the guide feel free to add your name here alphabetized by surname:

• Shai Almog [https://github.com/codenameone/]

• Ismael Baum [https://github.com/Isborg]

• Eric Coolman [https://twitter.com/ericcoolmandev]

• Chen Fishbein [http://github.com/chen-fishbein/]

• Steve Hannah [http://github.com/shannah/]

• Matt [https://github.com/kheops37]

2

https://github.com/codenameone/
https://github.com/Isborg
https://twitter.com/ericcoolmandev
http://github.com/chen-fishbein/
http://github.com/shannah/
https://github.com/kheops37

Rights & Licensing

You may copy/redistribute/print this document without prior permission from Codename One.
However, you may not charge for the document itself although charging for costs such as printing
is permitted.

Notice that while you can print and reproduce sections arbitrarily such changes must explicitly and
clearly state that this is a modified copy and link to the original source at
https://www.codenameone.com/manual/ in a clear way!

3

https://www.codenameone.com/manual/

Conventions

This guide uses some notations to provide tips and further guidance.

In case of further information that breaks from the current tutorial flow we use a sidebar as such:

Sidebar

Dig deeper into some details that don’t quite fit into the current flow. We use sidebars for
things that are an important detour, you can skip them while reading but you might want to
come back and read them later.

Here are common conventions for highlighting notes:

 This is an important note

 This is a helpful tip

 This is a general informational note, something interesting but not crucial

 This is a warning something we should pay attention to

This convention is used when we refer to a button or a widget to press in the UI. E.g. press the
button labeled Press Here.

Quotes are presented as:

This is a quote

— By Author

Bold is used for light emphasis on a specific word or two within a sentence.

4

1. Introduction
Codename One is a Write Once Run Anywhere mobile development platform for Java/Kotlin
developers. It integrates with IntelliJ/IDEA, Eclipse or NetBeans to provide seamless native mobile
development.

Codename One’s mission statement is:

Unify the complex and fragmented task of mobile device programming into
a single set of tools, APIs and services. As a result create a more manageable
approach to mobile application development without sacrificing the
power/control given to developers.

This effectively means bringing that old "Write Once Run Anywhere" (WORA) Java mantra to
mobile devices without "dumbing it down" to the lowest common denominator.

The things that make Codename One stand out from other tools in this field are:

• Write Once Run Anywhere support with no special hardware requirements and 100% code
reuse

• Compiles Java/Kotlin into native code for iOS, UWP (Universal Windows Platform), Android and
even JavaScript/PWA

• Open Source and Free with commercial backing/support

• Easy to use with 100% portable Drag and Drop GUI builder

• Full access to underlying native OS capabilities using the native OS programming language (e.g.
Objective-C) without compromising portability

• Provides full control over every pixel on the screen

• Lets you use native widgets (views) and mix them with Codename One components within the
same hierarchy (heavyweight/lightweight mixing)

• Supports seamless Continuous Integration out of the box

Codename One can trace its roots to the open source LWUIT project started at Sun Microsystem in
2007 by Chen Fishbein (co-founder of Codename One). It’s a huge project that’s been under constant
development for over a decade!

1.1. Build Cloud
One of the things that make Codename One stand out is the build cloud approach to mobile
development. iOS native development requires a Mac with xcode. Windows native development
requires a Windows machine. To make matters worse, Apple, Google and Microsoft make changes
to their tools on a regular basis…

This makes it hard to keep up.

When we develop an app in Codename One we use the builtin simulator when running and

5

debugging. When we want to build a native app we can use the build cloud where Macs create the
native iOS apps and Windows machines create the native Windows apps. This works seamlessly
and makes Codename One apps native as they are literally compiled by the native platform. E.g. for
iOS builds the build cloud uses Macs running xcode (the native Apple tool) to build the app.

Codename One doesn’t send source code to the build cloud, only compiled
bytecode!

Notice that Codename One also provides an option to build offline which means corporations that
have policies forbidding such cloud architectures can still use Codename One with some additional
overhead/complexity of setting up the native build tools. Since Codename One is open source some
developers use the source code to compile applications offline but that’s outside the scope of this
book.

1.1.1. Why Build Servers?

The build servers allow building native iOS Apps without a Mac and native Windows apps without
a Windows machine. They remove the need to install/update complex toolchains and simplify the
process of building a native app to a right click.

E.g.: Since building native iOS applications requires a Mac OS X machine with a recent version of
xcode Codename One maintains such machines in the cloud. When developers send an iOS build
such a Mac will be used to generate C source code using ParparVM [https://github.com/codenameone/

CodenameOne/tree/master/vm] and it will then compile the C source code using xcode & sign the
resulting binary using xcode. You can install the binary to your device or build a distribution binary
for the appstore. Since C code is generated it also means that your app will be "future proof" in a
case of changes from Apple. You can also inject Objective-C native code into the app while keeping
it 100% portable thanks to the "native interfaces" capability of Codename One.

Subscribers can receive the C source code back using the include sources feature of Codename One
and use those sources for benchmarking, debugging on devices etc.

The same is true for most other platforms. For the Android, J2ME & Blackberry the standard Java
code is executed as is.

Java 8 syntax is supported thru retrolambda [https://github.com/orfjackal/retrolambda] installed on the
Codename One servers. This is used to convert bytecode seamlessly down to Java 5 syntax levels.
Java 5 syntax is translated to the JDK 1.3 cldc subset on J2ME/Blackberry to provide those language
capabilities and API’s across all devices. This is done using a server based bytecode processor based
on retroweaver and a great deal of custom code. Notice that this architecture is transparent to
developers as the build servers abstract most of the painful differences between devices.

1.1.2. How does Codename One Work?

Codename One uses a SaaS based approach so the information in this appendix might (and
probably will) change in the future to accommodate improved architectures. I included this
information for reference only, you don’t need to understand this in order to follow the content of
the book…

6

https://github.com/codenameone/CodenameOne/tree/master/vm
https://github.com/orfjackal/retrolambda

Since Android is already based on Java, Codename One is already native to Android and “just
works” with the Android VM (ART/Dalvik).

On iOS, Codename One built and open sourced ParparVM, which is a very conservative VM.
ParparVM features a concurrent (non-blocking) GC and it’s written entirely in Java/C. ParparVM
generates C source code matching the given Java bytecode. This effectively means that an xcode
project is generated and compiled on the build servers. It’s as if you handcoded a native app and is
thus “future proof” for changes that Apple might introduce. E.g. Apple migrated to 64bit and later
introduced bitcode support to iOS. ParparVM needed no modifications to comply with those
changes.

Codename One translates the bytecode to C which is faster than Swift/Objective-C.
The port code that invokes iOS API’s is hand coded in Objective-C

For Windows 10 desktop and Mobile support, Codename One uses iKVM to target UWP (Universal
Windows Platform) and has open sourced the changes to the original iKVM code.

JavaScript build targets use TeaVM to do the translation statically. TeaVM provides support for
threading using JavaScript by breaking the app down in a rather elaborate way. To support the
complex UI Codename One uses the HTML5 Canvas API which allows absolute flexibility for
building applications.

For desktop builds Codename One uses javapackager, since both Macs and Windows machines are
available in the cloud the platform specific nature of javapackager is not a problem.

Lightweight Architecture

What makes Codename One stand out is the approach it takes to UI: “lightweight architecture”.

Lightweight architecture is the “not so secrete sauce” to Codename One’s portability. Essentially it
means all the components/widgets in Codename One are written in Java. Thus their behavior is
consistent across all platforms and they are fully customizable from the developer code as they
don’t rely on OS internal semantics. This allows developers to preview the application accurately in
the simulators and GUI builders.

One of the big accomplishments in Codename One is its unique ability to embed “heavyweight”
widgets into place among the “lightweights”. This is crucial for apps such as Uber where the cars
and widgets on top are implemented as Codename One components yet below them we have the
native map component.

Codename One achieves fast performance by drawing using the native gaming API’s of most
platforms e.g. OpenGL ES on iOS. The core technologies behind Codename One are all open source
including most of the stuff developed by Codename One itself, e.g. ParparVM but also the full
library, platform ports, designer tool, device skins etc.

7

Lightweight Architecture Origin

Lightweight components date back to Smalltalk frameworks, this notion was popularized in
the Java world by Swing. Swing was the main source of inspiration to Codename One’s
predecessor LWUIT. Many frameworks took this approach over the years including JavaFX
and most recently Ionic in the JavaScript world.

Why ParparVM

On iOS, Codename One uses ParparVM [https://github.com/codenameone/CodenameOne/tree/master/vm]
which translates Java bytecode to C code and boasts a non-blocking GC as well as 64 bit/bitcode
support. This VM is fully open source in the Codename One git repository [https://github.com/

codenameone/CodenameOne/]. In the past Codename One used XMLVM [http://www.xmlvm.org/] to
generate native code in a very similar way but the XMLVM solution was too generic for the needs of
Codename One. ParparVM [https://github.com/codenameone/CodenameOne/tree/master/vm] boasts a unique
architecture of translating code to C (similarly to XMLVM), because of that Codename One is the
only solution of its kind that can guarantee future iOS compatibility since the officially supported
iOS toolchain is always used instead of undocumented behaviors.

 XMLVM could guarantee that in theory but it is no longer maintained

The key advantages of ParparVM over other approaches are:

• Truly Native — since code is translated to C rather than directly to ARM or LLVM code the app
is "more native". It uses the official tools and approaches from Apple and can benefit from their
advancements e.g. latest bitcode changes or profiling capabilities.

• Smaller Class Library — ParparVM includes a very small segment of the full JavaAPI’s
resulting in final binaries that are smaller than the alternatives by orders of magnitude. This
maps directly to performance and memory overhead.

• Simple and Extensible — to work with ParparVM you need a basic understanding of C. This is
crucial for the fast moving world of mobile development, as Apple changes things left and right
we need a more agile VM.

Windows Phone/UWP

In the past Codename One had 2 major Windows VM port rewrites and 3 or 4 rendering pipelines
within those ports (depends on how you would define a "rewrite").

The old Windows Phone port was deprecated and is no longer supported, the UWP
port is the only supported Windows mobile target

Codename One now targets UWP by leveraging a modified version of iKVM [https://github.com/

shannah/cn1-ikvm-uwp] to build native Windows Universal Applications.

iKVM uses a bytecode to CLR translation process that effectively converts Java bytecode directly to
the .net equivalent. This is paired with a port of the Codename One API’s that was built for the UWP
environment. The UWP port generates native Windows 10 applications that can support ARM

8

https://github.com/codenameone/CodenameOne/tree/master/vm
https://github.com/codenameone/CodenameOne/
http://www.xmlvm.org/
https://github.com/codenameone/CodenameOne/tree/master/vm
https://github.com/shannah/cn1-ikvm-uwp

Windows devices natively as well as desktops etc. These binaries can be uploaded directly to
Microsofts online store without special processing.

JavaScript Port

The JavaScript port of Codename One is based on the amazing work of the TeaVM project
[http://teavm.org:]. The team behind TeaVM effectively built a JVM that translates Java bytecode into
JavaScript source code while maintaining threading semantics using a very imaginative approach.

The JavaScript port allows unmodified Codename One applications to run within a desktop or
mobile browser. The port itself is based on the HTML5 Canvas API, this provides a pixel perfect
implementation of the Codename One API.

The JavaScript port is only available for Enterprise grade subscribers of Codename
One

Desktop and Android

The other ports of Codename One use the VM’s available on the host machines/environments to
execute the runtime. Retrolambda [https://github.com/orfjackal/retrolambda] is used to provide Java 8
language features in a portable way.

The Android port uses the native Android tools including the gradle build environment in the latest
versions.

The desktop port creates a standard JavaSE application which is packaged with the JRE and an
installer.

 The Desktop port is only available to pro grade subscribers of Codename One

1.1.3. Versions In Codename One

One of the confusing things about Codename One is the versions. Since Codename One is a SaaS
product versioning isn’t as simple as a 2.x or 3.x moniker. However, to conform to this convention
Codename One does make versioned releases which contribute to the general confusion.

When a version of Codename One is released the version number refers to the libraries at the time
of the release. These libraries are then frozen and are made available to developers who use the
Versioned Builds [https://www.codenameone.com/how-do-i---get-repeatable-builds-build-against-a-consistent-

version-of-codename-one-use-the-versioning-feature.html] feature. The plugin, which includes the designer
as well as all development that is unrelated to versioned builds continues with its regular updates
immediately after release. The same is true for the build servers that move directly to their
standard update cycle.

1.2. History

9

http://teavm.org:
https://github.com/orfjackal/retrolambda
https://www.codenameone.com/how-do-i---get-repeatable-builds-build-against-a-consistent-version-of-codename-one-use-the-versioning-feature.html

Figure 1. LWUIT App Screenshot circa 2007

Codename One was started by Chen Fishbein and Shai Almog who authored the Open Source
LWUIT project at Sun Microsystems (circa 2007). The LWUIT project aimed to solve the
fragmentation within J2ME/Blackberry devices by creating a higher standard of user interface than
the common baseline at the time. LWUIT received critical acclaim and traction within multiple
industries but was limited by the declining feature phone market. It was forked by several
companies including Nokia. It was used as the base standard for DTV in Brazil. Another fork has
brought a LWUIT into high end cars from Toyota and other companies. This fork later adapted
Codename One as well.

In 2012 Shai and Chen formed Codename One as they left Oracle. The project has taken many of the
basic concepts developed within the LWUIT project and adapted them to the smartphone world
which is still experiencing similar issues to the device fragmentation of the old J2ME phones.

1.3. Core Concepts of Mobile Programming
Before we proceed I’d like to explain some universal core concepts of mobile programming that
might not be intuitive. These are universal concepts that apply to mobile programming regardless
of the tools you are using.

You can skip this section if you feel you are familiar enough with the core problems/issues in
mobile app development.

1.3.1. Density

Density is also known as DPI (Dots Per Inch) or PPI (pixels or points per inch). Density is confusing,
unintuitive and might collide with common sense. E.g. an iPhone 7 plus has a resolution of
1080x1920 pixels and a PPI of 401 for a 5 inch screen. On the other hand an iPad 4 has 1536x2048
pixels with a PPI of 264 on a 9.7 inch screen… Smaller devices can have higher resolutions!

As the following figure shows, if a Pixel 2 XL had pixels the size of an iPad it would have been twice
the size of that iPad. While in reality it’s nearly half the height of the iPad!

10

Figure 2. Device Density vs. Resolution

Differences in density can be extreme. A second generation iPad has 132 PPI, where modern
phones have PPI that crosses the 600 mark. Low resolution images on high PPI devices will look
either small or pixelated. High resolution images on low PPI devices will look huge, overscaled
(artifacts) and will consume too much memory.

11

Figure 3. How the Same Image Looks in Different Devices

The exact same image will look different on each device, sometimes to a comical effect. One of the
solutions for this problem is multi-images. All OS’s support the ability to define different images for
various densities. I will discuss multi-images later in Chapter 2.

This also highlights the need for working with measurements other than pixels. Codename One
supports millimeters (or dips) as a unit of measurement. This is highly convenient and is a better
representation of size when dealing with mobile devices.

But there is a bigger conceptual issue involved. We need to build a UI that adapts to the wide
differences in form factors. We might have fewer pixels on an iPad but because of its physical size
we would expect the app to cram more information into that space so the app won’t feel like a
blown up phone application. There are multiple strategies to address that but one of the first steps
is in the layout managers.

I’ll discuss the layout managers in depth in Chapter 2 but the core concept is that they decide where
a UI element is placed based on generic logic. That way the user interface can adapt automatically
to the huge variance in display size and density.

1.3.2. Touch Interface

The fact that mobile devices use a touch interface today isn’t news… But the implications of that
aren’t immediately obvious to some developers.

UI elements need to be finger sized and heavily spaced. Otherwise we risk the “fat finger” effect.

12

That means spacing should be in millimeters and not in pixels due to device density.

Scrolling poses another challenge in touch based interfaces. In desktop applications it’s very
common to nest scrollable items. However, in touch interfaces the scrolling gesture doesn’t allow
such nuance. Furthermore, scrolling on both the horizontal and vertical axis (side scrolling) can be
very inconvenient in touch based interfaces.

1.3.3. Device Fragmentation

Some developers single out this wide range of resolutions and densities as “device fragmentation”.
While it does contribute to development complexity for the most part it isn’t a difficult problem to
overcome.

Densities aren’t the cause of device fragmentation. Device fragmentation is caused by multiple OS
versions with different behaviors. This is very obvious on Android and for the most part relates to
the slow rollout of Android vendor versions compared to Googles rollout. E.g. 7 months after the
Android 8 (Oreo) release in 2018 it was still available on 1.1% of the devices. The damning statistic
is that 12% of the devices in mid 2018 run Android 4.4 Kitkat released in 2013!

This makes QA difficult as the disparity between these versions is pretty big. These numbers will be
out of date by the time you read this but the core problem remains. It’s hard to get all device
manufacturers on the same page so this problem will probably remain in the foreseeable future
despite everything.

1.3.4. Performance

Besides the obvious need for performance and smooth animation within a mobile app there are a
couple of performance related issues that might not be intuitive to new developers: size and power.

App Size

Apps are installed and managed via stores. This poses some restrictions about what an app can do.
But it also creates a huge opportunity. Stores manage automatic update and to some degree the
marketing/monetization of the app.

A good mobile app is updated once a month and sometimes even once a week. Since the app
downloads automatically from the store this can be a huge benefit:

• Existing users are reminded of the app and get new features instantly

• New users notice the app featured on a “what’s new” list

If an app is big it might not update over a cellular network connection. Google and Apple have
restrictions on automatic updates over cellular networks to preserve battery life and data plans. A
large app might negatively impact users perception of the app and trigger uninstalls e.g. when a
phone is low on available space.

Power Drain

Desktop developers rarely think about power usage within their apps. In mobile development this
is a crucial concept. Modern device OS’s have tools that highlight misbehaving applications and this

13

can lead to bad reviews.

Code that loops forever while waiting for input will block the CPU from sleeping and slowly drain
the battery.

Worse. Mobile OS’s kill applications that drain the battery. If the app is draining the battery and is
minimized (e.g. during an incoming call) the app could be killed. This will impact app performance
and usability.

1.3.5. Sandbox and Permissions

Apps installed on the device are “sandboxed” to a specific area so they won’t harm the device or its
functionality. The filesystem of mobile applications is restricted so one application can’t access the
files of another application. Things that most developers take for granted on the desktop such as a
“file picker” or accessing the image folder don’t work on devices!

This means that when your application works on a file it belongs only to your application. In order
to share the file with a different application you need to ask the operating system to do that for you.

Furthermore, some features require a “permission” prompt and in some cases require special flags
in system files. Apps need to request permission to use sensitive capabilities e.g. Camera, Contacts
etc.
Historically Android developers just declared required permissions for an app and the user was
prompted with permissions during install. Android 6 adopted the approach used by iOS of
prompting the user for permission when accessing a feature.

This means that in runtime a user might revoke a permission. A good example in the case of an
Uber app is the location permission. If a user revokes that permission the app might lose its
location.

1.4. Installing Codename One

 The minimum JDK for Codename One is JDK 8

The following screenshots are from Mac OS but the process should work exactly
the same on Windows and Linux

1.5. IntelliJ/IDEA
Codename One recommends IntelliJ/IDEA 2016 or newer.

Codename One doesn’t support Android Studio! You can use IntelliJ/IDEA
community edition instead

14

Figure 4. IntelliJ Installation Instructions

1.6. NetBeans
NetBeans install is pretty simple although the default “plugin center” for NetBeans is notoriously
unreliable. That’s why we recommend using the Codename One plugin center:
https://www.codenameone.com/files/netbeans/updates.xml

15

https://www.codenameone.com/files/netbeans/updates.xml

Figure 5. NetBeans Installation Instructions

Make sure you are using a NetBeans version that includes Java support, don’t
download a version for Ruby/PHP or J2ME and make sure the IDE runs on top of
JDK 8

1.7. Eclipse
Codename One supports Eclipse Neon 2 or newer. There are a few pitfalls that can happen with an
Eclipse install specifically when other JVM versions are installed on your machine.

If you are new to Java, Eclipse might be intimidating. It’s a very powerful IDE but
its configuration is rough

Make sure your JAVA_HOME environment variable points at JDK 8 and that the path to the JDK 8 bin
directory is first in the PATH statement. If all else fails edit the eclipse.ini file to force Eclipse to
use your JDK 8 install. See this site for help with editing the eclipse.ini file: https://wiki.eclipse.org/
Eclipse.ini

16

https://wiki.eclipse.org/Eclipse.ini
https://wiki.eclipse.org/Eclipse.ini

Figure 6. Eclipse Installation Instructions

 In order to run the app in Eclipse make sure to select the .launch file in Eclipse

1.8. Hello World Application
Before we get to the code there are few important things we need to go over with the new project
wizard.

We need to create a new project. We need to pick a project name and I’ll leave that up to you
although it’s hard to go wrong with HelloWorld. The following four values are important:

• App Name - This is the name of the app and the main class, it’s important to get this right as it’s
hard to change this value later

• Package Name - It’s crucial you get this value right. Besides the difficulty of changing this after
the fact, once an app is submitted to iTunes/Google Play with a specific package name this can’t
be changed! See the sidebar "Picking a Package Name".

• Theme - There are various types of builtin themes in Codename One, for simplicity I pick Native
as it’s a clean slate starting point

• Template - There are several builtin app templates that demonstrate various features, for
simplicity I always pick Bare Bones which includes the bare minimum

17

Figure 7. The New App Wizard

18

Picking a Package Name

Apple, Google and Microsoft identify applications based on their package names. If you use a
domain that you don’t own it’s possible that someone else will use that domain and collide
with you. In fact some developers left the default com.mycompany domain in place all the way
into production in some cases.

This can cause difficulties when submitting to Apple, Google or Microsoft. Submitting to one
of them is no guarantee of success when submitting to another.

To come up with the right package name use a reverse domain notation. So if my website is
goodstuff.co.uk my package name should start with uk.co.goodstuff. I highly recommend the
following guidelines for package names:

• Lower Case - some OS’s are case sensitive and handling a mistake in case is painful. The
Java convention is lower case and I would recommend sticking to that although it isn’t a
requirement

• Avoid Dash and Underscore - You can’t use a dash character (-) for a package name in
Java. Underscore (_) doesn’t work for iOS. If you want more than one word just use a
deeper package e.g.: com.mydomain.deeper.meaningful.name

• Obey Java Rules - A package name can’t start with a number so you can’t use
com.mydomain.1sler. You should avoid using Java keywords like this, if etc.

• Avoid Top Level - instead of using uk.co.goodstuff use uk.co.goodstuff.myapp. That would
allow you to have more than one app on a domain

1.8.1. Running

We can run the HelloWorld application by pressing the Play or Run button in the IDE for NetBeans or
IntelliJ. In Eclipse we first need to select the simulator .launch file and then press run. When we do
that the Codename One simulator launches. You can use the menu of the simulator to control and
inspect details related to the device. You can rotate it, determine it’s location in the world, monitor
networking calls etc.

With the Skins menu you can download device skins to see how your app will look on different
devices.

Some skins are bigger than the screen size, uncheck the Scrollable flag in the
Simulator menu to handle them more effectively

Debug works just like Run by pressing the IDE’s debug button. It allows us to launch the simulator in
debug mode where we can set breakpoints, inspect variables etc.

19

Figure 8. HelloWorld Running on the Simulator with an iPhone X Skin

Simulator vs. Emulator

Codename One ships with a simulator similarly to the iOS toolchain which also has a
simulator. Android ships with an emulator. Emulators go the extra mile. They create a virtual
machine that’s compatible with the device CPU and then boot the full mobile OS within that
environment. This provides an accurate runtime environment but is painfully slow.

Simulators rely on the fact that OS’s are similar and so they leave the low level details in
place and just map the API behavior. Since Codename One relies on Java it can start
simulating on top of the virtual machine on the desktop. That provides several advantages
including fast development cycles and full support for all the development tools/debuggers
you can use on the desktop.

Emulators make sense for developers who want to build OS level services e.g. screensavers or
low level services. Standard applications are better served by simulators.

1.8.2. The Source Code Of The Hello World App

After clicking finish in the new project wizard we have a HelloWorld project with a few default
settings. I’ll break the class down to small pieces and explain each piece starting with the enclosing
class:

Listing 1. HelloWorld Class

public class HelloWorld { ①
 private Form current; ②
 private Resources theme; ③

 // ... class methods ...
}

① This is the main class, it’s the entry point to the app, notice it doesn’t have a main method but
rather callback which we will discuss soon

② Forms are the “top level” UI element in Codename One. Only one Form is shown at a time and
everything you see on the screen is a child of that Form

③ Every app has a theme, it determines how everything within the application looks e.g. colors,
fonts etc.

20

Next let’s discuss the first lifecycle method init(Object). I discuss the lifecycle in depth in the
Application Lifecycle Sidebar.

Listing 2. HelloWorld init(Object)

public void init(Object context) { ①
 updateNetworkThreadCount(2); ②
 theme = UIManager.initFirstTheme("/theme"); ③
 Toolbar.setGlobalToolbar(true); ④
 Log.bindCrashProtection(true); ⑤
 addNetworkErrorListener(err -> { ⑥
 err.consume(); ⑦
 if(err.getError() != null) { ⑧
 Log.e(err.getError());
 }
 Log.sendLogAsync(); ⑨
 Dialog.show("Connection Error", ⑩
 "There was a networking error in the connection to " +
 err.getConnectionRequest().getUrl(), "OK", null);
 });
}

① init is the first of the four lifecycle methods. It’s responsible for initialization of variables and
values

② By default Codename One has one thread that performs all the networking, we set the default to
two which gives better performance

③ The theme determines the appearance of the application. We’ll discuss this in the next chapter

④ This enables the Toolbar API by default, it allows finer control over the title bar area

⑤ Crash protection automatically sends device crash logs through the cloud

⑥ In case of a network error the code in this block would run, you can customize it to handle
networking errors effectively

⑦ consume() swallows the event so it doesn’t trigger other alerts, it generally means “we got this”

⑧ Not all errors include an exception, if we have an exception we can log it with this code

⑨ This will email the log from the device to you if you have a pro subscription

⑩ This shows an error dialog to the user, in production you might want to remove that code

init(Object) works as a constructor to some degree. We recommend avoiding the constructor for
the main class and placing logic in the init method instead. This isn’t crucial but we recommend it
since the constructor might happen too early in the application lifecycle.

In a cold start init(Object) is invoked followed by the start() method. However, start() can be
invoked more than once if an app is minimized and restored, see the sidebar Application Lifecycle:

21

Listing 3. HelloWorld start()

public void start() {
 if(current != null){ ①
 current.show(); ②
 return;
 }
 Form hi = new Form("Hi World", BoxLayout.y()); ③
 hi.add(new Label("Hi World")); ④
 hi.show(); ⑤
}

① If the app was minimized we usually don’t want to do much, just show the last Form of the
application

② current is a Form which is the top most visual element. We can only have one Form showing and
we enforce that by using the show() method

③ We create a new simple Form instance. It has the title “Hello World” and arranges elements
vertically (on the Y axis)

④ We add another Label below the title, see figure [TitleAndLabelImage]. We will discuss
component hierarchy later

⑤ The show() method places the Form on the screen. Only one Form can be shown at a time

Figure 9. Title and Label in the UI

There are some complex ideas within this short snippet which I’ll address later in this chapter
when talking about layout. The gist of it is that we create and show a Form. Form is the top level UI
element, it takes over the whole screen. We can add UI elements to that Form object, in this case the
Label. We use the BoxLayout to arrange the elements within the Form from top to the bottom
vertically.

22

Application Lifecycle

A few years ago Romain Guy (a senior Google Android engineer) was on stage at the Google
IO conference. He asked for a show of hands of people who understand the Activity lifecycle
(Activity is similar to a Codename One main class). He then proceeded to jokingly call the
audience members who lifted their hands “liars” claiming that after all his years in Google he
still doesn’t understand it…

Lifecycle seems simple on the surface but hides a lot of nuance. Android’s lifecycle is
ridiculously complex. Codename One tries to simplify this and also make it portable.
Sometimes complexity leaks out and the nuances can be difficult to deal with.

Simply explained an application has three states:

• Foreground - it’s running and in the foreground which means the user can physically
interact with the app

• Suspended - the app isn’t in the foreground, it’s either paused or has a background
process running

• Not Running - the app was never launched, was killed or crashed

The lifecycle is the process of transitioning between these 3 states and the callbacks invoked
when such a transition occurs. The first time we launch the app we start from a “Cold Start”
(Not Running State) but on subsequent launches the app is usually started from the "Warm
Start" (Suspended State).

Figure 10. Codename One Application Lifecycle

Codename One has four standard callback methods in the lifecycle API:

• init(Object) - is invoked when the app is first launched from a Not Running state.

23

• start() - is invoked for two separate cases. After start() is finished the app transitions to
the Foreground state.

◦ Following init(Object) in case of a cold start. Cold start refers to starting the app from
a Not Running state.

◦ When the app is restored from Suspended state. In this case init(Object) isn’t invoked

• stop() - is invoked when the app is minimized e.g. when switching to a different app.
After stop() is finished the app transitions to the Suspended state.

• destroy() - is invoked when the app is destroyed e.g. killed by a user in the task manager.
After destroy() is finished the app is no longer running hence it’s in the Not Running state.

destroy() is optional there is no guarantee that it will be invoked. It should
be used only as a last resort

Now that we have a general sense of the lifecycle lets look at the last two lifecycle methods:

Listing 4. HelloWorld stop() and destroy()

public void stop() { ①
 current = getCurrentForm(); ②
 if(current instanceof Dialog) { ③
 ((Dialog)current).dispose();
 current = getCurrentForm();
 }
}

public void destroy() { ④
}

① stop() is invoked when the app is minimized or a different app is opened

② As the app is stopped we save the current Form so we can restore it back in start() if the app is
restored

③ Dialog is a bit of a special case restoring a Dialog might block the proper flow of application
execution so we dispose them and then get the parent Form

④ destroy() is a very special case. Under normal circumstances you shouldn’t write code in
destroy(). stop() should work for most cases

That’s it. Hopefully you have a general sense of the code. It’s time to run on the device.

1.8.3. Building and Deploying On Devices

24

Figure 11. Codename One Settings

You can use the project settings to configure almost anything. Specifically, the application title,
application version, application icon etc. are all found in the right click menu of your IDE.

Just right click your Codename One project icon in any IDE, select Codename One → Codename One
Settings.

There are many options within this UI that control almost every aspect of the application from
signing to basic settings.

Signing/Certificates

All of the modern mobile platforms require signed applications but they all take radically different
approaches when implementing it.

Signing is a process that marks your final application for the device with a special value. This value
(signature) is a value that only you can generate based on the content of the application and your
certificate. Effectively it guarantees the app came from you. This blocks a 3rd party from signing
their apps and posing as you to the appstore or to the user. It’s a crucial security layer.

A certificate is the tool we use for signing. Think of it as a mathematical rubber stamp that
generates a different value each time. Unlike a rubber stamp a signature can’t be forged!

Signing on Android

Backup your Android certificate and save its password!

If you lose your Android certificate you will not be able to update your app

Android uses a self signed certificate approach. You can just generate a certificate by describing
who you are and picking a password!

Anyone can do that. However, once a certificate is published it can’t be replaced…

If this wasn’t the case someone else could potentially push an “upgrade” to your app. Once an app is
submitted with a certificate to Google Play this app can’t be updated with any other certificate.

With that in mind generating an Android certificate is trivial.

 The following chart illustrates a process that’s identical on all IDE’s

25

Figure 12. Process of Certificate Generation for Android

Your certificate will generate into the file Keychain.ks in your home directory

Make sure to back that up and the password as losing these can have dire
consequences

Should I Use a Different Certificate for Each App?

In theory yes. In practice it’s a pain… Keeping multiple certificates and managing them is a
pain so we often just use one.

The drawback of this approach occurs when you are building an app for someone else or
want to sell the app. Giving away your certificate is akin to giving away your house keys. So it
makes sense to have separate certificates for each app.

Signing and Provisioning iOS

Code signing for iOS relies on Apple as the certificate authority. This is something that doesn’t exist
on Android. iOS also requires provisioning as part of the certificate process and completely
separates the process for development/release.

But first let’s start with the good news:

• Losing an iOS certificate is no big deal - in fact we revoke them often with no impact on
shipping apps

26

• Codename One has a wizard that hides most of the pain related to iOS signing

In iOS Apple issues the certificates for your applications. That way the certificate is trusted by Apple
and is assigned to your Apple iOS developer account. There is one important caveat: You need an
iOS Developer Account and Apple charges a 99USD Annual fee for that.

The 99USD price and requirement have been around since the introduction of the
iOS developer program for roughly 10 years at the time of this writing. It might
change at some point though

Apple also requires a “provisioning profile” which is a special file bound to your certificate and
app. This file describes some details about the app to the iOS installation process. One of the details
it includes during development is the list of permitted devices.

Figure 13. The Four Files Required for iOS Signing and Provisioning

We need 4 files for signing. Two certificates and two provisioning profiles:

27

1. Production — The production certificate/provisioning pair is used for builds that are uploaded
to iTunes

2. Development — The development certificate/provisioning is used to install on your
development devices

The certificate wizard automatically creates these 4 files and configures them for you.

Figure 14. Using the iOS Certificate Wizard Steps 1 and 2

Figure 15. Using the iOS Certificate Wizard Steps 3 and 4

28

Figure 16. Using the iOS Certificate Wizard Steps 5 and 6

If you have more than one project you should use the same iOS P12 certificate files
in all the projects and just regenerate the provisioning. In this situation the
certificate wizard asks you if you want to revoke the existing certificate which you
shouldn’t revoke in such a case. You can update the provisioning profile in Apple’s
iOS developer website.

One important aspect of provisioning on iOS is the device list in the provisioning step. Apple only
allows you to install the app on 100 devices during development. This blocks developers from
skipping the appstore altogether. It’s important you list the correct UDID for the device in the list
otherwise install will fail.

There are several apps and tools that offer the UDID of the device, they aren’t
necessarily reliable and might give a fake number!

29

Figure 17. Get the UDID of a Device

 You can right click the UDID and select copy to copy it

The simplest and most reliable process for getting a UDID is via iTunes. I’ve used other approaches
in the past that worked but this approach is guaranteed.

Ad hoc provisioning allows 1000 beta testers for your application but it’s a more
complex process that we won’t discuss here although it’s supported by Codename
One

Build and Install

Before we continue with the build we should sign up at https://www.codenameone.com/build-
server.html where you can soon follow the progress of your builds. You need a Codename One
account in order to build for the device.

Now that we have certificates the process of device builds is literally a right click away for both
OS’s. We can right click the project and select Codename One → Send iOS Debug Build or Codename
One → Send Android Build.

30

https://www.codenameone.com/build-server.html
https://www.codenameone.com/build-server.html

Figure 18. Right click menu options for sending device builds

The first time you send a build you will be prompted for the email and password
you provided when signing up for Codename One

Once you send a build you should see the results in the build server page:

Figure 19. Build Results

On iOS make sure you use Safari when installing, as 3rd party browsers might
have issues

Once you go through those steps you should have the HelloWorld app running on your device. This
process is non-trivial when starting so if you run into difficulties don’t despair and seek help at the
discussion forum (https://www.codenameone.com/discussion-forum.html) or stack overflow
(https://stackoverflow/tags/codenameone/). Once you go through signing and installation, it
becomes easier.

You can also install the application either by emailing the install link to your
account (using the e-mail Link button)

You can also download the binaries in order to upload them to the appstores.

31

https://www.codenameone.com/discussion-forum.html
https://stackoverflow/tags/codenameone/

1.9. Kotlin
Codename One started before Kotlin became public. Kotlin has since shown itself as an interesting
option for developers especially within the Android community. With that in mind we decided to
integrate support for Kotlin into Codename One.

To use Kotlin with Codename One you will need the following:

• You need to use IntelliJ/IDEA - Currently only the IDEA version of the Codename One plugin has
Kotlin support

• You need to install the Kotlin support libraries from the extension manager tool in Codename
One Preferences

• Don’t use the project conversion tools or accept the warning that the project isn’t a Kotlin
project. We do our own build process

• Warnings and errors aren’t listed correctly and a build that claimed to have 2 errors actually
passed…

• This will increase your jar size by roughly 730kb which might make it harder for free tier users

You can install the Kotlin libraries which are required for compilation by using the extension
manager.

In the right click menu select Codename One → Codename One Preferences.

Select Extensions type in kotlin and install. Then right click the project select Codename One →
Refresh Libs.

1.9.1. Hello Kotlin

Due to the way Kotlin works you can just create a regular Java project and convert sources to
Kotlin. You can mix Java and Kotlin code without a problem and Codename One would "just work".

The hello world Java source file looks like this (removed some comments and whitespace):

32

public class MyApplication {
 private Form current;
 private Resources theme;

 public void init(Object context) {
 theme = UIManager.initFirstTheme("/theme");
 Toolbar.setGlobalToolbar(true);
 Log.bindCrashProtection(true);
 }

 public void start() {
 if(current != null){
 current.show();
 return;
 }
 Form hi = new Form("Hi World", BoxLayout.y());
 hi.add(new Label("Hi World"));
 hi.show();
 }

 public void stop() {
 current = getCurrentForm();
 if(current instanceof Dialog) {
 ((Dialog)current).dispose();
 current = getCurrentForm();
 }
 }

 public void destroy() {
 }
}

When you select that file and select the menu option Code → Convert Java file to Kotlin File you
should get this:

33

class MyApplication {
 private var current: Form? = null
 private var theme: Resources? = null

 fun init(context: Any) {
 theme = UIManager.initFirstTheme("/theme")
 Toolbar.setGlobalToolbar(true)
 Log.bindCrashProtection(true)
 }

 fun start() {
 if (current != null) {
 current!!.show()
 return
 }
 val hi = Form("Hi World", BoxLayout.y())
 hi.add(Label("Hi World"))
 hi.show()
 }

 fun stop() {
 current = getCurrentForm()
 if (current is Dialog) {
 (current as Dialog).dispose()
 current = getCurrentForm()
 }
 }

 fun destroy() {
 }
}

That’s pretty familiar. The problem is that there are two bugs in the automatic conversion… That is
the code for Kotlin behaves differently from standard Java.

The first problem is that Kotlin classes are final unless declared otherwise so we need to add the
open keyword before the class declaration as such:

open class MyApplication

This is essential as the build server will fail with weird errors related to instanceof.

This only applies to the main class of the project, other classes in Codename One
can remain final

The second problem is that arguments are non-null by default. The init method might have a null
argument. So this fails with an exception. The solution is to add a question mark to the end of the
call: fun init(context: Any?).

34

So the full working sample is:

open class MyApplication {
 private var current: Form? = null
 private var theme: Resources? = null
 fun init(context: Any?) {
 theme = UIManager.initFirstTheme("/theme")
 Toolbar.setGlobalToolbar(true)
 Log.bindCrashProtection(true)
 }

 fun start() {
 if (current != null) {
 current!!.show()
 return
 }
 val hi = Form("Hi World", BoxLayout.y())
 hi.add(Label("Hi World"))
 hi.show()
 }

 fun stop() {
 current = getCurrentForm()
 if (current is Dialog) {
 (current as Dialog).dispose()
 current = getCurrentForm()
 }
 }

 fun destroy() {
 }
}

Once all of that is in place Kotlin should just work. This should be possible for additional JVM
languages in the future.

35

36

2. Basics: Themes, Styles, Components and
Layouts
Let’s start with a brief overview of the ideas within Codename One. We’ll dig deeper into these
ideas as we move forward.

2.1. Components
Every button, label or element you see on the screen in a Codename One application is a
Component [https://www.codenameone.com/javadoc/com/codename1/ui/Component.html]. This is a highly
simplified version of this class hierarchy:

Figure 20. The Core Component Class Hierarchy

The Form [https://www.codenameone.com/javadoc/com/codename1/ui/Form.html] is a special case Component.
It’s the root component that you can show to the user. Container is a Component type that can hold
other components within it. This lets us create elaborate hierarchies by nesting Container instances.

Figure 21. Component UML

37

https://www.codenameone.com/javadoc/com/codename1/ui/Component.html
https://www.codenameone.com/javadoc/com/codename1/ui/Form.html

A Codename One application is effectively a series of forms, only one Form can be shown at a time.
The Form includes everything we see on the screen. Under the hood the Form is comprised of a few
separate pieces:

Figure 22. Structure of a Form

• Content Pane - this is literally the body of the Form. When we add a Component into the Form it goes
into the content pane. Notice that Content Pane is scrollable by default on the Y axis!

• Title Area - we can’t add directly into this area. The title area is managed by the Toolbar class.
Toolbar is a special component that resides in the top portion of the form and abstracts the title
design. The title area is broken down into two parts:

◦ Title of the Form and its commands (the buttons on the right/left of the title)

◦ Status Bar - on iOS the area on the top includes a special space so the notch, battery, clock
etc. can fit. Without this the battery indicator/clock or notch would be on top of the title

Now that we understand this let’s look at the new project we created and open the Java file
TodoApp.java. In it we should see the lines that setup the UI in the start() method:

2.1.1. Layout Managers

A layout manager is an algorithm that decides the size and location of the components within a
Container. Every Container has a layout manager associated with it. The default layout manager is
FlowLayout.

To understand layouts we need to understand a basic concept about Component. Each component has
a “preferred size”. This is the size in which a component “wants” to appear. E.g. for a Label the
preferred size will be the exact size that fits the label text, icon and padding of the component.

38

Understanding Preferred Size

The Component [https://www.codenameone.com/javadoc/com/codename1/ui/Component.html] class
contains many useful methods. One of the most important ones is calcPreferredSize() which
is invoked to recalculate the size a component “wants” when something changes

By default Codename One invokes the getPreferredSize() method and not
calcPreferredSize() directly.
getPreferredSize() invokes calcPreferredSize() and caches the value

The preferred size is decided by the component based on internal constraints such as the font
size, border sizes, padding etc.

When a layout manager positions and sizes the component, it MIGHT take the preferred size
into account. Notice that it MIGHT ignore it entirely!

E.g. FlowLayout [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/FlowLayout.html]
always gives components their exact preferred size, yet BorderLayout
[https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BorderLayout.html] resizes the center
component by default (and the other components are resized on one of their axis).

You can define a group of components to have the same preferred width or height by using
the setSameWidth and setSameHeight methods e.g.:

Listing 5. setSameWidth/Height

Component.setSameWidth(cmp1, cmp2, cmp3, cmp4);
Component.setSameHeight(cmp5, cmp6, cmp7);

Codename One has a setPreferredSize method that allows developers to explicitly request the
size of the component. However, this caused quite a lot of problems. E.g. the preferred size
should change with device orientation or similar operations. The API also triggered frequent
inadvertent hardcoding of UI values such as forcing pixel sizes for components. As a result
the method was deprecated.

We recommend developers use setSameWidth, setSameHeight when sizing alignment is needed.
setHidden when hiding is needed. As a last resort we recommend overriding
calcPreferredSize.

A layout manager places a component based on its own logic and the preferred size (sometimes
referred to as “natural size”). A FlowLayout will just traverse the components based on the order
they were added and size/place them one after the other. When it reaches the end of the row it will
go to the new row.

39

https://www.codenameone.com/javadoc/com/codename1/ui/Component.html
https://www.codenameone.com/javadoc/com/codename1/ui/layouts/FlowLayout.html
https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BorderLayout.html

Use FlowLayout Only for Simple Things

FlowLayout is great for simple things but has issues when components change their
sizes dynamically (like a text field). In those cases it can make bad decisions about
line breaks and take up too much space

Figure 23. Layout Manager Primer Part I

Figure 24. Layout Manager Primer Part II

Scrolling doesn’t work well for all types of layouts as the positioning algorithm within the layout
might break. Scrolling on the Y axis works great for BoxLayout Y which is why I picked it for the
TodoForm:

Table 1. Scrolling in Layout Managers

Layout Scrollable

Flow Layout Possible on Y axis only

Border Layout Scrolling is blocked

Box Layout Y Scrollable only on the Y axis

Box Layout X Scrollable only on the X axis

Grid Layout Scrollable

LayeredLayout Not scrollable (usually)

40

Nesting Scrollable Containers

Only one element can be scrollable within the hierarchy, otherwise if you drag your finger
over the Form Codename One won’t know which element you are trying to scroll. By default
form’s content pane is scrollable on the Y axis unless you explicitly disable it (setting the
layout to BorderLayout implicitly disables scrolling).

It’s important to notice that it’s OK to have non-scrollable layouts, e.g. BorderLayout, as items
within a scrollable container type. E.g. in the TodoApp we added TodoItem which uses
BorderLayout into a scrollable BoxLayout Form.

Layouts can be divided into two distinct groups:

• Constraint Based - BorderLayout (and a few others such as GridBagLayout, MigLayout and
TableLayout)

• Regular - All of the other layout managers

When we add a Component to a Container with a regular layout we do so with a simple add method:

Listing 6. Adding to a Regular Container

Container cnt = new Container(BoxLayout.y());
cnt.add(new Label("Just Added"));

This works great for regular layouts but might not for constraint based layouts. A constraint based
layout accepts another argument. E.g. BorderLayout needs a location for the Component:

Listing 7. Adding to a Regular Container

cnt.add(NORTH, new Label("Just Added"));

This line assumes you have an import static com.codename1.ui.CN.*; in the top of the file. In
BorderLayout (which is a constraint based layout) placing an item in the NORTH places it in the top of
the Container.

The CN class is a class that contains multiple static helper methods and functions.
It’s specifically designed for static import in this way to help keep our code terse

41

Static Global Context

The CN class is a thin wrapper around features in Display, NetworkManager, Storage,
FileSystemStorage etc. It also adds common methods and constants from several other classes
so Codename One code feels more terse e.g. we can do:

import static com.codename1.ui.CN.*;

That’s optional, if you don’t like static imports you can just write CN. for
every element

From that point on you can write code that looks like this:

callSerially(() -> runThisOnTheEDT());

Instead of:

Display.getInstance().callSerially(() -> runThisOnTheEDT());

The same applies for most network manager calls e.g.:

addToQueue(myConnectionRequest);

Instead of:

NetworkManager.getInstance().addToQueue(myConnectionRequest);

Some things were changed so we won’t have too many conflicts e.g. Log.p or Log.e would
have been problematic so we now have:

log("my log message");
log(myException);

Instead of Display.getInstance().getCurrent() we now have getCurrentForm() since
getCurrent() is too generic. For most methods you should just be able to remove the
NetworkManager or Display access and it should "just work".

The motivation for this is three fold:

• Terse code

• Small performance gain

42

• Cleaner API without some of the baggage in Display or NetworkManager

Some of our samples in this guide might rely on that static import being in place. This helps
us keep the code terse and readable in the code listings.

Terse Syntax

Almost every layout allows us to add a component using several variants of the add method:

Listing 8. Versions of add

Container cnt = new Container(BoxLayout.y());
cnt.add(new Label("Just Added")); ①
cnt.addAll(new Label("Adding Multiple"), ②
 new Label("Second One"));

cnt.add(new Label("Chaining")). ③
 add(new Label("Value"));

① Regular add

② addAll accepts several components and adds them in a batch

③ add returns the parent Container instance so we can chain calls like that

In the race to make code “tighter” we can make this even shorter. Almost all layout managers have
their own custom terse syntax style e.g.:

Listing 9. Terse Syntax

Container boxY = BoxLayout.encloseY(cmp1, cmp2); ①
Container boxX = BoxLayout.encloseX(cmp3, cmp4);
Container flowCenter = FlowLayout. ②
 encloseCenter(cmp5, cmp6);

① Most layouts have a version of enclose to encapsulate components within

② FlowLayout has variants that support aligning the components on various axis

To sum this up, we can use layout managers and nesting to create elaborate UI’s that implicitly
adapt to different screen sizes and device orientation.

Flow Layout

43

Figure 25. Flow Layout

Flow layout [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/FlowLayout.html] lets the
components “flow” horizontally and break a line when reaching the edge of the container. It’s the
default layout manager for containers. Because it’s so flexible it’s also problematic as it can result in
incorrect preferred size values for the parent Container [https://www.codenameone.com/javadoc/com/

codename1/ui/Container.html]. This can create a reflow issue, as a result we recommend using flow
layout only for trivial cases. Avoid it for things such as text input etc. As the size of the text input
can vary in runtime.

Form hi = new Form("Flow Layout", new FlowLayout());
hi.add(new Label("First")).
 add(new Label("Second")).
 add(new Label("Third")).
 add(new Label("Fourth")).
 add(new Label("Fifth"));
hi.show();

Flow layout also supports terse syntax shorthand such as:

Container flowLayout = FlowLayout.encloseIn(
 new Label("First"),
 new Label("Second"),
 new Label("Third"),
 new Label("Fourth"),
 new Label("Fifth")));

Flow layout can be aligned to the left (the default), to the center, or to the right. It can also be
vertically aligned to the top (the default), middle (center), or bottom.

44

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/FlowLayout.html
https://www.codenameone.com/javadoc/com/codename1/ui/Container.html

Figure 26. Flow layout aligned to the center

Figure 27. Flow layout aligned to the right

Figure 28. Flow layout aligned to the center horizontally & the middle vertically

Components within the flow layout get their natural preferred size by default and are not stretched
in any axis.

The natural sizing behavior is often used to prevent other layout managers from
stretching components. E.g. if we have a border layout element in the south and
we want it to keep its natural size instead of adding the element to the south
directly we can wrap it using parent.add(BorderLayout.SOUTH,
FlowLayout.encloseCenter(dontGrowThisComponent)).

Box Layout

BoxLayout [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BoxLayout.html] places
elements in a row (X_AXIS) or column (Y_AXIS) according to box orientation. Box is a very simple and

45

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BoxLayout.html

predictable layout that serves as the "workhorse" of component lists in Codename One.

You can create a box layout Y using something like this:

Form hi = new Form("Box Y Layout", new BoxLayout(BoxLayout.Y_AXIS));
hi.add(new Label("First")).
 add(new Label("Second")).
 add(new Label("Third")).
 add(new Label("Fourth")).
 add(new Label("Fifth"));

Which results in this

Figure 29. BoxLayout Y

Box layout also supports a shorter terse notation which we use here to demonstrate the X axis box.

Container box = BoxLayout.encloseX(new Label("First"),
 new Label("Second"),
 new Label("Third"),
 new Label("Fourth"),
 new Label("Fifth")));

Figure 30. BoxLayout X

The box layout keeps the preferred size of its destination orientation and scales elements on the
other axis. Specifically X_AXIS will keep the preferred width of the component while growing all the
components vertically to match in size. Its Y_AXIS counterpart keeps the preferred height while

46

growing the components horizontally.

This behavior is very useful since it allows elements to align as they would all have the same size.

In some cases the growing behavior in the X axis is undesired, for these cases we can use the
X_AXIS_NO_GROW variant.

Figure 31. BoxLayout X_AXIS_NO_GROW

FlowLayout vs. BoxLayout.X_AXIS

When applicable we recommend BoxLayout over FlowLayout as it acts more
consistently in all situations. Another advantage of BoxLayout is the fact that it
grows and thus aligns nicely

Border Layout

Figure 32. Border Layout

Border layout [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BorderLayout.html] is quite
unique. BorderLayout is a constraint-based layout that can place up to five components in one of the
five positions: NORTH, SOUTH, EAST, WEST or CENTER.

Form hi = new Form("Border Layout", new BorderLayout());
hi.add(BorderLayout.CENTER, new Label("Center")).
 add(BorderLayout.SOUTH, new Label("South")).
 add(BorderLayout.NORTH, new Label("North")).
 add(BorderLayout.EAST, new Label("East")).
 add(BorderLayout.WEST, new Label("West"));
hi.show();

The Constraints are Included in the CN class

You can use the static import of the CN class and then the syntax can be add(SOUTH,
new Label("South"))

47

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BorderLayout.html

The layout always stretches the NORTH/SOUTH components on the X-axis to completely fill the
container and the EAST/WEST components on the Y-axis. The center component is stretched to fill the
remaining area by default. However, the setCenterBehavior allows us to manipulate the behavior of
the center component so it is placed in the center without stretching.

E.g.:

Form hi = new Form("Border Layout", new BorderLayout());
((BorderLayout)hi.getLayout()).setCenterBehavior(BorderLayout.CENTER_BEHAVIOR_CENTER);
hi.add(BorderLayout.CENTER, new Label("Center")).
 add(BorderLayout.SOUTH, new Label("South")).
 add(BorderLayout.NORTH, new Label("North")).
 add(BorderLayout.EAST, new Label("East")).
 add(BorderLayout.WEST, new Label("West"));
hi.show();

Results in:

Figure 33. Border Layout with CENTER_BEHAVIOR_CENTER

Scrolling is Disabled in Border Layout

Because of its scaling behavior scrolling a border layout makes no sense. Container
implicitly blocks scrolling on a border layout, but it can scroll its parents/children

In the case of RTL the EAST and WEST values are implicitly reversed as shown in this image:

Figure 34. Border Layout in RTL mode

RTL and Bidi

RTL (Right To Left) or Bidi (bi-directional) are common terms used for languages such as
Hebrew, Arabic etc. These languages are written from the right to left direction hence all the
UI needs to be “reversed”. Bidi denotes the fact that while the language is written from right
to left, the numbers are still written in the other direction hence two directions…

48

Preferred Size Still Matters

The preferred size of the center component doesn’t matter in border layout but the
preferred size of the sides is. E.g. If you place an very large component in the SOUTH
it will take up the entire screen and won’t leave room for anything

Grid Layout

GridLayout [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/GridLayout.html] accepts a
predefined grid (rows/columns) and grants all components within it equal size based on the
dimensions of the largest components.

The main use case for this layout is a grid of icons e.g. like one would see in the
iPhone home screen

If the number of rows * columns is smaller than the number of components added a new row is
implicitly added to the grid. However, if the number of components is smaller than available cells
(won’t fill the last row) blank spaces will be left in place.

In this example we can see that a 2x2 grid is used to add 5 elements, this results in an additional
row that’s implicitly added turning the grid to a 3x2 grid implicitly and leaving one blank cell.

Form hi = new Form("Grid Layout 2x2", new GridLayout(2, 2));
hi.add(new Label("First")).
 add(new Label("Second")).
 add(new Label("Third")).
 add(new Label("Fourth")).
 add(new Label("Fifth"));

Figure 35. Grid Layout 2x2

When we use a 2x4 size ratio we would see elements getting cropped as we do here. The grid layout
uses the grid size first and doesn’t pay too much attention to the preferred size of the components it
holds.

49

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/GridLayout.html

Figure 36. Grid Layout 2x4

Grid also has an autoFit attribute that can be used to automatically calculate the column count
based on available space and preferred width. This is really useful for working with UI’s where the
device orientation might change.

There is also a terse syntax for working with a grid that has two versions, one that uses the "auto
fit" option and another that accepts the number of columns. Here’s a sample of the terse syntax
coupled with auto fit followed by screenshots of the same code in two orientations:

GridLayout.encloseIn(new Label("First"),
 new Label("Second"),
 new Label("Third"),
 new Label("Fourth"),
 new Label("Fifth")));

Figure 37. Grid Layout autofit portrait

Figure 38. Grid Layout autofit landscape

2.1.2. Table Layout

The TableLayout [https://www.codenameone.com/javadoc/com/codename1/ui/table/TableLayout.html] is a very
elaborate constraint based layout manager that can arrange elements in rows/columns while

50

https://www.codenameone.com/javadoc/com/codename1/ui/table/TableLayout.html

defining constraints to control complex behavior such as spanning, alignment/weight etc.

Note the Different Package for TableLayout

The TableLayout is in the com.codename1.ui.table package and not in the layouts
package.
This is due to the fact that TableLayout was originally designed for the Table
[https://www.codenameone.com/javadoc/com/codename1/ui/table/Table.html] class.

Despite being constraint based the TableLayout isn’t strict about constraints and will implicitly add a
constraint when one is missing. This is unlike the BorderLayout which will throw an exception in
this case.

Unlike GridLayout TableLayout won’t implicitly add a row if the row/column count
is incorrect

Form hi = new Form("Table Layout 2x2", new TableLayout(2, 2));
hi.add(new Label("First")).
 add(new Label("Second")).
 add(new Label("Third")).
 add(new Label("Fourth")).
 add(new Label("Fifth"));
hi.show();

Figure 39. 2x2 TableLayout with 5 elements, notice that the last element is missing

TableLayout supports the ability to grow the last column which can be enabled using the
setGrowHorizontally method. You can also use a shortened terse syntax to construct a TableLayout
however since the TableLayout is a constraint based layout you won’t be able to utilize its full power
with this syntax.

The default usage of the encloseIn method below uses the setGrowHorizontally flag.

Container tl = TableLayout.encloseIn(2, new Label("First"),
 new Label("Second"),
 new Label("Third"),
 new Label("Fourth"),
 new Label("Fifth")));

51

https://www.codenameone.com/javadoc/com/codename1/ui/table/Table.html

Figure 40. TableLayout.encloseIn() with default behavior of growing the last column

The Full Potential

TableLayout is a beast, to truly appreciate it we need to use the constraint syntax which allows us to
span, align and set width/height for the rows and columns.

TableLayout works with a Constraint [https://www.codenameone.com/javadoc/com/codename1/ui/table/

TableLayout.Constraint.html] instance that can communicate our intentions into the layout manager.
Such constraints can include more than one attribute e.g. span and height.

 TableLayout constraints can’t be reused for more than one component

The constraint class supports the following attributes

Table 2. Constraint Properties

column The column for the table cell. This defaults to -1
which will just place the component in the next
available cell

row Similar to column, defaults to -1 as well

width The column width in percentages, -1 will use the
preferred size. -2 for width will take up the rest
of the available space

height Similar to width but doesn’t support the -2 value

spanHorizontal The cells that should be occupied horizontally
defaults to 1 and can’t exceed the column count -
current offset.

spanVertical Similar to spanHorizontal with the same
limitations

horizontalAlign The horizontal alignment of the content within
the cell, defaults to the special case -1 value to
take up all the cell space can be either -1,
Component.LEFT, Component.RIGHT or
Component.CENTER

verticalAlign Similar to horizontalAlign can be one of -1,
Component.TOP, Component.BOTTOM or
Component.CENTER

 You only need to set width/height to one cell in a column/row

The table layout constraint sample tries to demonstrate some of the unique things you can do with

52

https://www.codenameone.com/javadoc/com/codename1/ui/table/TableLayout.Constraint.html

constraints.

TableLayout tl = new TableLayout(2, 3); ①
Form hi = new Form("Table Layout Cons", tl);
hi.setScrollable(false); ②
hi.add(tl.createConstraint(). ③
 widthPercentage(20),
 new Label("AAA")).

 add(tl.createConstraint(). ④
 horizontalSpan(2).
 heightPercentage(80).
 verticalAlign(Component.CENTER).
 horizontalAlign(Component.CENTER),
 new Label("Span H")).

 add(new Label("BBB")).

 add(tl.createConstraint().
 widthPercentage(60).
 heightPercentage(20),
 new Label("CCC")).

 add(tl.createConstraint().
 widthPercentage(20),
 new Label("DDD"));

① We need the TableLayout instance to create constraints. A constraint must be created for every
component and must be used with the same layout as the parent container

② To get the look in the screenshot we need to turn scrolling off so the height constraint doesn’t
take up available height. Otherwise it will miscalculate available height due to scrolling. You can
scroll a TableLayout but sizing will be different

③ We create the constraint and instantly apply width to it. This is a shorthand syntax for the code
block below

④ We can chain constraint creation using a call like this so multiple constraints apply to a single
cell. Notice that we don’t span and set width on the same axis (horizontal span + width), doing
something like that would create confusing behavior

Here is the full code mentioned in item 3:

TableLayout.Constraint cn = tl.createConstraint();
cn.setWidthPercentage(20);
hi.add(cn, new Label("AAA")).

53

Figure 41. TableLayout constraints can be used to create very elaborate UI’s

TextMode Layout

TextModeLayout is a unique layout manager. It acts like TableLayout on Android and like
BoxLayout.Y_AXIS in other platforms. Internally it delegates to one of these two layout managers so
in a sense it doesn’t have as much functionality of its own.

E.g. this is a sample usage of TextModeLayout:

TextModeLayout tl = new TextModeLayout(3, 2);
Form f = new Form("Pixel Perfect", tl);
TextComponent title = new TextComponent().label("Title");
TextComponent price = new TextComponent().label("Price");
TextComponent location = new TextComponent().label("Location");
TextComponent description = new TextComponent().label("Description").multiline(true);

f.add(tl.createConstraint().horizontalSpan(2), title);
f.add(tl.createConstraint().widthPercentage(30), price);
f.add(tl.createConstraint().widthPercentage(70), location);
f.add(tl.createConstraint().horizontalSpan(2), description);
f.setEditOnShow(title.getField());
f.show();

Figure 42. TextModeLayout on iOS

Figure 43. TextModeLayout on Android with the same code

As you can see from the code and samples above there is a lot going on under the hood. On Android
we want a layout that’s similar to TableLayout so we can “pack” the entries. On iOS we want a box

54

layout Y type of layout but we also want the labels/text to align properly…

The TextModeLayout isn’t really a layout as much as it is a delegate. When running in the Android
mode (which we refer to as the “on top” mode) the layout is almost an exact synonym of
TableLayout and in fact delegates to an underlying TableLayout. In fact there is a public final table
instance within the layout that you can refer to directly…

There is one small difference between the TextModeLayout and the underlying TableLayout and that’s
our choice to default to align entries to TOP with this mode.

Aligning to TOP is important for error handling for TextComponent in Android
otherwise the entries “jump”

When working in the non-android environment we use a BoxLayout on the Y axis as the delegate.
There’s one thing we do here that’s different from a default box layout: grouping. Grouping allows
the labels to align by setting them to the same width, internally it invokes Component.setSameWidth().
Since text components hide the labels there is a special group method there that can be used.
However, this is implicit with the TextModeLayout which is pretty cool.

TextModeLayout was created specifically for the TextComponent and InputComponent so check out the
section about them in the components chapter.

2.1.3. Layered Layout

When used without constraints, the LayeredLayout [https://www.codenameone.com/javadoc/com/

codename1/ui/layouts/LayeredLayout.html] places the components in order one on top of the other and
sizes them all to the size of the largest component. This is useful when trying to create an overlay
on top of an existing component. E.g. an “x” button to allow removing the component.

Figure 44. The X on this button was placed there using the layered layout code below

The code to generate this UI is slightly complex and contains very few relevant pieces. The only
truly relevant piece is this block:

hi.add(LayeredLayout.encloseIn(settingsLabel,
 FlowLayout.encloseRight(close)));

We are doing three distinct things here:

55

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/LayeredLayout.html

1. We are adding a layered layout to the form

2. We are creating a layered layout and placing two components within. This would be the
equivalent of just creating a LayeredLayout Container and invoking add twice

3. We use FlowLayout to position the X close button in the right position

When used without constraints, the layered layout sizes all components to the
exact same size one on top of the other. It usually requires that we use another
container within; in order to position the components correctly

This is the full source of the example for completeness:

Form hi = new Form("Layered Layout");
int w = Math.min(Display.getInstance().getDisplayWidth(), Display.getInstance().getDisplayHeight());
Button settingsLabel = new Button("");
Style settingsStyle = settingsLabel.getAllStyles();
settingsStyle.setFgColor(0xff);
settingsStyle.setBorder(null);
settingsStyle.setBgColor(0xff00);
settingsStyle.setBgTransparency(255);
settingsStyle.setFont(settingsLabel.getUnselectedStyle().getFont().derive(w / 3, Font.STYLE_PLAIN));
FontImage.setMaterialIcon(settingsLabel, FontImage.MATERIAL_SETTINGS);
Button close = new Button("");
close.setUIID("Container");
close.getAllStyles().setFgColor(0xff0000);
FontImage.setMaterialIcon(close, FontImage.MATERIAL_CLOSE);
hi.add(LayeredLayout.encloseIn(settingsLabel,
 FlowLayout.encloseRight(close)));

Forms have a built in layered layout that you can access via getLayeredPane(), this allows you to
overlay elements on top of the content pane.

The layered pane is used internally by components such as InteractionDialog
[https://www.codenameone.com/javadoc/com/codename1/components/InteractionDialog.html], AutoComplete
[https://www.codenameone.com/javadoc/com/codename1/ui/AutoCompleteTextField.html] etc.

Codename One also includes a GlassPane that resides on top of the layered pane.
Its useful if you just want to "draw" on top of elements but is harder to use than
layered pane

Insets and Reference Components

As of Codename One 3.7, LayeredLayout [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/

LayeredLayout.html] supports insets [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/

LayeredLayout.LayeredLayoutConstraint.Inset.html] for its children. This effectively allows you to position
child components precisely where you want them, relative to their container or siblings. This
functionality forms the under-pinnings of the GUI Builder’s Auto-Layout mode.

As an example, suppose you wanted to position a button in the lower right corner of its container.
This can be achieved with LayeredLayout [https://www.codenameone.com/javadoc/com/codename1/ui/

56

https://www.codenameone.com/javadoc/com/codename1/components/InteractionDialog.html
https://www.codenameone.com/javadoc/com/codename1/ui/AutoCompleteTextField.html
https://www.codenameone.com/javadoc/com/codename1/ui/layouts/LayeredLayout.html
https://www.codenameone.com/javadoc/com/codename1/ui/layouts/LayeredLayout.LayeredLayoutConstraint.Inset.html
https://www.codenameone.com/javadoc/com/codename1/ui/layouts/LayeredLayout.html

layouts/LayeredLayout.html] as follows:

Container cnt = new Container(new LayeredLayout());
Button btn = new Button("Submit");
LayeredLayout ll = (LayeredLayout)cnt.getLayout();
cnt.add(btn);
ll.setInsets(btn, "auto 0 0 auto");

The result is:

The only thing new here is this line:

ll.setInsets(btn, "auto 0 0 auto");

This is called after btn has already been added to the container. It says that we want its insets to be
"auto" on the top and left, and 0 on the right and bottom. This insets string follows the CSS notation
of top right bottom left (i.e. start on top and go clockwise), and the values of each inset may be
provided in pixels (px), millimetres (mm), percent (%), or the special "auto" value. Like CSS, you can
also specify the insets using a 1, 2, or 3 values. E.g.

1. "1mm" - Sets 1mm insets on all sides.

2. "1mm 2mm" - Sets 1mm insets on top and bottom; 2mm on left and right.

3. "1mm 10% 2mm" - Sets 1mm on top, 10% on left and right, and 2mm on bottom.

4. "1mm 2mm 1px 50%" - Sets 1mm on top, 2mm on right, 1px on bottom, and 50% on left.

auto Insets

The special "auto" inset indicates that it is a flexible inset. If all insets are set to "auto", then the
component will be centered both horizontally and vertically inside its "bounding box".

The "inset bounding box" is the containing box from which a component’s insets
are measured. If the component’s insets are not linked to any other components,
then its inset bounding box will be the inner bounds (i.e. taking padding into
account) of the component’s parent container.

If one inset is fixed (i.e. defined in px, mm, or %), and the opposite inset is "auto", then the "auto"

57

inset will simply allow the component to be its preferred size. So if you want to position a
component to be centered vertically, and 5mm from the left edge, you could do:

ll.setInsets(btn, "auto auto auto 5mm");

Resulting in:

Figure 45. Button vertically centered 5mm from left edge

Move it to the right edge with:

ll.setInsets(btn, "auto 5mm auto auto");

% Insets

Percent (%) insets are calculated with respect to the inset bounding box. A 50% inset is measured as
50% of the length of the bounding box on the inset’s axis. E.g. A 50% inset on top would be 50% of
the height of the inset bounding box. A 50% inset on the right would be 50% of the width of the
inset bounding box.

Insets, Margin, and Padding

A component’s position in a layered layout is determined as follows: (Assume that cmp is the
component that we are positioning, and cnt is the container (In pseudo-code):

x = cnt.paddingLeft + cmp.calculatedInsetLeft + cmp.marginLeft
y = cnt.paddingTop + cmp.calculatedInsetTop + cmp.marginTop
w = cnt.width - cnt.verticalScroll.width - cnt.paddingRight - cmp.calculatedInsetRight - cmp.marginRight - x
h = cnt.height - cnt.horizontalScroll.height - cnt.paddingBottom - cmp.calculatedInsetBottom - cmp.marginBottom - y

The calculatedInsetXXX values here will be the same as the corresponding
provided inset if the inset has no reference component. If it does have a reference
component, then the calculated inset will depend on the position of the reference
component.

If no inset is specified, then it is assumed to be 0. This ensures compatibility with designs that were
created before layered layout supported insets.

58

Component References: Linking Components together

If all you need to do is position a component relative to its parent container’s bounds, then mere
insets provide you with sufficient vocabulary to achieve this. But most UIs are more complex than
this and require another concept: reference components. In many cases you will want to position a
component relative to another child of the same container. This is also supported.

For example, suppose I want to place a text field in the center of the form (both horizontally and
vertically), and have a button placed beside it to the right. Positioning the text field is trivial
(setInset(textField, "auto")), but there is no inset that we can provide that would position the
button to the right of the text field. To accomplish our goal, we need to set the text field as a
reference component of the button’s left inset - so that the button’s left inset is "linked" to the text
field. Here is the syntax:

Container cnt = new Container(new LayeredLayout());
LayeredLayout ll = (LayeredLayout)cnt.getLayout();
Button btn = new Button("Submit");
TextField tf = new TextField();
cnt.add(tf).add(btn);
ll.setInsets(tf, "auto")
 .setInsets(btn, "auto auto auto 0")
 .setReferenceComponentLeft(btn, tf, 1f);

This would result in:

Figure 46. Button’s left inset linked to text field

The two active lines here are the last two:

 .setInsets(btn, "auto auto auto 0") ①
 .setReferenceComponentLeft(btn, tf, 1f); ②

① Sets the left inset on btn to 0.

② Links btn’s left inset to `tf so that it is measured from the text field. The third parameter (
1.0) is the reference position. This will generally either be 0 (meaning the reference point is the
left edge of the text field), or 1 (meaning the reference point is the right edge of the text field). In

59

this case we set a reference position of 1.0 because we want the button to be aligned to the text
field’s right edge.

The reference position is defined as the distance, expressed as a fraction of the
reference component’s length on the inset’s axis, between the reference
component’s leading (outer) edge and the point from which the inset is measured.
A reference position of 0 means that the inset is measured from the leading edge of
the reference component. A value of 1.0 means that the inset is measured from the
trailing edge of the reference component. A value of 0.5 means that the inset is
measured from the center of the reference component. Etc… Any floating point
value can be used. The designer currently only makes use of 0 and 1.

The definition above may make reference components and reference position seem more complex
than it is. Some examples:

1. For a top inset:

a. referencePosition == 0 ⇒ the inset is measured from the top edge of the reference
component.

b. referencePosition == 1 ⇒ the inset is measured from the bottom edge of the reference
component.

2. For a bottom inset:

a. referencePosition == 0 ⇒ the inset is measured from the bottom edge of the reference
component.

b. referencePosition == 1 ⇒ the inset is measured from the top edge of the reference
component.

3. For a left inset:

a. referencePosition == 0 ⇒ the inset is measured from the left edge of the reference
component.

b. referencePosition == 1 ⇒ the inset is measured from the right edge of the reference
component.

4. For a right inset:

a. referencePosition == 0 ⇒ the inset is measured from the right edge of the reference
component.

b. referencePosition == 1 ⇒ the inset is measured from the left edge of the reference
component.

60

Layers In Codename One

Codename One allows placing components one on top of the other and we commonly use
layered layout to do that. The form class has a builtin Container that resides in a layer on top
of the content pane of the form.

When you add an element to a form it implicitly goes into the content pane. However, you
can use getLayeredPane() and add any Component there. Such a Component will appear above the
content pane. Notice that this layer resides below the title area (on the Y axis) and won’t draw
on top of that.

When Codename One introduced the layered pane it was instantly useful. However, its
popularity caused conflicts. Two separate pieces of code using the layered pane could easily
collide with one another. Codename One solved it with getLayeredPane(Class c, boolean top).
This method allocates a layer for a specific class within the layered pane. This way if two
different classes use this method instead of the getLayeredPane() method they won’t collide.
Each will get its own container in a layered layout within the layered pane seamlessly. The
top flag indicates whether we want the layer to be the top most or bottom most layer within
the layered pane (assuming it wasn’t created already). This allows you to place a layer that
can appear above or below the already installed layers.

We only make use of the layered pane in this book but there are two additional layers on top
of it. The form layered pane is identical to the layered pane but spans the entire height of the
Form (including the title area). As a result the form layered pane is slower as it needs to handle
some special cases to support this functionality.

The glass pane is the top most layer, unlike the layered pane it’s purely a graphical layer. You
can only draw on the glass pane with a Painter instance and a Graphics object. You can’t add
components into that layer.

Figure 47. The Layered Pane

61

2.1.4. GridBag Layout

GridBagLayout [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/GridBagLayout.html] was
introduced to simplify the process of porting existing Swing/AWT code with a more familiar API.
The API for this layout is problematic as it was designed for AWT/Swing where styles were
unavailable. As a result it has its own insets API instead of using elements such as padding/margin.

Our recommendation is to use Table which is just as powerful but has better Codename One
integration.

To demonstrate GridBagLayout we ported the sample from the Java tutorial [http://docs.oracle.com/

javase/tutorial/uiswing/layout/gridbag.html] to Codename One.

62

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/GridBagLayout.html
http://docs.oracle.com/javase/tutorial/uiswing/layout/gridbag.html

Button button;
hi.setLayout(new GridBagLayout());
GridBagConstraints c = new GridBagConstraints();
//natural height, maximum width
c.fill = GridBagConstraints.HORIZONTAL;
button = new Button("Button 1");
c.weightx = 0.5;
c.fill = GridBagConstraints.HORIZONTAL;
c.gridx = 0;
c.gridy = 0;
hi.addComponent(c, button);

button = new Button("Button 2");
c.fill = GridBagConstraints.HORIZONTAL;
c.weightx = 0.5;
c.gridx = 1;
c.gridy = 0;
hi.addComponent(c, button);

button = new Button("Button 3");
c.fill = GridBagConstraints.HORIZONTAL;
c.weightx = 0.5;
c.gridx = 2;
c.gridy = 0;
hi.addComponent(c, button);

button = new Button("Long-Named Button 4");
c.fill = GridBagConstraints.HORIZONTAL;
c.ipady = 40; //make this component tall
c.weightx = 0.0;
c.gridwidth = 3;
c.gridx = 0;
c.gridy = 1;
hi.addComponent(c, button);

button = new Button("5");
c.fill = GridBagConstraints.HORIZONTAL;
c.ipady = 0; //reset to default
c.weighty = 1.0; //request any extra vertical space
c.anchor = GridBagConstraints.PAGE_END; //bottom of space
c.insets = new Insets(10,0,0,0); //top padding
c.gridx = 1; //aligned with button 2
c.gridwidth = 2; //2 columns wide
c.gridy = 2; //third row
hi.addComponent(c, button);

Notice that because of the way gridbag works we didn’t provide any terse syntax API for it although
it should be possible.

63

Figure 48. GridbagLayout sample from the Java tutorial running on Codename One

2.1.5. Group Layout

GroupLayout [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/GroupLayout.html] is a layout
that would be familiar to the users of the NetBeans GUI builder (Matisse) [https://netbeans.org/features/

java/swing.html]. Its a layout manager that’s really hard to use for manual coding but is powerful for
some elaborate use cases. Although MiGLayout and LayeredLayout might be superior options.

It was originally added during the LWUIT days as part of an internal attempt to port Matisse to
LWUIT. It’s still useful to this day as developers copy and paste Matisse code into Codename One
and produce very elaborate layouts with drag and drop.

Since the layout is based on an older version of GroupLayout some things need to be adapted in the
code or you should use the special "compatibility" library for Matisse to get better interaction. We
also recommend tweaking Matisse to use import statements instead of full package names, that way
if you use Label just changing the awt import to a Codename One import will make it use work for
Codenmae One’s Label.

Unlike any other layout manager GroupLayout adds the components into the container instead of the
standard API. This works nicely for GUI builder code but as you can see from this sample it doesn’t
make the code very readable:

Form hi = new Form("GroupLayout");

Label label1 = new Label();
Label label2 = new Label();
Label label3 = new Label();
Label label4 = new Label();
Label label5 = new Label();
Label label6 = new Label();
Label label7 = new Label();

label1.setText("label1");

label2.setText("label2");

label3.setText("label3");

label4.setText("label4");

label5.setText("label5");

label6.setText("label6");

label7.setText("label7");

GroupLayout layout = new GroupLayout(hi.getContentPane());
hi.setLayout(layout);
layout.setHorizontalGroup(
 layout.createParallelGroup(GroupLayout.LEADING)

64

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/GroupLayout.html
https://netbeans.org/features/java/swing.html

 .add(layout.createSequentialGroup()
 .addContainerGap()
 .add(layout.createParallelGroup(GroupLayout.LEADING)
 .add(layout.createSequentialGroup()
 .add(label1, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)
 .addPreferredGap(LayoutStyle.RELATED)
 .add(layout.createParallelGroup(GroupLayout.LEADING)
 .add(label4, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)
 .add(label3, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)
 .add(label2, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)))
 .add(label5, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)
 .add(layout.createSequentialGroup()
 .add(label6, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)
 .addPreferredGap(LayoutStyle.RELATED)
 .add(label7, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)))
 .addContainerGap(296, Short.MAX_VALUE))
);
layout.setVerticalGroup(
 layout.createParallelGroup(GroupLayout.LEADING)
 .add(layout.createSequentialGroup()
 .addContainerGap()
 .add(layout.createParallelGroup(GroupLayout.TRAILING)
 .add(label2, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)
 .add(label1, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE))
 .addPreferredGap(LayoutStyle.RELATED)
 .add(label3, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)
 .addPreferredGap(LayoutStyle.RELATED)
 .add(label4, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)
 .addPreferredGap(LayoutStyle.RELATED)
 .add(label5, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)
 .addPreferredGap(LayoutStyle.RELATED)
 .add(layout.createParallelGroup(GroupLayout.LEADING)
 .add(label6, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE)
 .add(label7, GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE, GroupLayout.PREFERRED_SIZE))
 .addContainerGap(150, Short.MAX_VALUE))
);

Figure 49. GroupLayout Matisse generated UI running in Codename One

If you are porting newer Matisse code there are simple changes you can do:

• Change addComponent to add

• Change addGroup to add

• Remove references to ComponentPlacement and reference LayoutStyle directly

65

2.1.6. Mig Layout

MigLayout [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/mig/MigLayout.html] is a
popular cross platform layout manager that was ported to Codename One from Swing.

MiG is still considered experimental so proceed with caution!
The API was deprecated to serve as a warning of its experimental status.

The best reference for MiG would probably be its quick start guide (PDF link)
[http://www.miglayout.com/QuickStart.pdf]. As a reference we ported one of the samples from that PDF to
Codename One:

Form hi = new Form("MigLayout", new MigLayout("fillx,insets 0"));

hi.add(new Label("First")).
 add("span 2 2", new Label("Second")). // The component will span 2x2 cells.
 add("wrap", new Label("Third")). // Wrap to next row
 add(new Label("Forth")).
 add("wrap", new Label("Fifth")). // Note that it "jumps over" the occupied cells.
 add(new Label("Sixth")).
 add(new Label("Seventh"));
hi.show();

Figure 50. MiG layout sample ported to Codename One

It should be reasonably easy to port MiG code but you should notice the following:

• MiG handles a lot of the spacing/padding/margin issues that are missing in Swing/AWT. With
Codename One styles we have the padding and margin which are probably a better way to do a
lot of the things that MiG does

• The add method in Codename One can be changed as shown in the sample above.

• The constraint argument for Coedname One add calls appears before the Component instance.

2.2. Themes and Styles
Next we need to introduce you to 3 important terms in Codename One: Theme, Style and UIID.

Themes are very similar conceptually to CSS, in fact they can be created with CSS syntax as we’ll

66

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/mig/MigLayout.html
http://www.miglayout.com/QuickStart.pdf

discuss soon. The various Codename One ports ship with a native theme representing the
appearance of the native OS UI elements. Every Codename One application has its own theme that
derives the native theme and overrides behavior within it.

If the native theme has a button defined, we can override properties of that button in our theme.
This allows us to customize the look while retaining some native appearances. This works by
merging the themes to one big theme where our application theme overrides the definitions of the
native theme. This is pretty similar to the cascading aspect of CSS if you are familiar with that.

Themes consist of a set of UIID definitions. Every component in Codename One has a UIID
associated with it. UIID stands for User Interface Identifier. This UIID connects the theme to a
specific component. A UIID maps to CSS classes if you are familiar with that concept. However,
Codename One doesn’t support the complex CSS selector syntax options as those can impact
runtime performance.

E.g. see this code where:

Listing 10. setUIID on TextField

nameText.setUIID("Label");

This is a text field component (user input field) but it will look like a Label.

Effectively we told the text field that it should use the UIID of Label when it’s drawing itself. It’s very
common to do tricks like that in Codename One. E.g. button.setUIID("Label") would make a button
appear like a label and allow us to track clicks on a “Label”.

The UIID’s translate the theme elements into a set of Style objects. These Style objects get their
initial values from the theme but can be further manipulated after the fact. So if I want to make the
text field’s foreground color red I could use this code:

Listing 11. setUIID on TextField

nameText.getAllStyles().setFgColor(0xff0000);

The color is in hexadecimal RRGGBB format so 0xff00 would be green and 0xff0000 would be red.

getAllStyles() returns a Style object but why do we need “all” styles?

Each component can have one of 4 states and each state has a Style object. This means we can have
4 style objects per Component:

• Unselected — used when a component isn’t touched and doesn’t have focus. You can get that
object with getUnselectedStyle().

• Selected — used when a component is touched or if focus is drawn for non-touch devices. You
can get that object with getSelectedStyle().

• Pressed — used when a component is pressed. Notice it’s only applicable to buttons and button
subclasses usually. You can get that object with getPressedStyle().

67

• Disabled — used when a component is disabled. You can get that object with
getDisabledStyle().

The getAllStyles() method returns a special case Style object that lets you set the values of all 4
styles from one class so the code before would be equivalent to invoking all 4 setFgColor methods.
However, getAllStyles() only works for setting properties not for getting them!

Don’t use getStyle() for manipulation

getStyle() returns the current Style object which means it will behave
inconsistently. The paint method uses getStyle() as it draws the current state of
the Component but other code should avoid that method. Use the specific methods
instead: getUnselectedStyle(), getSelectedStyle(), getPressedStyle(),
getDisabledStyle() and getAllStyles()

As you can see, it’s a bit of a hassle to change styles from code which is why the theme is so
appealing.

2.2.1. Theme

A theme allows the designer to define the styles externally via a set of UIID’s (User Interface ID’s),
the themes are created via the Codename One Designer tool and allow developers to separate the
look of the component from the application logic.

 You can customize the theme using CSS which we’ll discuss a bit later

The theme is stored in the theme.res file in the src root of the project. We load the theme file using
this line of code in the init(Object) method in the main class of the application:

Listing 12. Theme Loading Code

theme = UIManager.initFirstTheme("/theme");

This code is shorthand for resource file loading and for the installation of theme. You could
technically have more than one theme in a resource file at which point you could use
initNamedTheme() instead. The resource file is a special file format that includes inside it several
features:

• Themes

• Images

• Localization Bundles

• Data files

It also includes some legacy features such as the old GUI builder.

We’re mentioning the legacy GUI builder for reference only we won’t discuss the
old GUI builders in this guide

68

We can open the designer tool by double clicking the res file. The UI can be a bit overwhelming at
first so I’ll try to walk slowly through the steps.

Figure 51. Codename One Designer Feature Map

If you end up using CSS this section isn’t crucial but it’s worth browsing through as
using the designer tool helps in tracking CSS issues

There are two crucial features in this tool: theming and images.

Figure 52. Add a New Image

You will notice there is more than one type of image. We’ll discuss multi-images later.

69

Now we can go back to the theme view in the designer tool and press the Add button in the
Unselected tab. Notice we have tabs for every state of Style as well as a special tabl for theme
constants that we will discuss later.

Figure 53. The Add Button

After pressing that button we should see something that looks like this:

Figure 54. Add the Theme Entry for the Toolbar

 Don’t forget to press the save button in the designer after making changes

There are several other options in the add theme entry dialog. Lets go over them and review what
we should do for each tab in this UI:

70

Figure 55. The Rest of the Add Theme Entry Dialog - Part I

71

Figure 56. The Rest of the Add Theme Entry Dialog - Part II

We’ll cover these options in-depth in the theming chapters.

Native Theme

By default Codename One applications are created with a theme that derives from the builtin OS
native theme. You can add additional themes into the resource file by pressing the Add A New
Theme button. You can also create multiple themes and ship them with your app or download them
dynamically.

You can create a theme from scratch or customize one of the Codename one themes to any look you
desire.

To preview the look of your theme in the various platforms use the Native Theme
menu option in the designer

Figure 57. The native theme menu option

72

You can easily create deep customizations that span across all themes by adding a UIID or changing
an existing UIID. E.g. looking at the getting started application that ships with the plugin you will
notice a green button. This button is defined using the "GetStarted" UIID which is defined within the
designer as:

• A green background

• White foreground

• A thin medium sized font

• Center aligned text

• A small amount of spacing between the text and the edges

To achieve the colors we define them in the color tab.

We define the transparency to 255 which means the background will be a solid
green color. This is important since the native OS’s might vary with the default
value for background transparency so this should be defined explicitly

Figure 58. The Color tab for the get started button theme settings

The alignment of the text is pretty simple, notice that the alignment style attribute applies to text
and doesn’t apply to other elements. To align other elements we use layout manager logic.

73

Figure 59. The alignment tab for the get started button theme settings

Padding can be expressed in pixels, millimeters (approximate) or percentages of the screen size.

We recommend using millimeters for all measurements to keep the code portable
for various device DPI’s.

74

Figure 60. The padding tab for the get started button theme settings

The font uses native OS light font but has a fallback for older OS’s that don’t support truetype fonts.
The "True Type" font will be applicable for most modern OS’s. In the case of the "native:" fonts
Android devices will use Roboto whereas iOS devices will use Helvetica Neue. You can supply your
own TTF and work with that.

Since Codename One cannot legally ship Helvetica Neue fonts the simulator will
fallback to Roboto on PC’s.

At the time of this writing the desktop/simulator version of the Roboto font doesn’t
support many common character sets (languages). This will have no effect on an
Android device where thenative font works properly.

75

Figure 61. The font tab for the get started button theme settings

2.3. GUI Builder
The GUI builder allows us to arrange components visually within a UI using drag and drop,
property sheets etc. With the GUI builder we can create elaborate, rich UI’s without writing the
layout code.

76

Why two GUI Builders?

The original old GUI builder has its roots in our work at Sun Microsystems, it was developed
directly into the designer tool and stores it’s data as part of the resource file. When creating
an application for the old GUI builder you must define it as a "visual application" which will
make it use the old GUI builder.

The roots of this GUI builder are pretty old. When we initially built it we still had to support
feature phones with 2mb of RAM and the iPad wasn’t announced yet. Due to that we picked
an architecture that made sense for those phones with a greater focus on navigation and
resource usage. Newer mobile applications are rivaling desktop applications in complexity
and in those situations the old GUI builder doesn’t make as much sense

The old GUI builder is in the designer tool, it’s a Swing application that includes the theme
design etc.
It generates a Statemachine class that contains all the main user GUI interaction code.

The new GUI builder is a standalone application that you launch from the right click menu by
selecting a form as explained below. Here are screenshots of both to help you differentiate:

Figure 62. The old GUI builder

Figure 63. The same UI in the new GUI builder

As of version 3.7, the new GUI Builder also supports an auto layout mode which allows you to
freely position and resize components on a canvas. This mode is now the default for new GUI
forms, and it always uses LayeredLayout as the root layout manager.

77

Figure 64. The new GUI builder in auto-layout mode

2.3.1. Hello World

Creating a hello world app in the new GUI builder is actually pretty trivial, you need to start with a
regular handcoded application. Not a GUI builder application as it refers to the old GUI builder!

This is the exact same hello world application we created before…

Following are the instructions for creating a form and launching the GUI builder. While they are
similar there are minor IDE differences. Usage of the GUI builder is identical in all IDE’s as the GUI
builder is a separate application.

NetBeans

In NetBeans you need to follow these 4 steps:

Figure 65. Right click the package select New → Other

78

Figure 66. In the Codename One section select the GUI builder form

Figure 67. Type in the name of the form and click finish, you can change the type to be a Container or Dialog

Figure 68. Launch the GUI builder thru the right click menu on the newly created file

IntelliJ/IDEA

In IntelliJ you need to follow these 3 steps:

Figure 69. Right click the package select New → Codename One AutoLayout Form (or Dialog/Container)

79

Figure 70. Type in a name for the new form

Figure 71. Launch the GUI builder thru the right click menu on the newly created file

Eclipse

In Eclipse you need to follow these 4 steps:

Figure 72. Right click the package select New → Other

Figure 73. In the Codename One section select the GUI builder option

80

Figure 74. Type in the name of the form and click finish, you can change the type to be a Container or Dialog

Figure 75. Launch the GUI builder thru the right click menu on the newly created file

Basic Usage

Notice that the UI of the new GUIBuilder might change in various ways but the basic concepts
should remain the same.

The GUI builder is controlled via it’s main toolbar, notice that your changes will only be applied
when you click the Save button on the right:

Figure 76. The features of the left toolbar

81

Figure 77. The features of the right toolbar

The main UI includes four important parts:

• Main Form  — This is where we place the components of the UI we are building

• Component Tree  — This is a logical representation of the component hierarchy within the Main
Form. It’s often easier to pick a component from the tree rather than the form itself

• Property Inspector  — When we select an element in the tree or form we can see its details here.
We can then edit the various details of the component in this area

• Palette  — Components can be dragged from the palette to the Main Form and placed in the UI

Figure 78. The four parts of the GUI builder

We’ll start by selecting the Component Palette and dragging a button into the UI:

82

Figure 79. You can drag any component you want from the palette to the main UI

By default the auto-layout mode of the GUI builder uses layered layout to position components.
Sides can be bound to a component or to the Form. We then use distance units to determine the
binding behavior. The GUI builder tries to be "smart" and guesses your intention as you drag the
components along.

When you select the component you placed you can edit the properties of that component:

Figure 80. Properties allow you to customize everything about a component

There are five property sheets per component:

• Basic Settings  — These include the basic configuration for a component e.g. name, icon, text etc.

• Advanced Settings  — These include features that aren’t as common such as icon gap, mask etc.

• Events  — By clicking a button in this tab a method will be added to the source file with a
callback matching your component name. This will let you bind an event to a button, text field
etc.

• Layout  — You can determine the layout of the parent Container here. For auto-layout this should
stay as layered layout, however you can nest other layout types in here

• Style Customization — This isn’t a theme, if you want to customize the style of a specific
component you can do that through this UI. The theme works on a more global/reusable level
and this is designed for a specific component only

For things like setting the text on the component we can use a convenient "long click" on the

83

component to edit the text in place as such:

Figure 81. Use the long click to edit the text "in place"

Events

When a component supports broadcasting events you can bind such events by selecting it, then
selecting the events tab and clicking the button matching the event type

Figure 82. The events tab is listed below supported event types can be bound above

Once an event is bound the IDE will open to the event code e.g.:

public void onButton_1ActionEvent(com.codename1.ui.events.ActionEvent ev) {
}

Some IDE’s only generate the project source code after you explicitly build the
project so if your code needs to access variables etc. try building first

Within the code you can access all the GUI components you defined with the gui_ prefix e.g.
Button_1 from the UI is represented as:

84

private com.codename1.ui.Button gui_Button_1 = new com.codename1.ui.Button();

Underlying XML

Saving the project generates an XML file representing the UI into the res directory in the project,
the GUI file is created in a matching hierarchy in the project under the res/guibuilder directory:

Figure 83. The java and GUI files in the hierarchy

If you refactor (rename or move) the java file it’s connection with the GUI file will
break. You need to move/rename both

You can edit the GUI file directly but changes won’t map into the GUI builder unless you reopen it.
These files should be under version control as they are the main files that change. The GUI builder
file for the button and label code looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<component type="Form" layout="FlowLayout" flowLayoutFillRows="false" flowLayoutAlign="1"
flowLayoutValign="0" title="My new title" name="MyForm">
 <component type="Button" text="Button" name="Button_1" actionEvent="true">
 </component>
 <component type="Label" text="Hi World" name="Label_1">
 </component>
</component>

This format is relatively simple and is roughly the same format used by the old GUI builder which
makes the migration to the new GUI builder possible. This file triggers the following Java source
file:

package com.mycompany.myapp;

/**
 * GUI builder created Form

85

 *
 * @author shai
 */
public class MyForm extends com.codename1.ui.Form {

 public MyForm() {
 this(com.codename1.ui.util.Resources.getGlobalResources());
 }

 public MyForm(com.codename1.ui.util.Resources resourceObjectInstance) {
 initGuiBuilderComponents(resourceObjectInstance);
 }

//-- DON'T EDIT BELOW THIS LINE!!!
 private com.codename1.ui.Label gui_Label_1 = new com.codename1.ui.Label();
 private com.codename1.ui.Button gui_Button_1 = new com.codename1.ui.Button();

// <editor-fold defaultstate="collapsed" desc="Generated Code">
 private void guiBuilderBindComponentListeners() {
 EventCallbackClass callback = new EventCallbackClass();
 gui_Button_1.addActionListener(callback);
 }

 class EventCallbackClass implements com.codename1.ui.events.ActionListener,
com.codename1.ui.events.DataChangedListener {
 private com.codename1.ui.Component cmp;
 public EventCallbackClass(com.codename1.ui.Component cmp) {
 this.cmp = cmp;
 }

 public EventCallbackClass() {
 }

 public void actionPerformed(com.codename1.ui.events.ActionEvent ev) {
 com.codename1.ui.Component sourceComponent = ev.getComponent();
 if(sourceComponent.getParent().getLeadParent() != null) {
 sourceComponent = sourceComponent.getParent().getLeadParent();
 }

 if(sourceComponent == gui_Button_1) {
 onButton_1ActionEvent(ev);
 }
 }

 public void dataChanged(int type, int index) {
 }
 }
 private void initGuiBuilderComponents(com.codename1.ui.util.Resources resourceObjectInstance) {
 guiBuilderBindComponentListeners();
 setLayout(new com.codename1.ui.layouts.FlowLayout());
 setTitle("My new title");
 setName("MyForm");
 addComponent(gui_Label_1);
 addComponent(gui_Button_1);
 gui_Label_1.setText("Hi World");
 gui_Label_1.setName("Label_1");
 gui_Button_1.setText("Click Me");
 gui_Button_1.setName("Button_1");
 }// </editor-fold>

//-- DON'T EDIT ABOVE THIS LINE!!!
 public void onButton_1ActionEvent(com.codename1.ui.events.ActionEvent ev) {
 }

}

86

 Don’t touch the code within the DON’T EDIT comments…

The GUI builder uses the "magic comments" approach where code is generated into those areas to
match the XML defined in the GUI builder. Various IDE’s generate that code at different times. Some
will generate it when you run the app while others will generate it as you save the GUI in the
builder.

You can write code freely within the class both by using the event mechanism, by writing code in
the constructors or thru overriding functionality in the base class.

2.3.2. Auto-Layout Mode

As of version 3.7, new forms created with the GUI Builder will use auto-layout mode. In this mode
you can move and resize your components exactly as you see fit. You aren’t constrained to the
positions dictated by the form’s layout manager.

All forms designed in auto-layout mode use LayeredLayout

Auto-Layout Mode is built upon the inset support in LayeredLayout. Component
positioning uses insets and reference components, not absolute positioning

As an example, let’s drag a button onto a blank form and see what happens. The button will be
"selected" initially after adding, it so you’ll see its outline, and resize handles for adjusting its size
and position. You’ll also see four floating labels (above, below, to the left, and to the right) that show
the corresponding side’s inset values and allow you to adjust them.

Figure 84. A button selected on the canvas in auto-layout mode. You can drag it to reposition it, or resize it
using the resize handles.

Press the mouse inside the bounds of the button and drag it around to reposition it. You will notice
that the inset labels change to reflect the new inset values. If you drag the button close to the edge
of the form, the corresponding inset value will change to millimetres. If you move farther away
from the edge, it will change to percentage values.

The Inset Control

Let’s take a closer look at the inset control (the inset controls are the black buttons that appear to
the top, bottom, left, and right of the selected component).

Figure 85. The inset control allows you to change the inset size and units, toggle it between fixed and
flexible, and link it to another component.

Each control has three sections:

1. The inset value drop-down menu. This shows the current value of the inset (e.g. 0mm, 25%,

87

auto, etc…). If you click on this, it will open a menu that will allow you to change the units. If the
inset is currently in millimetres, it will have options for pixels, and percent. If the inset is in
percent, it will have options for pixels and millimetres. Etc.. It also includes a text field to enter
a an inset value explicitly.

2.

The "Link" Button - If the inset is linked to a reference component, then this button will
be highlighted "blue", and hovering over it will highlight the reference component in the UI so
that you can clearly see which component it is linked to. Clicking on this button will open a
dialog that will allow you to "break" this link. You can drag this button over any component in
the form to "link".

3.

The "Lock" Button" - This button allows you to toggle the inset between "flexible" (i.e.
auto) and "fixed" (i.e. millimetres or percent).

Auto Snap

Notice the "auto-snap" checkbox that appears in the top-right corner of the designer.

Figure 86. Auto-snap checkbox

Auto-snap does exactly what it sounds like: It automatically snaps two components together when
you drag them near each other. This is handy for linking components together without having to
explicitly link them (using the "link" button). This feature is turned on by default. If auto-snap is
turned off, you can still initiate a "snap" by holding down the ALT/Option key on your keyboard
during the drag.

Smart Insets

Beside the "auto-snap" checkbox is another checkbox named "Smart Insets".

Figure 87. Smart insets checkbox

Smart Inset uses some heuristics during a drag to try to determine how the insets should be linked.
Currently the heuristics are quite basic (it tries to link to the nearest neighbor component in most
cases), but we will be working on improving this for future releases. This feature is turned off by
default while it is still being refined. The goal is to improve this to the point where it always makes
the correct link choices - at which time you will be able to use the designer without having any
knowledge of insets or reference components.

The Widget Control Pad

88

Figure 88. Widget control pad

When a component is selected, you should see a black floating panel appear in the lower right of
the screen.

This is the widget control pad, and it provides an alternative view of the component’s links. It also
provides a useful list of incoming links (i.e. components that "depend on" this component’s
positioning). In some cases, you may want to disconnect incoming links so that you can drag the
component without affecting the position of dependent components.

This control pad also includes game-pad-like controls (up, down, left, right), that allow you to "tab"
the component to the next guide in that direction. Tab positions exist at component edges in the
form. This is useful for aligning components with each other.

Keyboard Short-Cuts

1. Arrow Keys - Use the up/down/left/right arrow keys to nudge the currently selected component
a little bit at a time. This is a convenient way to move the component to a position that is more
precise than can easily be achieved with a mouse drag.

2. Arrow Keys + SHIFT - Hold down the SHIFT key while pressing an arrow key and it will "tab"
the component to the next tab marker. The form has implicit tab markers at the edge of each
component on the form.

3. ALT/Option Key + Click or Drag - Holding down the option/alt key while clicking or dragging a
component will resulting in "snapping" behaviour even if auto-snap is turned off.

Sub-Containers

In some cases, you may need to add sub-containers to your form to aid in grouping your
components together. You can drag a container onto your form using the "Container" palette item
(under "Core Components"). The default layout the subcontainer will be LayeredLayout so that you
are able to position components within the sub-container with precision, just like on the root
container.

You can also change the layout of subcontainers to another classical layout manager (e.g. grid
layout, box layout, etc..) and drag components directly into it just as you did with the old designer.
This is very useful if parts of your form lend themselves. As an example, let’s drag a container onto
the canvas that uses BoxLayout Y. (You can find this under the "Containers" section of the
component palette).

Drag the button (that was previously on the form) over that container, and you should see a drop-
zone become highlighted.

89

Figure 89. Dropping container on child container with box layout y

You can drop the button directly there. You can As you drag more components into the sub-
container, you’ll see them automatically laid out vertically.

Figure 90. Box Layout Y dropping 2nd child

The Canvas Resize Tool

When designing a UI with the new designer it is very important that you periodically test the
form’s "resizing" behavior so that you know how it will behave on different devices. Components
may appear to be positioned correctly when the canvas is one size, but become out of whack when
the container is resized. After nearly every manipulation you perform, it is good practice to drag
the canvas resize tool (the button in the lower right corner of the designer) smaller and bigger so
you can see how the positions are changed. If things grow out of whack, you may need to toggle an
inset between fixed and auto, or add a link between some of the components so that the resizing
behavior matches your expectations.

90

3. Theme Basics
This chapter covers the creation of a simple hello world style theme and its visual customization. It
uses the Codename One Designer tool to demonstrate basic concepts in theme creation such as 9-
piece borders, selectors and style types. We would recommend reviewing this even if you end up
using CSS.

3.1. Understanding Codename One Themes
Codename One themes are pluggable CSS like elements that allow developers to determine/switch
the look of the application in runtime. A theme can be installed via the UIManager class
[https://www.codenameone.com/javadoc/com/codename1/ui/plaf/UIManager.html] and themes can be layered
one on top of the other (like CSS). A theme can be generated from CSS as well, we’ll cover this (and
the supported CSS syntax) soon.

By default, Codename One themes derive the native operating system themes, although this
behavior is entirely optional.

A theme initializes the Style [https://www.codenameone.com/javadoc/com/codename1/ui/plaf/Style.html]
objects, which are then used by the components to render themselves or by the LookAndFeel
[https://www.codenameone.com/javadoc/com/codename1/ui/plaf/LookAndFeel.html] and DefaultLookAndFeel
[https://www.codenameone.com/javadoc/com/codename1/ui/plaf/DefaultLookAndFeel.html] classes to create the
appearance of the application.

Codename One themes have some built-in defaults. E.g. borders for buttons and
padding/margin/opacity for various components. These are a set of “common sense” defaults that
can be overridden within the theme.

Codename One themes are effectively a set of UIID’s mapped to a Style [https://www.codenameone.com/

javadoc/com/codename1/ui/plaf/Style.html] object. Codename One applications always have a theme, you
can modify it to suit your needs and you can add multiple themes within the main resource file.

You can also add multiple resource files to a project and work with them. In code a theme is
initialized using this code in your main class:

private Resources theme;

public void init(Object context) {
 theme = UIManager.initFirstTheme("/theme");
}

The initFirstTheme method is a helper method that hides some try/catch logic as well as some
verbosity. This could be expressed as:

91

https://www.codenameone.com/javadoc/com/codename1/ui/plaf/UIManager.html
https://www.codenameone.com/javadoc/com/codename1/ui/plaf/Style.html
https://www.codenameone.com/javadoc/com/codename1/ui/plaf/LookAndFeel.html
https://www.codenameone.com/javadoc/com/codename1/ui/plaf/DefaultLookAndFeel.html
https://www.codenameone.com/javadoc/com/codename1/ui/plaf/Style.html

try {
 theme = Resources.openLayered("/theme");
 UIManager.getInstance().setThemeProps(theme.getTheme(theme.getThemeResourceNames()[0]));
} catch(IOException e){
 e.printStackTrace();
}

3.2. Customizing Your Theme
We can launch the designer tool by double clicking on the theme.res file found in typical Codename
One applications. In the left side you can see the section picker and within it the Theme section.

Figure 91. The theme area in the designer

When you select the theme you will see the theme default view.

92

Figure 92. Theme default view

There are several interesting things to notice here the preview section allows us to instantly see the
changes we make to the theme data.

Figure 93. Theme preview section

The theme state tabs and constant tabs allow us to pass between the various editing modes for the
theme and also add theme constants.

We discussed styles before, you can pick the right style mode through the tabs.

93

Figure 94. You can use these tabs to add the various types of styles and theme constants

The most important section is the style section. It allows us to add/edit/remove style UIID’s.

Notice the Default Style section, it allows us to customize global defaults for the styles. Use it with
caution as changes here can have wide implications.

Figure 95. The theme selection area allows us to add, edit and delete entries. Notice the default style entry
which is a unique special case

When we add an entry to the style we can just type the desired UIID into the box at the top of the
dialog. We can also pick a UIID from the combo box but that might not include all potential options.

You can use the Component Inspector tool in the simulator to locate a component
and its UIID in a specific Form [https://www.codenameone.com/javadoc/com/codename1/ui/

Form.html]

Figure 96. When pressing the Add/Edit entry we can edit a specific style entry UIID

When we add/edit an entry an important piece of the puzzle is the Derive check box that appears
next to all of the UIID entries. All styles derive from the base style and usually from the native

94

https://www.codenameone.com/javadoc/com/codename1/ui/Form.html

theme defaults, so when this flag is checked the defaults will be used.

When you uncheck that checkbox the fields below it become editable and you can override the
default behavior. To restore the default just recheck that flag.

A common oddity for developers is that when they press Add and don’t derive any
entry nothing is actually added. The entries in the theme are essentially key/value
pairs so when you don’t add anything there are no keys so the entry doesn’t show
up

3.3. Customizing The Title
The title is a great target for customization since it includes a few interesting "complexities".

The Title is surrounded by a TitleArea container that encloses it, above the title you will also see
the StatusBar UIID that prevents the status details from drawing on top of the title text.

Figure 97. Title Area UIID’s

The StatusBar UIID is a special case that is only there on iOS. In iOS the application
needs to render the section under the status bar (which isn’t the case for other
OS’s) and the StatusBar UIID was added so developers can ignore that behavior.

3.3.1. Background Priorities and Types

A slightly confusing aspects of styles in Codename One is the priorities of backgrounds. When you
define a specific type of background it will override prior definitions, this even applies to
inheritance.

E.g. if the theme defined a border for the Button UIID (a very common case) if you will try to define
the background image or the background color of Button those will be ignored!

 The solution is to derive the border and select the Empty border type

The order for UIID settings for background is as follows:

1. Border - if the component has a border it can override everything. Image borders always
override all background settings you might have.

2. Image or gradient - an image or gradient background overrides background color/transparency
settings.

3. Background Color/Transparency - If transparency is larger than 0 then this takes effect.

95

3.3.2. The Background Behavior and Image

Lets start in the first page of the style entry, we’ll customize the background behavior for the Title
UIID and demonstrate/explain some of the behaviors.

The pictures below demonstrate the different types of background image behaviors.

Figure 98. IMAGE_SCALED scales the image without preserving aspect ratio to fit the exact size of the
component

Figure 99. IMAGE_SCALED_FILL scales the image while preserving aspect ratio so it fills the entire space of
the component

96

Aspect ratio is the ratio between the width and the height of the image. E.g. if the
image is 100x50 pixels and we want the width to be 200 pixels preserving the
aspect ratio will require the height to also double to 200x100.
We highly recommend preserving the aspect ratio to keep images more "natural".

Figure 100. IMAGE_SCALED_FIT scales the image while preserving aspect ratio so it fits within the
component

Figure 101. IMAGE_TILE_BOTH tiles the image on both axis of the component

97

Figure 102. IMAGE_TILE_VERTICAL_ALIGN_LEFT tiles the image on the left side of the component

Figure 103. IMAGE_TILE_VERTICAL_ALIGN_CENTER tiles the image in the middle of the component

98

Figure 104. IMAGE_TILE_VERTICAL_ALIGN_RIGHT tiles the image on the right side of the component

Figure 105. IMAGE_TILE_HORIZONTAL_ALIGN_TOP tiles the image on the top of the component

99

Figure 106. IMAGE_TILE_HORIZONTAL_ALIGN_CENTER tiles the image in the middle of the component

Figure 107. IMAGE_TILE_HORIZONTAL_ALIGN_BOTTOM tiles the image to the bottom of the component

100

Figure 108. IMAGE_ALIGNED_TOP places the image centered at the top part of the component

Figure 109. IMAGE_ALIGNED_BOTTOM places the image centered at the bottom part of the component

101

Figure 110. IMAGE_ALIGNED_LEFT places the image centered at the left part of the component

Figure 111. IMAGE_ALIGNED_RIGHT places the image centered at the right part of the component

102

Figure 112. IMAGE_ALIGNED_TOP_LEFT places the image at the top left corner

Figure 113. IMAGE_ALIGNED_TOP_RIGHT places the image at the top right corner

103

Figure 114. IMAGE_ALIGNED_BOTTOM_LEFT places the image at the bottom left corner

Figure 115. IMAGE_ALIGNED_BOTTOM_RIGHT places the image at the bottom right corner

104

Figure 116. IMAGE_ALIGNED_CENTER places the image in the middle of the component

3.3.3. The Color Settings

The color settings are much simpler than the background behavior. As explained above the priority
for color is at the bottom so if you have a border, image or gradient defined the background color
settings will be ignored.

Figure 117. Add theme entry color settings

There are three color settings:

• Foreground color is the RRGGBB color that sets the style foreground color normally used to
draw the text of the component. You can use the color picker button on the side to pick a color

• Background same as foreground only determines the background color of the component

• Transparency represents the opacity of the component background as a value between 0
(transparent) and 255 (opaque)

105

Setting the background will have no effect unless transparency is higher than 0. If
you don’t explicitly define this it might have a different value based on the native
theme

3.3.4. Alignment

Not all component types support alignment and even when they do they don’t support it for all
elements. E.g. a Label [https://www.codenameone.com/javadoc/com/codename1/ui/Label.html] and its
subclasses support alignment but will only apply it to the text and not the icon.

Notice that Container [https://www.codenameone.com/javadoc/com/codename1/ui/Container.html] doesn’t
support alignment. You should use the layout manager to tune component positioning.

Figure 118. Alignment of the text within some component types

Aligning text components to anything other than the default alignment might be a
problem if they are editable. The native editing capabilities might collide with the
alignment behavior.

 Bidi/RtL layout reverses the alignment value so left becomes right and visa versa

3.3.5. Padding and Margin

Padding and margin are concepts derived from the CSS box model. They are slightly different in
Codename One, where the border spacing is part of the padding, but other than that they are pretty
similar:

106

https://www.codenameone.com/javadoc/com/codename1/ui/Label.html
https://www.codenameone.com/javadoc/com/codename1/ui/Container.html

Figure 119. Padding and Margin/Box Model

In the diagram, we can see the component represented in yellow occupying its preferred size. The
padding portion in gray effectively increases the components size. The margin is the space between
components, it allows us to keep whitespace between multiple components. Margin is represented
in red in the diagram.

The theme allows us to customize the padding/margin, and specify them for all 4 sides of a
component. They can be specified in pixels, millimeters/dips, or screen percentage:

Figure 120. Padding tab

We recommend using millimeters for all spacing to make it look good for all device
densities. Percentages make sense only in very extreme cases

3.3.6. Borders

Borders are a big subject in their own right, the UI for their creation is also a bit confusing:

107

Figure 121. Border entry in the theme

3.3.7. 9-Piece Image Border

A common border type is the 9-piece image border, to facilitate that border type we have a special
Image Border Wizard.

A 9 piece image border is a common convention in UI theming that divides a border into 9 pieces 4
representing corners, 4 representing the sides and one representing the middle.

Android uses a common variation on the 9-piece border: 9-patch. The main
difference between the 9-piece border and 9-patch is that 9-piece borders tile the
sides/center whereas 9-patch scales them

9-piece image borders work better than background images for many use cases where the
background needs to "grow/shrink" extensively and might need to change aspect ratio.

They don’t work well in cases where the image is asymmetric on both axis. E.g. a radial gradient
image. 9-piece images in general don’t work very well with complex gradients.

The image border wizard simplifies the process of generating a 9-piece image border using a 3 stage
process.

108

Figure 122. Stage 1: create or pick an image from an existing PNG file that we will convert to a 9-piece
image

 Use an image that’s designed for a high DPI device

For your convenience you can create a rudimentary image with the create image stage but for a
professional looking application you would usually want to use a design by a professional designer.

109

Figure 123. Stage 2: Cutting the image and adapting it to the DPI’s

The second stage is probably the hardest and most important one in this wizard!

You can change the values of the top/bottom/left/right spinners to move the position of the guide
lines that indicate the various 9 pieces. The image shows the correct cut for this image type with
special attention to the following:

• The left/right position is high enough to fit in the rounded corners in their entirety. Notice that
we didn’t just leave 1 pixel as that performs badly, we want to leave as much space as possible!

• The top and bottom lines have exactly one pixel between them. This is to avoid breaking the
gradient. E.g. if we set the lines further apart we will end up with this:

Figure 124. This is why it’s important to keep the lines close when a gradient is involved, notice the tiling
effect…

Figure 125. When the lines are close together the gradient effect grows more effectively

• The elements on the right hand side include the Generate Multi Image options. Here you can
indicate the density of the source image you are using (e.g. if its for iPhone 5 class device pick
Very High). You can then select in the checkboxes below the densities that should be generated
automatically for you. This allows fine detail on the border to be maintained in the various
high/low resolution devices.

 We go into a lot of details about multi images in the advanced theming section.

110

Figure 126. Stage 3: Styles to which the border is applied

The last page indicates the styles to which the wizard will apply the border. Under normal usage
you don’t really need to touch this as its properly filled out.

You can define the same border for multiple UIIDs from here though.

Border Minimum Size

A common oddity when using the image borders is the fact that even when padding is
removed the component might take a larger size than the height of the text within it.

The reason for that is the border. Because of the way borders are implemented they can’t be
drawn to be smaller than the sum of their corners. E.g. the minimum height of a border
would be the height of the bottom corner + the height of the top corner. The minimum width
would be the width of the left + right corners.

This is coded into the common preferred size methods in Codename One and components
generally don’t shrink below the size of the image border even if padding is 0.

Customizing The 9-Piece Border

Normally we can just use the 9-piece border wizard but we can also customize the border by
pressing the "…" button on the border section in the theme.

111

Figure 127. Press this to customize borders

The UI for the 9-piece border we created above looks like this.

Figure 128. 9-piece border in edit mode

You can pick the image represented by every section in the border from the combo boxes. They are
organized in the same way the border is with the 9-pieces placed in the same position they would
occupy when the border is rendered.

112

Notice that the other elements in the UI are disabled when the image border type
is selected.

3 Image Mode

The 9-piece border has a (rarely used) special case: 3 image mode. In this mode a developer
can specify the top left corner, the top image and the center image to produce a 9 piece
border. The corner and top piece are then rotated dynamically to produce a standard 9-piece
border on the device.

This is useful for reducing application code size but isn’t used often as it requires a more
symetric UI.

Don’t confuse the 3-image mode for the 9-piece border with the
horizontal/vertical image border below

3.3.8. Horizontal/Vertical Image Border

The 9-piece border is the workhorse of borders in Codename One, however there are some edge
cases of UI elements that should grow on one axis and not on another. A perfect example of this is
the iOS 6 style back button. If we tried to cut it into a 9-piece border the arrow effect would be
broken.

Figure 129. Horizontal image border is commonly used for UI’s that can’t grow vertically e.g. the iOS 6 style
back button

113

The horizontal and vertical image borders accept 3 images of their respective AXIS and build the
border by placing one image on each side and tiling the center image between them. E.g. A
horizontal border will never grow vertically.

In RTL/Bidi [1] modes the borders flip automatically to show the reverse direction.
An iOS style back button will point to the right in such languages.

3.3.9. Empty Border

Empty borders enforce the removal of a border. This is important if you would like to block a base
style from having a border.

E.g. Buttons have borders by default. If you would like to create a Button
[https://www.codenameone.com/javadoc/com/codename1/ui/Button.html] that is strictly of solid color you
could just define the border to be empty and then use the solid color as you see fit.

There is a null border which is often confused with an empty border. You should
use empty border and not null border

3.3.10. Round Border

Circles and completely round border sides are problematic for multi-resolutions. You need to draw
them dynamically and can’t use image borders which can’t be tiled/cut to fit round designs (due to
physical constraints of the round shape).

We designed the RoundBorder to enable two distinct types of borders:

• Circular borders - e.g. Android floating action

• Rectangles with round (not rounded) sides

Round Border is a bit confusing since we already support a rounded border type. The rounded
border type is a rectangle with rounded corners whereas the round border has completely round
sides or appears as a circle.

To make matters worse the round border has a ridiculous number of features/configurations that
would have made the already cluttered UI darn near impossible to navigate. To simplify this we
split the UI into 3 tabs for standard borders, image borders and round border.

114

https://www.codenameone.com/javadoc/com/codename1/ui/Button.html

Figure 130. Round Border

3.3.11. Rounded Rectangle Border

The RoundRectBorder was developed based on the RoundBorder and has similar features. It produces a
rounded rectangle UI.

 Don’t confuse the Rounded Rectangle border with the deprecated Rounded border…

It’s a pretty simple border type akin to the RoundBorder.

Figure 131. Rounded Rectangle Border

3.3.12. Bevel/Etched Borders

We generally recommend avoiding bevel/etched border types as they aren’t as efficient and look a
bit dated in todays applications. We cover them here mostly for completeness.

115

Figure 132. Bevel border

Figure 133. Etched border

3.3.13. Derive

Derive allows us to inherit the behavior of a UIID and extend it with some customization.

E.g. Lets say we created a component that’s supposed to look like a title, we could do something like:

cmp.setUIID("Title");

But title might sometimes be aligned to the left (based on theme) and we always want our
component to be center aligned. However, we don’t want that to affect the actual titles in the app…

To solve this we can define a MyTitle UIID and derive the Title UIID. Then just customize that one
attribute.

Figure 134. Derive title

116

Issues With Derive

Style inheritance is a problematic topic in every tool that supports such behavior. Codename
One styles start from a global default then have a system default applied and on top of that
have the native OS default applied to them.

At that point a developer can define the style after all of the user settings are in place.
Normally this works reasonably well, but there are some edge cases where inheriting a style
can fail.

When you override an existing style such as Button and choose to derive from Button in a
different selection mode or even a different component altogether such as Label you might
trigger a recursion effect where a theme setting in the base theme depends on something in a
base triggering an infinite loop.

To avoid this always inherit only from UIID’s you defined e.g. MyButton.

3.3.14. Fonts

Codename One currently supports 3 font types:

• System fonts — these are very simplistic builtin fonts. They work on all platforms and come in
one of 3 sizes. However, they are ubiquitous and work in every platform in all languages.

• TTF files — you can just place a TTF file in the src directory of the project and it will appear in
the True Type combo box.

• Native fonts — these aren’t supported on all platforms but generally they allow you to use a set
of platform native good looking fonts. E.g. on Android the devices Roboto font will be used and
on iOS San Francisco or Helvetica Neue will be used. This is the recommended font type we
suggest for most use cases!

If you use a TTF file MAKE SURE not to delete the file when there MIGHT be a
reference to it. This can cause hard to track down issues!

Notice that a TTF file must have the ".ttf" extension, otherwise the build server
won’t be able to recognize the file as a font and set it up accordingly (devices need
fonts to be defined in very specific ways). Once you do that, you can use the font
from code or from the theme

117

Figure 135. Font Theme Entry

System fonts are always defined even if you use a TTF or native font. If the native
font/TTF is unavailable in a specific platform the system font will be used instead.

You can size native/TTF fonts either via pixels, millimeters or based on the size of the equivalent
system fonts:

1. System font size - the truetype font will have the same size as a small, medium or large system
font. This allows the developer to size the font based on the device DPI

2. Millimeter size - allows sizing the font in a more DPI aware size

3. Pixels - useful for some unique cases, but highly problematic in multi-DPI scenarios

You should notice that font sizing is very inconsistent between platforms we
recommend using millimeters for sizing

You can load a truetype font from code using:

if(Font.isTrueTypeFileSupported()) {
 Font myFont = Font.createTrueTypeFont(fontName, fontFileName);
 myFont = myFont.derive(sizeInPixels, Font.STYLE_PLAIN);
 // do something with the font
}

Notice that, in code, only pixel sizes are supported, so it’s up to you to decide how to convert that.
We recommend using millimeters with the convertToPixels method. You also need to derive the
font with the proper size, unless you want a 0 sized font which isn’t very useful.

The font name is the difficult bit, iOS requires the name of the font in order to load the font. This
font name doesn’t always correlate to the file name making this task rather "tricky". The actual font
name is sometimes viewable within a font viewer. It isn’t always intuitive, so be sure to test that on
the device to make sure you got it right.

118

due to copyright restrictions we cannot distribute Helvetica and thus can’t
simulate it. In the simulator you will see Roboto and not the device font unless you
are running on a Mac

The code below demonstrates all the major fonts available in Codename One with the handlee ttf
file posing as a standin for arbitrary TTF:

private Label createForFont(Font fnt, String s) {
 Label l = new Label(s);
 l.getUnselectedStyle().setFont(fnt);
 return l;
}

public void showForm() {
 GridLayout gr = new GridLayout(5);
 gr.setAutoFit(true);
 Form hi = new Form("Fonts", gr);

 int fontSize = Display.getInstance().convertToPixels(3);

 // requires Handlee-Regular.ttf in the src folder root!
 Font ttfFont = Font.createTrueTypeFont("Handlee", "Handlee-Regular.ttf").
 derive(fontSize, Font.STYLE_PLAIN);

 Font smallPlainSystemFont = Font.createSystemFont(Font.FACE_SYSTEM, Font.STYLE_PLAIN, Font.SIZE_SMALL);
 Font mediumPlainSystemFont = Font.createSystemFont(Font.FACE_SYSTEM, Font.STYLE_PLAIN, Font.SIZE_MEDIUM);
 Font largePlainSystemFont = Font.createSystemFont(Font.FACE_SYSTEM, Font.STYLE_PLAIN, Font.SIZE_LARGE);
 Font smallBoldSystemFont = Font.createSystemFont(Font.FACE_SYSTEM, Font.STYLE_BOLD, Font.SIZE_SMALL);
 Font mediumBoldSystemFont = Font.createSystemFont(Font.FACE_SYSTEM, Font.STYLE_BOLD, Font.SIZE_MEDIUM);
 Font largeBoldSystemFont = Font.createSystemFont(Font.FACE_SYSTEM, Font.STYLE_BOLD, Font.SIZE_LARGE);
 Font smallItalicSystemFont = Font.createSystemFont(Font.FACE_SYSTEM, Font.STYLE_ITALIC, Font.SIZE_SMALL);
 Font mediumItalicSystemFont = Font.createSystemFont(Font.FACE_SYSTEM, Font.STYLE_ITALIC, Font.SIZE_MEDIUM);
 Font largeItalicSystemFont = Font.createSystemFont(Font.FACE_SYSTEM, Font.STYLE_ITALIC, Font.SIZE_LARGE);

 Font smallPlainMonospaceFont = Font.createSystemFont(Font.FACE_MONOSPACE, Font.STYLE_PLAIN, Font.SIZE_SMALL);
 Font mediumPlainMonospaceFont = Font.createSystemFont(Font.FACE_MONOSPACE, Font.STYLE_PLAIN, Font.SIZE_MEDIUM);
 Font largePlainMonospaceFont = Font.createSystemFont(Font.FACE_MONOSPACE, Font.STYLE_PLAIN, Font.SIZE_LARGE);
 Font smallBoldMonospaceFont = Font.createSystemFont(Font.FACE_MONOSPACE, Font.STYLE_BOLD, Font.SIZE_SMALL);
 Font mediumBoldMonospaceFont = Font.createSystemFont(Font.FACE_MONOSPACE, Font.STYLE_BOLD, Font.SIZE_MEDIUM);
 Font largeBoldMonospaceFont = Font.createSystemFont(Font.FACE_MONOSPACE, Font.STYLE_BOLD, Font.SIZE_LARGE);
 Font smallItalicMonospaceFont = Font.createSystemFont(Font.FACE_MONOSPACE, Font.STYLE_ITALIC, Font.SIZE_SMALL);
 Font mediumItalicMonospaceFont = Font.createSystemFont(Font.FACE_MONOSPACE, Font.STYLE_ITALIC, Font.SIZE_MEDIUM);
 Font largeItalicMonospaceFont = Font.createSystemFont(Font.FACE_MONOSPACE, Font.STYLE_ITALIC, Font.SIZE_LARGE);

 Font smallPlainProportionalFont = Font.createSystemFont(Font.FACE_PROPORTIONAL, Font.STYLE_PLAIN, Font.SIZE_SMALL);
 Font mediumPlainProportionalFont = Font.createSystemFont(Font.FACE_PROPORTIONAL, Font.STYLE_PLAIN, Font.SIZE_MEDIUM);
 Font largePlainProportionalFont = Font.createSystemFont(Font.FACE_PROPORTIONAL, Font.STYLE_PLAIN, Font.SIZE_LARGE);
 Font smallBoldProportionalFont = Font.createSystemFont(Font.FACE_PROPORTIONAL, Font.STYLE_BOLD, Font.SIZE_SMALL);
 Font mediumBoldProportionalFont = Font.createSystemFont(Font.FACE_PROPORTIONAL, Font.STYLE_BOLD, Font.SIZE_MEDIUM);
 Font largeBoldProportionalFont = Font.createSystemFont(Font.FACE_PROPORTIONAL, Font.STYLE_BOLD, Font.SIZE_LARGE);
 Font smallItalicProportionalFont = Font.createSystemFont(Font.FACE_PROPORTIONAL, Font.STYLE_ITALIC, Font.SIZE_SMALL);
 Font mediumItalicProportionalFont = Font.createSystemFont(Font.FACE_PROPORTIONAL, Font.STYLE_ITALIC, Font.SIZE_MEDIUM);
 Font largeItalicProportionalFont = Font.createSystemFont(Font.FACE_PROPORTIONAL, Font.STYLE_ITALIC, Font.SIZE_LARGE);

 String[] nativeFontTypes = {
 "native:MainThin", "native:MainLight",
 "native:MainRegular", "native:MainBold",
 "native:MainBlack", "native:ItalicThin",
 "native:ItalicLight", "native:ItalicRegular",
 "native:ItalicBold", "native:ItalicBlack"};

 for(String s : nativeFontTypes) {
 Font tt = Font.createTrueTypeFont(s, s).derive(fontSize, Font.STYLE_PLAIN);

119

 hi.add(createForFont(tt, s));
 }

 hi.add(createForFont(ttfFont, "Handlee TTF Font")).
 add(createForFont(smallPlainSystemFont, "smallPlainSystemFont")).
 add(createForFont(mediumPlainSystemFont, "mediumPlainSystemFont")).
 add(createForFont(largePlainSystemFont, "largePlainSystemFont")).
 add(createForFont(smallBoldSystemFont, "smallBoldSystemFont")).
 add(createForFont(mediumBoldSystemFont, "mediumBoldSystemFont")).
 add(createForFont(largeBoldSystemFont, "largeBoldSystemFont")).
 add(createForFont(smallPlainSystemFont, "smallItalicSystemFont")).
 add(createForFont(mediumItalicSystemFont, "mediumItalicSystemFont")).
 add(createForFont(largeItalicSystemFont, "largeItalicSystemFont")).

 add(createForFont(smallPlainMonospaceFont, "smallPlainMonospaceFont")).
 add(createForFont(mediumPlainMonospaceFont, "mediumPlainMonospaceFont")).
 add(createForFont(largePlainMonospaceFont, "largePlainMonospaceFont")).
 add(createForFont(smallBoldMonospaceFont, "smallBoldMonospaceFont")).
 add(createForFont(mediumBoldMonospaceFont, "mediumBoldMonospaceFont")).
 add(createForFont(largeBoldMonospaceFont, "largeBoldMonospaceFont")).
 add(createForFont(smallItalicMonospaceFont, "smallItalicMonospaceFont")).
 add(createForFont(mediumItalicMonospaceFont, "mediumItalicMonospaceFont")).
 add(createForFont(largeItalicMonospaceFont, "largeItalicMonospaceFont")).

 add(createForFont(smallPlainProportionalFont, "smallPlainProportionalFont")).
 add(createForFont(mediumPlainProportionalFont, "mediumPlainProportionalFont")).
 add(createForFont(largePlainProportionalFont, "largePlainProportionalFont")).
 add(createForFont(smallBoldProportionalFont, "smallBoldProportionalFont")).
 add(createForFont(mediumBoldProportionalFont, "mediumBoldProportionalFont")).
 add(createForFont(largeBoldProportionalFont, "largeBoldProportionalFont")).
 add(createForFont(smallItalicProportionalFont, "smallItalicProportionalFont")).
 add(createForFont(mediumItalicProportionalFont, "mediumItalicProportionalFont")).
 add(createForFont(largeItalicProportionalFont, "largeItalicProportionalFont"));

 hi.show();
}

Figure 136. The fonts running on the ipad simulator on a Mac, notice that this will look different on a PC

120

Figure 137. The same demo running on a OnePlus One device with Android 5.1

Font Effects

You can define an effect to be applied to a specific font, specifically:

• Underline

• Strike thru

• 3d text raised/lowered

• 3d shadow north

The "3d" effects effectively just draw the text twice, with a sligh offest and two different colors to
create a "3d" feel.

All of the effects are relatively simple and performant.

[1] Languages that are written from right to left such as Hebrew, Arabic etc.

121

122

4. Advanced Theming
Before we go into CSS there are a few advanced theme concepts. Notice this still applies to CSS as
features such as theme constants are used there as well…

4.1. Working With UIID’s
UIID’s (User Interface IDentifier) are unique qualifiers given to UI components that associate a set
of theme definitions with a specific set of components. E.g. we can associate the Button UIID with a
component and then define the look for the Button in the theme.

One of the biggest advantages with UIID’s is the ability to change the UIID of a component. E.g. to
create a multiline label, one can use something like:

TextArea t = …;
t.setUIID("Label");
t.setEditable(false);

This is pretty much how components such as SpanLabel
[https://www.codenameone.com/javadoc/com/codename1/components/SpanLabel.html] are
implemented internally

UIID’s can be customized via the GUI builder and allow for powerful customization of individual
components.

The class name of the component is commonly the same as the UIID, but they are
in essence separate entities

4.2. Theme Layering
There are two use cases in which you would want to use layering:

• You want a slightly different theme in one platform

• You want the ability to customize your theme for a specific use case, e.g. let a user select larger
fonts

This is actually pretty easy to do and doesn’t require re-doing the entire theme. You can do
something very similar to the cascading effect of CSS where a theme is applied "on top" of another
theme. To do that just add a new theme using the Add Theme button.

 Make sure to remove the includeNativeBool constant in the new theme!

In the new theme define the changes e.g. if you just want a larger default font define only that
property for all the relevant UIID’s and ignore all other properties!

For a non-gui builder app the theme loading looks like this by default:

123

https://www.codenameone.com/javadoc/com/codename1/components/SpanLabel.html

theme = UIManager.initFirstTheme("/theme");

You should fix it to look like this:

theme = UIManager.initNamedTheme("/theme", "Theme");

This assumes the name of your main theme is "Theme" (not the layer theme you
just added).

The original code relies on the theme being in the 0 position in the theme name array which might
not be the case!

When you want to add the theme layer use:

UIManager.getInstance().addThemeProps(theme.getTheme("NameOfLayerTheme"));

The addThemeProps call will layer the secondary theme on top of the primary "Theme" and keep the
original UIID’s defined in the "Theme" intact.

If you apply theme changes to a running application you can use Form’s `refreshTheme() to update
the UI instantly and provide visual feedback for the theme changes.

4.3. Override Resources In Platform
When we want to adapt the look of an application to different OS conventions one of the common
requirements is to use different icons. Sometimes we want to change behavior based on device type
e.g. have a different UI structure for a Tablet.

Codename One allows you to override a resource for a specific platform when doing this you can
redefine a resource differently for that specific platform and also add platform specific resources.

Figure 138. Override resources for specific platform

Overriden resources take precedence over embedded resources thus allowing us to change the look
or even behavior (when overriding a GUI builder element) for a specific platform/OS.

124

Overriding the theme is dangerous as a theme has external dependencies (e.g.
image borders). The solution is to use theme layering and override the layer!

To override select the platform where overriding is applicable

Figure 139. Override for platform, allows us to override the checked resources and replace them with
another resource

You can then click the green checkbox to define that this resource is specific to this platform. All
resources added when the platform is selected will only apply to the selected platform. If you
change your mind and are no longer interested in a particular override just delete it in the override
mode and it will no longer be overridden.

4.4. Theme Constants
The Codename One Designer has a tab for creating constants which can be used to add global
values of various types and behavior hints to Codename One and its components. Constants are
always strings. There are some conventions that allow the UI to adapt to input types e.g. if a
constant ends with the word Bool it is treated as a boolean (true/false) value. Such a value will
display as a checkbox. Similarly an Int suffix will display a numeric picker and an Image suffix will
show a combo box to pick an image.

The combo box in the designer for adding a theme constant is editable, you can
just type in any value you want!

To use a constant one can use the UIManager [https://www.codenameone.com/javadoc/com/codename1/ui/

plaf/UIManager.html]'s methods to get the appropriate constant type specifically:

• getThemeConstant

• isThemeConstant

• getThemeImageConstant

Internally, Codename One has several built in constants and the list is constantly growing. As we
add features to Codename One, we try to keep this list up to date but the very nature of theme
constants is "adhoc" and some might not make it here.

Table 3. Theme Constants

Constant Description/Argument

alwaysTensileBool Enables tensile drag even when there is no
scrolling in the container (only for scrollable
containers)

backGestureThresholdInt The threshold for the back gesture in the
SwipeBackSupport [https://www.codenameone.com/

javadoc/com/codename1/ui/util/SwipeBackSupport.html]
class, defaults to 5

125

https://www.codenameone.com/javadoc/com/codename1/ui/plaf/UIManager.html
https://www.codenameone.com/javadoc/com/codename1/ui/util/SwipeBackSupport.html

Constant Description/Argument

backUsesTitleBool Indicates to the GUI builder that the back
command should use the title of the previous
form and not just the word "Back"

buttonRippleBool true to activate the material design ripple effect
on the buttons. This effect draws a growing
circle from the point of touch onwards. This is
false by default except for Android where it
defaults to true. This is equivalent to
setButtonRippleEffectDefault(bool) in the Button
class

capsButtonTextBool true to activate the caps text mode in the
buttons. When activated setText on Button and
all the constructors will invoke upcase() on all
the strings effectively making the application
buttons use uppercase exclusively. This is false
by default except for Android where it defaults
to true. It’s equivalent to
Button.setCapsTextDefault(boolean) and can be
tuned to an individual Component via
Component.setRippleEffect(boolean)

capsButtonUiids A list of the UIID’s that should be capitalized by
default (in supported platforms) other than the
Button and RaisedButton which are already
capitalized. This list can be separated by spaces
or commas e.g.
capsButtonUiids=UpcaseButton,OtherCustomButton

defaultCommandImage Image to give a command with no icon

dialogButtonCommandsBool Place commands in the dialogs as buttons

dialogBlurRadiusInt Sets the default Gaussian blur radius for the
background of the dialogs. The default value is
-1 indicating no blur

dialogPosition Place the dialog in an arbitrary border layout
position (e.g. North, South, Center, etc.)

centeredPopupBool Popup of the combo box will appear in the
center of the screen

changeTabOnFocusBool Useful for feature phones, allows changing the
tab when the focus changes immediately,
without pressing a key

checkBoxCheckDisImage CheckBox image to use instead of Codename
One drawing it on its own

checkBoxCheckedImage CheckBox image to use instead of Codename
One drawing it on its own

126

Constant Description/Argument

checkBoxOppositeSideBool Indicates the check box should be drawn on the
opposite side to the text and not next to the text

checkBoxUncheckDisImage CheckBox image to use instead of Codename
One drawing it on its own

checkBoxUncheckedImage CheckBox image to use instead of Codename
One drawing it on its own

comboImage Combo image to use instead of Codename One
drawing it on its own

commandBehavior Deprecated: Don’t use this constant as it conflicts
with the Toolbar. Indicates how commands
should act, as a touch menu, native menu etc.
Possible values: SoftKey, Touch, Bar, Title, Right,
Native

ComponentGroupBool Enables component group, which allows
components to be logically grouped together, so
the UIID’s of components would be modified
based on their group placement. This allows for
some unique styling effects where the first/last
elements have different styles from the rest of
the elements. It’s disabled by default, thus
leaving its usage up to the designer

dialogTransitionIn Default transition for dialog

dialogTransitionInImage Default transition Image
[https://www.codenameone.com/javadoc/com/

codename1/ui/Image.html] for dialog, causes a
Timeline [https://www.codenameone.com/javadoc/com/

codename1/ui/animations/Timeline.html] transition
effect

dialogTransitionOut Default transition for dialog

defaultCommandImage An image to place on a command if none is
defined, only applies to touch commands

defaultEmblemImage The emblem painted on the side of the
multibutton, by default this is an arrow on some
platforms

dialogTransitionOutImage Default transition Image
[https://www.codenameone.com/javadoc/com/

codename1/ui/Image.html] for dialog, causes a
Timeline [https://www.codenameone.com/javadoc/com/

codename1/ui/animations/Timeline.html] transition
effect

disabledColor Color to use when disabling entries by default

127

https://www.codenameone.com/javadoc/com/codename1/ui/Image.html
https://www.codenameone.com/javadoc/com/codename1/ui/animations/Timeline.html
https://www.codenameone.com/javadoc/com/codename1/ui/Image.html
https://www.codenameone.com/javadoc/com/codename1/ui/animations/Timeline.html

Constant Description/Argument

dlgButtonCommandUIID The UIID used for dialog button commands

dlgCommandButtonSizeInt Minimum size to give to command buttons in
the dialog

dlgCommandGridBool Places the dialog commands in a grid for
uniform sizes

dlgInvisibleButtons Includes an RRGGBB color for the line
separating dialog buttons, as is the case with
Android 4 and iOS 7 buttons in dialogs

dlgSlideDirection Slide hints

dlgSlideInDirBool Slide hints

dlgSlideOutDirBool Slide hints

drawMapPointerBool Indicates whether a pointer should appear in
the center of the map component

fadeScrollBarBool Boolean indicating if the scrollbar should fade
when there is inactivity

fadeScrollEdgeBool Places a fade effect at the edges of the screen to
indicate that it’s possible to scroll until we reach
the edge (common on Android)

fadeScrollEdgeInt Amount of pixels to fade out at the edge

firstCharRTLBool Indicates to the GenericListCellRenderer
[https://www.codenameone.com/javadoc/com/

codename1/ui/list/GenericListCellRenderer.html] that it
should determine RTL status based on the first
character in the sentence

noTextModeBool Indicates that the on/off switch in iOS shouldn’t
draw text on top of the switch, which is the case
for iOS 7+ but not for prior versions

fixedSelectionInt Number corresponding to the fixed selection
constants in List [https://www.codenameone.com/

javadoc/com/codename1/ui/List.html]

formTransitionIn Default transition for form

formTransitionInImage Default transition Image
[https://www.codenameone.com/javadoc/com/

codename1/ui/Image.html] for form, causes a
Timeline [https://www.codenameone.com/javadoc/com/

codename1/ui/animations/Timeline.html] transition
effect

formTransitionOut Default transition for form

128

https://www.codenameone.com/javadoc/com/codename1/ui/list/GenericListCellRenderer.html
https://www.codenameone.com/javadoc/com/codename1/ui/List.html
https://www.codenameone.com/javadoc/com/codename1/ui/Image.html
https://www.codenameone.com/javadoc/com/codename1/ui/animations/Timeline.html

Constant Description/Argument

formTransitionOutImage Default transition Image
[https://www.codenameone.com/javadoc/com/

codename1/ui/Image.html] for form, causes a
Timeline [https://www.codenameone.com/javadoc/com/

codename1/ui/animations/Timeline.html] transition
effect

globalToobarBool Indicates that the Toolbar API should be on/off
by default for all forms

hasRaisedButtonBool Is true in platforms where the theme has the
RaisedButton UIID defined. This is currently only
true in the native Android theme to allow some
material design guidelines

hideBackCommandBool Hides the back command from the side menu
when possible

hideEmptyTitleBool Indicates that a title with no content should be
hidden even if the border for the title occupies
space

hideLeftSideMenuBool Hides the side menu icon that appears on the
left side of the UI

ignorListFocusBool Hide the focus component of the list when the
list doesn’t have focus

infiniteImage The image used by the infinite progress
component, the component will rotate it as
needed

includeNativeBool True to derive from the platform native theme,
false to create a blank theme that only uses the
basic defaults

labelGap Positive floating point value representing the
default gap value between the label text and the
icon in millimeters

listItemGapInt Built-in item gap in the list, this defaults to 2,
which predated padding/margin in Codename
One

listLongPressBool Indicates whether a list should handle long press
events, defaults to true

mapTileLoadingImage An image to preview while loading the
MapComponent [https://www.codenameone.com/

javadoc/com/codename1/maps/MapComponent.html]
tile

129

https://www.codenameone.com/javadoc/com/codename1/ui/Image.html
https://www.codenameone.com/javadoc/com/codename1/ui/animations/Timeline.html
https://www.codenameone.com/javadoc/com/codename1/maps/MapComponent.html

Constant Description/Argument

mapTileLoadingText The text of the tiles in the MapComponent
[https://www.codenameone.com/javadoc/com/

codename1/maps/MapComponent.html] during
loading, defaults to "Loading…"

mapZoomButtonsBool Indicates whether buttons should be drawn on
the map component

mediaBackImage Media icon used by the media player class

mediaFwdImage Media icon used by the media player class

mediaPauseImage Media icon used by the media player class

mediaPlayImage Media icon used by the media player class

menuButtonBottomBool When set to true this flag aligns the menu button
to the bottom portion of the title. Defaults to
false

menuButtonTopBool When set to true this flag aligns the menu button
to the top portion of the title. Defaults to false

menuHeightPercent Allows positioning and sizing the menu

menuImage The three dot menu image used in Android and
the Toolbar [https://www.codenameone.com/javadoc/

com/codename1/ui/Toolbar.html] to show additional
command entries

menuImageSize The size in millimeters (floating point value) of
the generated side menu image, this is only used
if you don’t supply a custom image. The default
value is 4.5.

menuPrefSizeBool Allows positioning and sizing the menu

menuSlideDirection Defines menu entrance effect

menuSlideInDirBool Defines menu entrance effect

menuSlideOutDirBool Defines menu entrance effect

menuTransitionIn Defines menu entrance effect

menuTransitionInImage Defines menu entrance effect

menuTransitionOut Defines menu exit effect

menuTransitionOutImage Defines menu entrance effect

menuWidthPercent Allows positioning and sizing the menu

minimizeOnBackBool Indicates whether the form should minimize the
entire application when the physical back
button is pressed (if available) and no command
is defined as the back command. Defaults to true

130

https://www.codenameone.com/javadoc/com/codename1/maps/MapComponent.html
https://www.codenameone.com/javadoc/com/codename1/ui/Toolbar.html

Constant Description/Argument

onOffIOSModeBool Indicates whether the on/off switch should use
the iOS or Android mode

otherPopupRendererBool Indicates that a separate renderer UIID/instance
should be used to the list within the combo box
popup

PackTouchMenuBool Enables preferred sized packing of the touch
menu (true by default), when set to false this
allows manually determining the touch menu
size using percentages

paintsTitleBarBool Indicates that the StatusBar UIID should be
added to the top of the form to space down the
title area, as is the case on iOS 7+ where the
status bar is painted on top of the UI

popupCancelBodyBool Indicates that a cancel button should appear
within the combo box popup

PopupDialogArrowBool Indicates whether the popup dialog has an
arrow, notice that this constant will change if
you change UIID of the popup dialog

PopupDialogArrowBottomImage Image of the popup dialog arrow, notice that this
constant will change if you change UIID of the
popup dialog

PopupDialogArrowTopImage Image of the popup dialog arrow, notice that this
constant will change if you change UIID of the
popup dialog

PopupDialogArrowLeftImage Image of the popup dialog arrow, notice that this
constant will change if you change UIID of the
popup dialog

PopupDialogArrowRightImage Image of the popup dialog arrow, notice that this
constant will change if you change UIID of the
popup dialog

popupNoTitleAddPaddingInt Adds padding to a popup when no title is present

popupTitleBool Indicates that a title should appear within the
combo box popup

pullToRefreshImage The arrow image used to draw the pullToRefresh
animation

pureTouchBool Indicates the pure touch mode

radioOppositeSideBool Indicates the radio button should be drawn on
the opposite side to the text and not next to the
text

radioSelectedDisImage Radio button image

131

Constant Description/Argument

radioSelectedImage Radio button image

radioUnselectedDisImage Radio button image

radioUnselectedImage Radio button image

radioSelectedDisFocusImage Radio button image

radioSelectedFocusImage Radio button image

radioUnselectedDisFocusImage Radio button image

radioUnselectedFocusImage Radio button image

releaseRadiusInt Indicates the distance from the button with
dragging, in which the button should be
released, defaults to 0

rendererShowsNumbersBool Indicates whether renderers should render the
entry number

reverseSoftButtonsBool Swaps the softbutton positions

rightSideMenuImage Same as sideMenuImage only for the right side,
optional and defaults to sideMenuImage

rightSideMenuPressImage Same as sideMenuPressImage only for the right
side, optional and defaults to
sideMenuPressImage

scrollVisibleBool true/false default is platform dependent.
Toggles whether the scroll bar is visible

showBackCommandOnTitleBool Used by the Toolbar [https://www.codenameone.com/

javadoc/com/codename1/ui/Toolbar.html] API to
indicate whether the back button should appear
on the title

shrinkPopupTitleBool Indicates the title of the popup should be set to 0
if it’s missing

sideMenuAnimSpeedInt The speed at which a sidemenu moves defaults
to 300 milliseconds

sideMenuFoldedSwipeBool Indicates the side menu could be opened via
swiping

sideMenuImage The image representing the side menu, three
lines (Hamburger menu)

sideMenuPressImage Optional pressed version of the sideMenuImage

sideMenuScrollVisibleBool Indicates whether the scroll bar on the side
menu should be visible or not, defaults to
hidden

sideMenuShadowBool Indicates whether the shadow for the side menu
should be drawn

132

https://www.codenameone.com/javadoc/com/codename1/ui/Toolbar.html

Constant Description/Argument

sideMenuShadowImage The image used when drawing the shadow (a
default is used if this isn’t supplied)

sideMenuSizeTabPortraitInt The size of the side menu when expanded in a
tablet in portrait mode

sideMenuSizePortraitInt The size of the side menu when expanded in a
phone in portrait mode

sideMenuSizeTabLandscapeInt The size of the side menu when expanded in a
tablet in landscape mode

sideMenuSizeLandscapeInt The size of the side menu when expanded in a
phone in landscape mode

sideMenuTensileDragBool Enables/disables the tensile drag behavior
within the opened side menu

sideSwipeActivationInt Indicates the threshold in the side menu bar at
which a swipe should trigger activation, defaults
to 15 (percent)

sideSwipeSensitiveInt Indicates the region of the screen that is
sensitive to side swipe in the side menu bar,
defaults to 10 (percent)

slideDirection Default slide transition settings

slideInDirBool Default slide transition settings

slideOutDirBool Default slide transition settings

sliderThumbImage The thumb image that can appear on the sliders

snapGridBool Snap to grid toggle

statusBarScrollsUpBool Indicates that a tap on the status bar should
scroll up the UI, only relevant in OS’s where
paintsTitleBarBool is true

switchButtonPadInt Indicates the padding in the on/off switch,
defaults to 16

switchMaskImage Indicates the mask image used in iOS mode to
draw on top of the switch

switchOnImage Indicates the on image used in iOS mode to draw
the on/off switch

switchOffImage Indicates the off image used in iOS mode to
draw the on/off switch

TabEnableAutoImageBool Indicates images should be filled by default for
tabs

TabSelectedImage Default selected image for tabs (if
TabEnableAutoImageBool=true)

133

Constant Description/Argument

TabUnselectedImage Default unselected image for tabs (if
TabEnableAutoImageBool=true)

tabPlacementInt The placement of the tabs in the Tabs
[https://www.codenameone.com/javadoc/com/

codename1/ui/Tabs.html] component: TOP = 0, LEFT
= 1, BOTTOM = 2, RIGHT = 3

tabsSlideSpeedInt The time of the animation that occurs (in
milliseconds) between between releasing a
swiped tab and reaching the next tab. Currently
defaults to 200

tabsFillRowsBool Indicates if the tabs should fill the row using
flow layout

tabsGridBool Indicates whether tabs should use a grid layout
thus forcing all tabs to have identical sizes

tabsOnTopBool Indicates the tabs should be drawn on top of
their content in a layered UI, this allows a tab to
intrude into the content of the tabs

textCmpVAlignInt The vertical alignment of the text component:
TOP = 0, CENTER = 4, BOTTOM = 2

textComponentErrorColor A hex RGB color which defaults to null in which
case this has no effect. When defined this will
change the color of the border and label to the
given color to match the material design styling.
This implements the red border underline in
cases of error and the label text color change

textComponentOnTopBool Toggles the on top mode which makes things
look like they do on Android. This defaults to
true on Android and false on other OS’s. This
can also be manipulated via the
onTopMode(boolean) method in InputComponent
however the layout will only use the theme
constant

textComponentAnimBool toggles the animation mode which again can be
manipulated by a method in InputComponent. If
you want to keep the UI static without the
floating hint effect set this to false. Notice this
defaults to true only on Android

134

https://www.codenameone.com/javadoc/com/codename1/ui/Tabs.html

Constant Description/Argument

textComponentFieldUIID sets the UIID of the text field to something other
than TextField this is useful for platforms such
as iOS where the look of the text field is different
within the text component. This allows us to
make the background of the text field
transparent when it’s within the TextComponent
and make it different from the regular text field

textFieldCursorColorInt The color of the cursor as an integer (not hex)

tickerSpeedInt The speed of label/button etc. (in milliseconds)

tintColor The aarrggbb hex color to tint the screen when a
dialog is shown

topMenuSizeTabPortraitInt The size of the side menu when expanded and
attached to the top in a tablet in portrait mode

topMenuSizePortraitInt The size of the side menu when expanded and
attached to the top in a phone in portrait mode

topMenuSizeTabLandscapeInt The size of the side menu when expanded and
attached to the top in a tablet in landscape mode

topMenuSizeLandscapeInt The size of the side menu when expanded and
attached to the top in a phone in landscape
mode

touchCommandFillBool Indicates how the touch menu should layout the
commands within

touchCommandFlowBool Indicates how the touch menu should layout the
commands within

transitionSpeedInt Indicates the default speed for transitions

treeFolderImage Picture of a folder for the Tree
[https://www.codenameone.com/javadoc/com/

codename1/ui/tree/Tree.html] class

treeFolderOpenImage Picture of a folder expanded for the Tree class

treeNodeImage Picture of a file node for the Tree class

tensileDragBool Indicates that tensile drag should be
enabled/disabled. This is usually set by platform
themes

135

https://www.codenameone.com/javadoc/com/codename1/ui/tree/Tree.html

Dynamic Theme Swapping & Theme Constants

Once a theme constant is set by a theme, it isn’t removed on a refresh when replacing the
theme.

E.g. if one would set the comboImage constant to a specific value in theme A and then switch to
theme B, that doesn’t define the comboImage, the original theme A comboImage might remain!

The reason for this is simple: when extracting the constant values, components keep the
values in cache locally and just don’t track the change in value. Furthermore, since the
components allow manually setting values, it’s impractical for them to track whether a value
was set by a constant or explicitly by the user.

The solution for this is to either manually reset undesired values before replacing a theme
(e.g. for the case, above by calling the default look and feel method for setting the combo
image with a null value), or defining a constant value to replace the existing value.

4.5. Native Theming
Codename One uses a theme constant called includeNativeBool, when that constant is set to true
Codename One starts by loading the native theme first and then applying all the theme settings.
This effectively means your theme "derives" the style of the native theme first, similar to the
cascading effect of CSS. Internally this is exactly what the theme layering section covered.

By avoiding this flag you can create themes that look EXACTLY the same on all platforms.

If you avoid the native theming you might be on your own. A few small device
oddities such as the iOS status bar are abstracted by native theming. Without it you
will need to do everything from scratch

You can simulate different OS platforms by using the native theme menu option

Figure 140. The native theme menu option

Developers can pick the platform of their liking and see how the theme will appear in that
particular platform by selecting it and having the preview update on the fly.

4.6. Under the Hood of the Theme Engine
To truly understand a theme we need to understand what it is. Internally a theme is just a Hashtable
key/value pair between UIID based keys and their respective values. E.g. the key:

136

Button.fgColor=ffffff

Will set the foreground color of the Button [https://www.codenameone.com/javadoc/com/codename1/ui/

Button.html] UIID to white.

When a Codename One Component [https://www.codenameone.com/javadoc/com/codename1/ui/

Component.html] is instantiated it requests a Style [https://www.codenameone.com/javadoc/com/codename1/

ui/plaf/Style.html] object from the UIManager [https://www.codenameone.com/javadoc/com/codename1/ui/plaf/

UIManager.html] class. The Style object is based on the settings within the theme and can be modified
thru code or by using the theme.

We can replace the theme dynamically in runtime and refresh the styles assigned to the various
components using the refreshTheme() [https://www.codenameone.com/javadoc/com/codename1/ui/

Component.html#refreshTheme--] method.

It’s a common mistake to invoke refreshTheme() without actually changing the
theme. We see developers doing it when all they need is a repaint() or
revalidate(). Since refreshTheme() is very expensive we recommend that you don’t
use it unless you really need to…

A theme Hashtable key is comprised of:

[UIID.][type#]attribute

The UIID, corresponds to the component’s UIID e.g. Button, CheckBox [https://www.codenameone.com/

javadoc/com/codename1/ui/CheckBox.html] etc. It is optional and may be omitted to address the global
default style.

The type is omitted for the default unselected type, and may be one of sel (selected type), dis
(disabled type) or press (pressed type). The attribute should be one of:

• derive - the value for this attribute should be a string representing the base component.

• bgColor - represents the background color for the component, if applicable, in a web hex string
format RRGGBB e.g. ff0000 for red.

• fgColor - represents the foreground color, if applicable.

• border - an instance of the border class, used to display the border for the component.

• bgImage - an Image [https://www.codenameone.com/javadoc/com/codename1/ui/Image.html] object used in
the background of a component.

• transparency - a String containing a number between 0-255 representing the alpha value for
the background. This only applies to the bgColor.

• margin - the margin of the component as a String containing 4 comma separated numbers for
top,bottom,left,right.

• padding - the padding of the component, it has an identical format to the margin attribute.

• font - A Font [https://www.codenameone.com/javadoc/com/codename1/ui/Font.html] object instance.

• alignment - an Integer object containing the LEFT/RIGHT/CENTER constant values defined in

137

https://www.codenameone.com/javadoc/com/codename1/ui/Button.html
https://www.codenameone.com/javadoc/com/codename1/ui/Component.html
https://www.codenameone.com/javadoc/com/codename1/ui/plaf/Style.html
https://www.codenameone.com/javadoc/com/codename1/ui/plaf/UIManager.html
https://www.codenameone.com/javadoc/com/codename1/ui/Component.html#refreshTheme--
https://www.codenameone.com/javadoc/com/codename1/ui/CheckBox.html
https://www.codenameone.com/javadoc/com/codename1/ui/Image.html
https://www.codenameone.com/javadoc/com/codename1/ui/Font.html

Component.

• textDecoration - an Integer value containing one of the TEXT_DECORATION_* constant values
defined in Style.

• backgroundType - a Byte object containing one of the constants for the background type defined in
Style [https://www.codenameone.com/javadoc/com/codename1/ui/plaf/Style.html] under BACKGROUND_*.

• backgroundGradient - contains an Object array containing 2 integers for the colors of the
gradient. If the gradient is radial it contains 3 floating points defining the x, y & size of the
gradient.

So to set the foreground color of a selected button to red, a theme will define a property like:

Button.sel#fgColor=ff0000

This information is mostly useful for understanding how things work within Codename One, but it
can also be useful in runtime.

E.g. to increase the size of all fonts in the application, we can do something like:

Hashtable h = new Hashtable();
h.put("font", largeFont);
UIManager.getInstance().addThemeProps(h);
Display.getInstance().getCurrent().refreshTheme();

4.7. Understanding Images and Multi-Images

This section provides a very high level overview of images. We dive deeper into
the various types of images in the graphics section [https://www.codenameone.com/

manual/graphics.html#deep-into-images-section].

When working with a theme, we often use images for borders or backgrounds. We also use images
within the GUI for various purposes and most such images will be extracted from the resource file.

Adding a standard JPEG/PNG image to the resource file is straight forward, and the resulting image
can be viewed within the images section. However, due to the wide difference between device
types, an image that would be appropriate in size for an iPhone 3gs would not be appropriate in
size for a Nexus device or an iPhone 4 (but perhaps, surprisingly, it will be just right for iPad 1 and
iPad 2).

The density of the devices varies significantly and Codename One tries to simplify the process by
unifying everything into one set of values to indicate density. For simplicity’s sake, density is
sometimes expressed in terms of pixels, however it is mapped internally to actual screen
measurements where possible.

A multi-image is an image that has multiple varieties for different densities, and thus looks sharp in
all the densities. Since scaling on the device can’t interpolate the data (due to performance
considerations), significant scaling on the device becomes impractical. However, a multi-image will
just provide the “right” resolution image for the given device type.

138

https://www.codenameone.com/javadoc/com/codename1/ui/plaf/Style.html
https://www.codenameone.com/manual/graphics.html#deep-into-images-section

From the programming perspective this is mostly seamless, a developer just accesses one image
and has no ability to access the images in the different resolutions. Within the designer, however,
we can explicitly define images for multiple resolutions and perform high quality scaling so the
“right” image is available.

We can use two basic methods to add a multi-image: quick add and standard add.

Both methods rely on understanding the source resolution of the image, e.g. if you have an icon that
you expect to be 128x128 pixels on iPhone 4, 102x102 on nexus one and 64x64 on iPhone 3gs. You
can provide the source image as the 128 pixel image and just perform a quick add option while
picking the Very High density option.

This will indicate to the algorithm that your source image is designed for the "very high" density
and it will scale for the rest of the densities accordingly.

This relies on the common use case of asking your designer to design for one high
end device (e.g. iPhone X) then you can take the resources and add them as "HD"
resources. They will automatically adapt to the lower resolutions

Alternatively, you can use the standard add multi-image dialog and set it like this:

Notice that we selected the square image option, essentially eliminating the height option. Setting
values to 0 prevents the system from generating a multi-image entry for that resolution, which will
mean a device in that category will fall on the closest alternative.

The percentage value will change the entire column, and it means the percentage of the screen. E.g.
We know the icon is 128 for the very high resolution, we can just move the percentage until we
reach something close to 128 in the “Very High” row and the other rows will represent a size that
should be pretty close in terms of physical size to the 128 figure.

At runtime, you can always find the host device’s approximate pixel density using the
Display.getDeviceDensity() method. This will return one of:

Table 4. Densities

139

Constant Density Example Device

Display.DENSITY_VERY_LOW ~ 88 ppi

Display.DENSITY_LOW ~ 120 ppi Android ldpi devices

Display.DENSITY_MEDIUM ~ 160 ppi iPhone 3GS, iPad, Android mdpi
devices

Display.DENSITY_HIGH ~ 240 ppi Android hdpi devices

Display.DENSITY_VERY_HIGH ~ 320 ppi iPhone 4, iPad Air 2, Android
xhdpi devices

Display.DENSITY_HD ~ 540 ppi iPhone 6+, Android xxhdpi
devices

Display.DENSITY_560 ~ 750 ppi Android xxxhdpi devices

Density.DENSITY_2HD ~ 1000 ppi

Density.DENSITY_4K ~ 1250ppi

4.8. Use Millimeters for Padding/Margin and Font Sizes
When configuring your styles, you should almost never use "Pixels" as the unit for padding,
margins, font size, and border thickness because the results will be inconsistent on different
densities. Instead, you should use millimeters for all non-zero units of measurement.

As we now understand the complexities of DPI it should be clear why this is important.

4.8.1. Fractions of Millimeters

Sometimes millimeters don’t give you enough precision for what you want to do. Currently the
designer only allows you to specify integer values for most units. However, you can achieve more
precise results when working directly in Java. The Display.convertToPixels() method will allow you
to convert millimeters (or DIPS) to pixels. It also only takes an integer input, but you can use it to
obtain a multiplier that you can then use to convert any millimeter value you want into pixels.

E.g.

double pixelsPerMM = ((double)Display.getInstance().convertToPixels(10, true)) / 10.0;

And now you can set the padding on an element to 1.5mm. E.g.

myButton.getAllStyles().setPaddingUnit(Style.UNIT_TYPE_PIXELS);
int pixels = (int)(1.5 * pixelsPerMM);
myButton.getAllStyles().setPadding(pixels, pixels, pixels, pixels);

140

4.9. Creating a Great Looking Side Menu

Figure 141. Side Menu final result

A side menu is a crucial piece of an elegant application. We’ll explain how one creates a simple side
menu that’s elegant, portable and easy to build. This is a good "starting point" side menu from
which you can build more elaborate designs.

To get this result we will start from a native theme and a bare bones application to keep things
simple.

The code for the side menu is this:

141

Form hi = new Form("Hi World");

Toolbar tb = hi.getToolbar();
Image icon = theme.getImage("icon.png"); ①
Container topBar = BorderLayout.east(new Label(icon));
topBar.add(BorderLayout.SOUTH, new Label("Cool App Tagline...", "SidemenuTagline")); ②
topBar.setUIID("SideCommand");
tb.addComponentToSideMenu(topBar);

tb.addMaterialCommandToSideMenu("Home", FontImage.MATERIAL_HOME, e -> {}); ③
tb.addMaterialCommandToSideMenu("Website", FontImage.MATERIAL_WEB, e -> {});
tb.addMaterialCommandToSideMenu("Settings", FontImage.MATERIAL_SETTINGS, e -> {});
tb.addMaterialCommandToSideMenu("About", FontImage.MATERIAL_INFO, e -> {});

hi.addComponent(new Label("Hi World"));
hi.show();

① This is the icon which was used in lieu of a logo it appears in the top right of the side menu

② This is the top bar containing the tagline and the icon it’s styled as if it’s a command but you can
put anything here e.g. an image etc.

③ The commands are added as usual to the side menu with no styling or functionality, the entire
look is determined by the theme

Next we’ll open the designer tool to style the UI

Figure 142. Open the side menu so we will get the right values in the combo box on add

Now when we press Add the side menu entries will appear in the combo box (you can type them
but this is more convenient). We’ll start with the SideNavigationPanel style:

Figure 143. The SideNavigationPanel has an opaque white background

The SideCommand style is a bit more elaborate, we start with a white foreground and an opaque
bluish/purple color:

142

Figure 144. The SideCommand has a white foreground and opaque bluish background

We’ll set padding to 3 millimeters which gives everything a good feel and spacing. This is important
for finger touch sensitivity.

Figure 145. Padding is 3mm so it will feel spacious and touch friendly

We’ll set margin to 0 except for the bottom one pixel which will leave a nice white line by showing
off the background. This means the commands will have a space between them and the white style
we gave to the SideNavigationPanel will appear thru that space.

Figure 146. Margin is 0 except for a thin line below each command

Setting the border to empty is crucial!

The iOS version of the side command inherits a border style so we must "remove" it by defining a
different border in this case an empty border. Since borders take precedence over color this would
have prevented the color changes we made from appearing.

Figure 147. Border must be defined as Empty

143

Next we need to pick a good looking font and make sure it’s large enough. We use millimeters size it
correctly for all OS’s and override the derived text decoration which has a value in the iOS native
theme so it can impact the final look.

Figure 148. Pick a good looking font for the side command

Next we need to move to the selected tab and add a new side command entry that derives from the
unselected version. We’ll pick a new color that’s slightly deeper and will make the selected style
appear selected. We’ll also copy and paste this selected style to the pressed style.

Figure 149. Selected & Pressed SideCommand

Figure 150. Color for the Selected/Pressed SideCommand

The SidemenuTagline is just a SideCommand style that was slightly adapted. We’ll remove the
padding and margin because the whole section is wrapped in a side command and we don’t want
double padding. We’ll leave 1mm padding at the top for a bit of spacing from the logo.

Figure 151. Padding of the SidemenuTagline

We’ll also update the font to a smaller size and italic styling so it will feel like a tagline.

144

Figure 152. Font for the SideMenuTagline is slightly smaller and italic

The last change for the theme is for the StatusBarSideMenu UIID which is a spacing on the top of
the sidemenu. This spacing is there for iOS devices which render the clock/battery/reception
symbols on top of the app. We’ll set the padding to 0.

Figure 153. StatusBarSideMenu padding for the top of the side menu

Finally, we’ll add the icon image (or a logo if you have it) into the theme as a multi image so we can
use it within the side menu as a good looking logo. A relatively large icon image works as a 2HD
multi-image but you can use many strategies to get a fitting image for this spot.

Rounded images work well here, you can round images dynamically using
masking

These steps produce the UI above as a side menu, they might seem like a long set of steps but each
step is pretty simple as you walk thru each one. This does show off the versatility and power of
Codename One as a change to one step can create a radically different UI design.

4.10. Converting a PSD To A Theme
Codename One provides extensive support for designing beautiful user interfaces, but it isn’t
necessarily obvious to new developers how to achieve their desired results. A common workflow
for app design includes a PSD file with mock-ups of the UI, created by a professional designer.

PSD is the Adobe Photoshop file format, it’s the most common format for UI
designs in the industry

For this tutorial we adapt a very slick looking sign-up form found online and convert it to a
Codename One component that can be used inside an application.

The process we followed was:

1. Find the PSD design we want to use: this PSD file [http://freebiesbug.com/psd-freebies/iphone-6-ui-kit/]
created by Adrian Chiran [https://dribbble.com/adrianchiran] (we mirrored it here
[https://www.codenameone.com/files/iOS_UI-Kit.psd] in case it goes offline):

145

http://freebiesbug.com/psd-freebies/iphone-6-ui-kit/
https://dribbble.com/adrianchiran
https://www.codenameone.com/files/iOS_UI-Kit.psd

Figure 154. Sign Up form Design

2. Re-create the general structure and layout of the design in a Codename One Form using nested
components and layout managers. Here is a break-down of how we structured the component
hierarchy in the Form:

Figure 155. Component hierarchy and layouts

3. Extract the images we needed using Photoshop - this process is often referred to as "cutting"

4. Extract the fonts, colors, and styles we needed to reproduce the design in Codename One

5. Import images into the Codename one project, and define theme styles so that our components
match the look of the original design

Here is a screenshot of the resulting component running inside the Codename One simulator:

146

Figure 156. Resulting app in the Codename One simulator

4.10.1. Breaking Down the PSD

Open the PSD you are interested in using Photoshop.

You might be missing fonts in your system so you can either install them or ignore
that. Keep in mind that some fonts might not be redistributable with your
application

In this PSD we want only one of the screen designs so initially we want to remove everything that
isn’t related so we can get our bearings more effectively:

• Select the drag tool (the top left tool)

• In the toolbar for the tool (top bar area) check the Auto Select mode

• Select the Layer Mode for auto selection (in some cases group would actually be better so feel
free to experiment)

• Click on the portion in the PSD that you are interested in

You should end up with something like this where a layer is selected in the layers window:

147

Figure 157. Selecting a layer from the region you are interested in

Scroll up the hierarchy a bit and uncheck/recheck the eye icon on the left until you locate the right
element layer.

Figure 158. Selecting a layer from the region you are interested in

Right click the layer and select Convert To Smart Object.

The right click menu will present different options when you click different areas
of the layer, clicking on the left area of the layer works

148

Figure 159. In the right click menu option select "Convert To Smart Object"

Once the layer hierarchy is a smart object you can just double click it which will open the sub
hierarchy in a new tab and you now only have the pieces of the image you care about.

Figure 160. Double clicking the smart object allows us to edit only the form we need

Removing the Noise

The first thing we need to do is remove from the image all of the things that we don’t really need.
The status bar area on the top is redundant as if is a part of the phones UI. We can select it using the
select tool and click the eye icon next to the layer to hide it.

Normally we’d want to have the back arrow but thanks to the material design icons that are a part
of Codename One we don’t need that icon so we can hide that too.

We don’t need the "Sign Up" or "Done" strings in the title either but before removing them we’d like
to know the font that is used.

149

To discover that I can click them to select the layer then switch to the text tool:

Figure 161. The text tool allows us to inspect the font used

Then I can double click the text area layer to find out the font in the top of the UI like this:

Figure 162. The Done toolbar entry uses SourceSansPro Regular

Notice that I don’t actually need to have the font installed in this case I don’t
(hence the square brackets)

Also notice that the color of the font is accessible in that toolbar, by clicking the color element we
get this dialog which shows the color value to be f73267, this is something we will use later

Figure 163. The color dialog lists the hex color at the bottom, we can paste that directly to the designer tool

We can now hide both text layers so they won’t pose a problem later.

The Camera Button

The camera button includes an icon and the button background itself. You can just use that as a
single image and be done with it, but for the purpose of this tutorial I will take the harder route of
separating this into a button background and a foreground image.

When you click on the camera icon you will notice that the camera icon is comprised of two
separate layers: the camera and the "x" symbol above it. We can select both layers using ctrl-click
(command click on the Mac) and convert both to a smart object together using the same method as
before:

150

Figure 164. The camera smart object

Since the image is used as an icon we want it to be completely square which isn’t the situation here!
This is important as a non-square image can trigger misalignment when dealing with icons and the
background. So we need to use the Image → Canvas Size menu and set the values to be the same
(the higher value of the two).

Figure 165. The canvas size dialog for the camera.png file

We can now use File → Export and save the first image resource we will need into a temporary
directory. Make sure to save a PNG file to preserve quality and transparency!

Use File → Export and never use File → Save As . The latter can produce a huge size
difference as it retains image meta-data

For convenience we’ll refer to the file as camera.png when we need it later.

Figure 166. The camera icon image

We can follow the exact same procedure with the parent button layer (the white portion) which we
can convert to a smart object and export camera-button.png.

151

Figure 167. The camera button image set to a gray background so it will be visible

Now we can hide both of these elements and proceed to get the background image for the title.

Here the "smart object trick" won’t work… There is an effects layer in place and the smart object
will provide us with the real underlying image instead of the look we actually want. However,
solving this is trivial now that we hid all of the elements on top of the image!

We need to switch to the rectangular select tool:

Figure 168. The select tool and the clean image we want to select

Now drag the select tool to select the image don’t cross into the white pixels below the image. You
can use the zoom value and set it to a very high value to get the selection right.

When the selection is right click Edit → Copy Merged. Normally Copy would only copy a specific
layer but in this case we want to copy what we see on the screen!

Now click File → New it should have the Presets set to Clipboard which means the newly created
image is based on what we just copied (that is seriously great UX). Just accept that dialog and paste
(Ctrl-V or Command-V).

You can now save the image, since it’s just a background using JPEG is totally acceptable in this
case. We named it background.jpg.

152

Figure 169. The background image

The last thing we need is the colors used in the UI. We can use the "eye drop" tool in a high zoom
level to discover the colors of various elements e.g. the text color is 4d606f and the separator color is
f5f5f5:

Figure 170. The eye drop tool can be pointed at an area of the image to get the color in that region

4.10.2. The Code

While that was verbose it was relatively simple. We’ll create a simple barebones manual
application with the native theme.

The reason for this is to avoid "noise", if we use a more elaborate theme it would
have some existing settings. This can make the tutorial harder to follow

153

Figure 171. Simple bare bones app settings

Once the project is created double click the theme.res file and within the designer select Images →
Quick Add Multi Images. Select the 3 images we created above: background.jpg, camera.png & camera-
button.png. Leave the default setting on Very High and press OK.

Then save the resource file so we can use these images from code.

Here is the source code we used to work with the UI above there are comments within the code
explaining some of the logic:

private Label createSeparator() {
 Label sep = new Label();
 sep.setUIID("Separator");
 // the separator line is implemented in the theme using padding and background color, by default labels
 // are hidden when they have no content, this method disables that behavior
 sep.setShowEvenIfBlank(true);
 return sep;
}

public void start() {
 if(current != null){
 current.show();
 return;
 }
 // The toolbar uses the layered mode so it resides on top of the background image, the theme makes
 // it transparent so we will see the image below it, we use border layout to place the background image on
 // top and the "Get started" button in the south
 Form psdTutorial = new Form("Signup", new BorderLayout());
 Toolbar tb = new Toolbar(true);
 psdTutorial.setToolbar(tb);

 // we create 4mm material arrow images for the back button and the Get started button

154

 Style iconStyle = psdTutorial.getUIManager().getComponentStyle("Title");
 FontImage leftArrow = FontImage.createMaterial(FontImage.MATERIAL_ARROW_BACK, iconStyle, 4);
 FontImage rightArrow = FontImage.createMaterial(FontImage.MATERIAL_ARROW_FORWARD, iconStyle, 4);

 // we place the back and done commands in the toolbar, we need to change UIID of the "Done" command
 // so we can color it in Red
 tb.addCommandToLeftBar("", leftArrow, (e) -> Log.p("Back pressed"));
 Command doneCommand = tb.addCommandToRightBar("Done", null, (e) -> Log.p("Done pressed"));
 tb.findCommandComponent(doneCommand).setUIID("RedCommand");

 // The camera button is comprised of 3 pieces. A label containing the image and the transparent button
 // with the camera icon on top. This is all wrapped in the title container where the title background image
 // is placed using the theme. We chose to use a Label rather than a background using the cameraLayer so
 // the label will preserve the original size of the image without scaling it and take up the space it needs
 Button cameraButton = new Button(theme.getImage("camera.png"));
 Container cameraLayer = LayeredLayout.encloseIn(
 new Label(theme.getImage("camera-button.png")),
 cameraButton);
 cameraButton.setUIID("CameraButton");
 Container titleContainer = Container.encloseIn(
 new BorderLayout(BorderLayout.CENTER_BEHAVIOR_CENTER),
 cameraLayer, BorderLayout.CENTER);
 titleContainer.setUIID("TitleContainer");

 TextField firstName = new TextField("", "First Name");
 TextField lastName = new TextField("", "Last Name");
 TextField email = new TextField("", "Email Address", 20, TextField.EMAILADDR);
 TextField password = new TextField("", "Choose a Password", 20, TextField.PASSWORD);
 TextField phone = new TextField("", "Phone Number", 20, TextField.PHONENUMBER);
 Label phonePrefix = new Label("+1");
 phonePrefix.setUIID("TextField");

 // The phone and full name have vertical separators, we use two table layouts to arrange them correctly
 // so the vertical separator will be in the right place
 TableLayout fullNameLayout = new TableLayout(1, 3);
 Container fullName = new Container(fullNameLayout);
 fullName.add(fullNameLayout.createConstraint().widthPercentage(49), firstName).
 add(fullNameLayout.createConstraint().widthPercentage(1), createSeparator()).
 add(fullNameLayout.createConstraint().widthPercentage(50), lastName);
 Container fullPhone = TableLayout.encloseIn(3, phonePrefix, createSeparator(), phone);

 // The button in the south portion needs the arrow icon to be on the right side so we place the text on the left
 Button southButton = new Button("Get started", rightArrow);
 southButton.setTextPosition(Component.LEFT);
 southButton.setUIID("SouthButton");

 // we add the components and the separators the center portion contains all of the elements in a box
 // Y container which we allow to scroll. BorderLayout Containers implicitly disable scrolling
 Container by = BoxLayout.encloseY(
 fullName,
 createSeparator(),
 email,
 createSeparator(),
 password,
 createSeparator(),
 fullPhone,
 createSeparator()
);
 by.setScrollableY(true);
 psdTutorial.add(BorderLayout.NORTH, titleContainer).
 add(BorderLayout.SOUTH, southButton).
 add(BorderLayout.CENTER, by);

155

 psdTutorial.show();
}

4.10.3. Styling The UI

So the code above is most of the work but we still need to put everything together using the theme.
This is what we have so far:

Figure 172. Before applying the changes to the theme this is what we have

Figure 173. This is what we are aiming at with no additional code changes

This looks like a major set of changes but it requires exactly 10 UIID definitions to get to this look!

Open the designer and select the theme. Press the Add button and type in TitleContainer. Uncheck
derive for the background and select IMAGE_SCALED_FILL for the Type and the background.jpg
image.

Define the padding as:

• Left - 3 millimeter

• Right - 3 millimeter

• Top - 8 millimeter

• Bottom - 2 millimeter

This will allow enough space for the title. Define margin as 0 on all sides. Then press OK.

Add the "Title" UIID. In the Color tab define the foreground as ffffff define transparency as 0 (fully
transparent so we will see the TitleContainer). Define padding as 1 millimeter on all sides and

156

margin as 0 on all sides.

In the Border tab press the … button and select [Empty].

In the Font tab select the True Type as native:MainThin. Select the True Type Size as millimeters
and set the value to 3.5.

Press OK to save the changes.

Copy the Title UIID and paste it, change the name to "TitleCommand" and press OK to save the
changes.

Copy the Title UIID again and paste it, change the name to "RedCommand". In the Color tab set the
foreground color to f73267. In the Font tab set the True Type to native:MainLight and set the size to
3. Press OK to save the changes.

Add the "TitleArea" UIID. In the Color tab define transparency as 0 (fully transparent so we will see
the TitleContainer). Define padding and margin as 0 on all sides.
In the Border tab press the … button and select [Empty]. Press OK to save the changes.

Add the "TextField" UIID. In the Color tab define transparency as 255 (fully opaque) and the
background as ffffff (white). Define padding as 2 millimeter on all sides and margin as 0 on all
sides.
In the Border tab press the … button and select [Empty]. In the Font tab set the True Type to
native:MainLight and set the size to 2. Press OK to save the changes.

Copy the TextField UIID again and paste it, change the name to "TextHint". In the Color tab set the
foreground color to 4d606f. Press OK to save the changes.

Add the "SouthButton" UIID. In the Color tab define transparency as 255 (fully opaque) and the
background as f73267 (red) and the foreground as ffffff (white). Define Alignment as Center.

Define padding as:

• Left - 1 millimeter

• right - 1 millimeter

• top - 2 millimeters

• bottom - 2 millimeters

Define margin as 0 on all sides. In the Font tab set the True Type to native:MainThin and set the size
to 3. Press OK to save the changes.

Add the "CameraButton" UIID. In the Color tab define transparency as 0 (fully transparent). Define
Alignment as Center.
Define padding as:

• Left - 1 millimeter

• right - 1 millimeter

• top - 3 millimeters

157

• bottom - 1 millimeter

 This helps spacing away from the title

Define margin as 1 millimeter on all sides. Press OK to save the changes.

You can now save the theme and the app should look like the final result!

Not Quite There Yet

There is one last piece that you would notice if you actually try to run this code. When pressing the
buttons/text fields you would see their look change completely due to the different styles for
focus/press behavior.

You can derive the regular styles from the selected/pressed styles but one of the simplest ways is to
just copy & paste the styles to the pressed/selected tabs. We can copy CameraButton, RedCommand,
SouthButton & TextField to the selected state. Then copy CameraButton, RedCommand & SouthButton to
the pressed state to get the complete app running!

158

5. CSS
In this chapter we’ll discuss theming with CSS in Codename One.

CSS Changes Don’t Require a Recompile

You can change the CSS values while the simulator is running and the changes will
reflect in the simulator within a few seconds

5.1. Activating CSS
Codename One applications always use the resource file. The CSS support compiles a file in CSS
syntax to a Codename One resource file and adds it to the application. In runtime the CSS no longer
exists and the file acts like a regular theme file.

To enable CSS support in Codename One you need to flip a switch in Codename One Settings.

Figure 174. The CSS Option in Codename One Settings Part I

159

Figure 175. The CSS Option in Codename One Settings Part II

Once enabled your theme.res file will regenerate from a CSS file that resides under the css
directory. Changes you make to the CSS file will instantly update the simulator as you save.
However, there are some limits to this live update so in some cases a simulator restart would be
necessary.

5.2. Supported CSS Selectors
Since Codename One stylesheets are meant to be used with Codename One component hierarchies
instead of XML/HTML documents, selectors work a little differently.

1. All selectors (with some specific exceptions discussed below) are interpreted as UIIDs.

2. Only 4 predefined CSS classes are supported:

◦ .pressed — Targets the component when in "Pressed" state.

◦ .selected — Targets the component when in "Selected" state.

◦ .unselected — Targets the component when in "Unselected" state.

◦ .disabled — Targets the component when in "Disabled" state.

If no class is specified, then the selector targets "all" states of the given component.

The following are a few possible selectors you can include in your stylesheet.

1. Button — Defines styles for the "Button" UIID.

160

2. Button.pressed — Defines styles for the "Button" UIID’s "pressed" state.

3. Button, TextField, Form — Defines styles for the "Button", "TextField", and "Form" UIIDs.

The following example creates a simple button with a border, and text aligned center. By default
the button will have a transparent background, but when it is pressed, it will have a gray
background:

Button {
 text-align: center;
 border: 1pt solid gray;
 background-color: transparent;
}

Button.pressed {
 background-color: gray;
}

5.2.1. Inheriting properties using cn1-derive

The following example defines a custom Button style named "MyButton" that inherits all of the
styles of Button but changes the background color to blue.

MyButton {
 cn1-derive: Button;
 background-color: blue;
}

5.3. Special Selectors

5.3.1. #Device

The #Device selector allows you to define which device resolutions this CSS file should target. Mutli-
images generated from this style-sheet will only be include variants for device resolutions in the
range (min-resolution, max-resolution) as defined in this section. By default all resolutions are
generated.

#Device {
 min-resolution: 120dpi;
 max-resolution: 480dpi;
 resolution: 480dpi;
}

5.3.2. #Constants

The #Constants selector allows you to specify theme constants.

161

e.g.

#Constants {
 PopupDialogArrowBool: false;
 calTitleDayStyleBool: true;
 calTransitionVertBool: false;
 calendarLeftImage: "calendar-arrow-left.png";
 calendarRightImage: "calendar-arrow-right.png";
 centeredPopupBool: false;
 checkBoxCheckDisFocusImage: "Check-Box_Normal.png";
 checkBoxCheckedFocusImage: "Check-Box_Press.png";
 checkBoxCheckedImage: "Check-Box_Press.png";
 checkBoxOppositeSideBool: true;
 checkBoxUncheckedFocusImage: "Check-Box_Normal.png";
 checkBoxUncheckedImage: "Check-Box_Normal.png";
 comboImage: "combo.png";
 commandBehavior: "Side";
 dialogTransitionIn: "fade";
 dialogTransitionOut: "fade";
 dlgButtonCommandUIID: "DialogButton";
 dlgCommandGridBool: true;
 dlgInvisibleButtons: #1a1a1a;
 formTransitionIn: "empty";
 formTransitionOut: "slide";
 includeNativeBool: true;
 menuImage: "of_menu.png";
 noTextModeBool: true;
 onOffIOSModeBool: true;
 otherPopupRendererBool: false;
 pureTouchBool: true;
 radioSelectedFocusImage: "Radio_btn_Press.png";
 radioSelectedImage: "Radio_btn_Press.png";
 radioUnselectedFocusImage: "Radio_btn_Normal.png";
 radioUnselectedImage: "Radio_btn_Normal.png";
 sideMenuImage: "menu.png";
 switchMaskImage: "switch-mask-3.png";
 switchOffImage: "switch-off-3.png";
 switchOnImage: "switch-on-3.png";
 tabPlacementInt: 0;
 backIconImage: "Back-icon.png";
 articleSourceIconImage: "Source-icon.png";
 articleDateIconImage: "Date-icon.png";
 articleArrowRightImage: "Arrow-right.png";
 articleShareIconImage: "Share-icon.png";
 articleBookmarkIconImage: "Bookmark-icon.png";
 articleTextIconImage: "Text-icon.png";
 articleCommentsIconImage: "Comments-icon.png";
 newsIconImage: "News-icon.png";
 channelsIconImage: "Channels-icon.png";
 bookmarksIconImage: "Bookmarks-icon.png";

162

 overviewIconImage: "Overview-icon.png";
 calendarIconImage: "Calendar-icon.png";
 timelineIconImage: "Timeline-icon.png";
 profileIconImage: "Profile-icon.png";
 widgetsIconImage: "Widgets-icon.png";
 settingsIconImage: "Settings-icon.png";
 SubmitIconImage: "Submit-icon.png";
 SubmitIconDarkImage: "SubmitButtonLight-icon.png";

}

In the above example, the constants referring to an image name as a string requires that the image
exists in one of the following locations:

• res/<cssfilename>/<imageName>

• ../res/<cssfilename>/<imageName>

• ../../res/<cssfilename>/<imageName>

or that it has been defined as a background image in some selector in this CSS file.

5.3.3. Default

The Default selector is special in that it will set properties on the theme’s "default" element. The
default element is a special UIID in Codename One from which all other UIIDs in the same theme
are derived. This is a good place to set things like default fonts or background-colors.

5.4. Standard CSS Properties
• padding (and variants)

• margin (and variants)

• border (and variants)

• border-radius

• background (Usage below)

• background-color

• background-repeat

• background-image

• border-image

• border-image-slice

• font (Usage is covered in the following font section)

• font-family (Usage is covered in the following font section)

• font-style (Usage is covered in the following font section)

• font-size (Usage is covered in the following font section)

163

• @font-face (Usage is covered in the following font section)

• color

• text-align

• text-decoration(Usage below)

• opacity

• box-shadow

• width (only used for generating background-images and borders)

• height (only used for generating background-images and borders)

5.5. Custom Properties
• cn1-source-dpi — Used to specify source DPI for multi-image generation of background images.

Accepted values: 0 (Not multi-image), 120 (Low res), 160 (Medium Res), 320 (Very High Res), 480
(HD), Higher than 480 (2HD)

• cn1-background-type — Used to explicitly specify the background-type that should be used for the
class.

• cn1-9patch — Used to explicitly specify the slices used when generating 9-piece borders.
Deprecated - Use border-image and border-image-slice for 9-piece borders.

• cn1-derive — Used to specify that this UIID should derive from an existing UIID.

5.6. CSS Variables
As of CodenameOne 7.0, you can use variables in your CSS file via the var() CSS function. E.g.

var(--header-color, blue);

The var() function can only be used inside property values. I.e. You cannot use it in property names
or selectors.

Syntax:

var(<custom-property-name>, <declaration-value>?)

The <custom-property-name> must begin with two dashes (--).

The <declaration-value> is the fallback value that will be used if the variable hasn’t been defined in
the CSS file. The fallback value may include commas.

Examples

164

Listing 13. Example defining and using a CSS variable

#Constants {
 --main-bg-color: red;
}

MyContainer {
 background-color: var(--main-bg-color);
}

Listing 14. Example using a fallback value

#Constants {
 --main-bg-color: red;
}

MyContainer {
 background-color: var(--main-bg-color, blue);
}

See the MDN docs [https://developer.mozilla.org/en-US/docs/Web/CSS/var] for more details about the CSS
variable spec.

5.7. CSS Properties
This section isn’t as comprehensive as it should be due to the breadth of CSS.

5.7.1. text-decoration

underline Underlines text. E.g. text-decoration: underline;

overline Overlines text. E.g. text-decoration: overline;

line-through Strikes through text. E.g. text-decoration: line-
through;

none No text decoration. E.g. text-decoration: none;

cn1-3d 3D text. E.g. text-decoraton: cn1-3d;

cn1-3d-lowered 3D lowered text. E.g. text-decoration: cn1-3d-
lowered;

cn1-3d-shadow-north 3D text with north shadow. E.g. text-decoration:
cn1-3d-shadow-north;

165

https://developer.mozilla.org/en-US/docs/Web/CSS/var

For other CSS font settings see the Fonts section [Fonts]

5.7.2. border

This library supports the border property [https://developer.mozilla.org/en-US/docs/Web/CSS/border] and
most of its variants (e.g. border-width [https://developer.mozilla.org/en-US/docs/Web/CSS/border-width],
border-style [https://developer.mozilla.org/en-US/docs/Web/CSS/border-style], and border-color
[https://developer.mozilla.org/en-US/docs/Web/CSS/border-color]. It will try to use native Codename One
styles for generating borders if possible. If the border definition is too complex, it will fall-back to
generating a 9-piece image border at compile-time. This has the effect of making the resulting
resource file larger, but will produce good runtime performance, and a look that is faithful to the
provided CSS.

The algorithm used to determine whether to use a native border or to generate a 9-piece image, is
complex, but the following guidelines may help you if you wish to design borders that can be
rendered natively in CN1:

• Non-pixel units border-width. (Except with the cn1-round-border and cn1-pill-border styles)

• Using the border-radius directive.

• Using box-shadow (Except when using cn1-round-border or cn1-pill-border styles)

• Using a background gradient in combination with a border or any kind

• Using a different border-width, border-style, or border-color for different sides of the border

• Using a filter

You can open the resulting theme file in the designer and inspect it to see if an
image was generated

Generating the image triggers slower CSS compilation and a larger binary so we generally
recommend tuning the CSS so it avoids this fallback.

Round Borders

Rounded borders can be achieved in a few different ways. The easiest methods are:

• The cn1-round-border style. This will render a circular round border in the background
natively. I.e. this doesn’t require generation of an image border

• The cn1-pill-border style. This will render a pill-shaped border in the background natively.
This also doesn’t require generation of an image border

• The border-radius property. This will round the corners of the border. If the style can be
achieved using the RoundRectBorder in CodenameOne, then it will use that border. If not, this will
cause the style to be generated as an image border

Examples using cn1-round-border

166

Fonts
https://developer.mozilla.org/en-US/docs/Web/CSS/border
https://developer.mozilla.org/en-US/docs/Web/CSS/border-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-color

RoundBorder {
 border: 1px #3399ff cn1-round-border;
 text-align:center;
 margin:2mm;
 padding:3mm;
}

RoundBorderFilled {
 background: cn1-round-border;
 background-color: #ccc;
 text-align:center;
 margin:2mm;
 padding:3mm;
}

Examples using cn1-pill-border

PillBorder {
 border: 1pt #3399ff cn1-pill-border;
 text-align:center;
}

PillBorderFilled {
 background: cn1-pill-border;
 background-color: #3399ff;
 color:white;
 text-align:center;
}

Examples using border-radius

RoundRectLabel {
 background-color: red;
 border-radius: 2mm;
}

cn1-pill-border and cn1-round-border don’t support the standard CSS box-shadow property. This is
because the box-shadow property parameters don’t map nicely onto the shadow parameters for the
Codename One RoundBorder class. To get shadows on the cn1-pill-border, you should use one or
more of the following CSS properties:

• cn1-box-shadow-spread — Accepts values in any scalar unit (e.g. px, mm, cm, etc…). This maps
directly to the border’s shadowSpread [https://www.codenameone.com/javadoc/com/codename1/ui/plaf/

RoundBorder.html#shadowSpread-int-boolean-] property.

• cn1-box-shadow-h — Accepts values in real values or integers (not a scalar unit). This maps
directly to the border’s shadowX [https://www.codenameone.com/javadoc/com/codename1/ui/plaf/

167

https://www.codenameone.com/javadoc/com/codename1/ui/plaf/RoundBorder.html#shadowSpread-int-boolean-
https://www.codenameone.com/javadoc/com/codename1/ui/plaf/RoundBorder.html#shadowX-float-

RoundBorder.html#shadowX-float-] property.

• cn1-box-shadow-v — Accepts values in real values or integers (not a scalar unit). This maps
directly to the border’s shadowY [https://www.codenameone.com/javadoc/com/codename1/ui/plaf/

RoundBorder.html#shadowY-float-] property.

• cn1-box-shadow-blur — Scalar value. Maps to the border’s shadowBlur
[https://www.codenameone.com/javadoc/com/codename1/ui/plaf/RoundBorder.html#shadowBlur-float-]
property.

• cn1-box-shadow-color — The shadow color

Currently using the regular CSS box-shadow in conjunction with border-radius will cause a 9-piece
border to be generated rather than mapping to the RoundRectBorder. If, however, you use the cn1-
box-* properties for the shadow instead, it will use the RoundRectBorder — assuming that no other
styles are specified that trigger an image border to be generated.

5.7.3. background

The background property supports most standard CSS values [https://developer.mozilla.org/en-US/docs/Web/

CSS/background] for setting the background color, or background image.

9-piece Image borders always take precedence over background settings in
Codename One. If your background directive seems to have no effect, it is likely
because the theme has specified a 9-piece image border for the UIID. You can
disable the image border using a directive like border: none

Background Images

See Images [Images]

Gradients

Both the linear-gradient and radial-gradient CSS functions are fully supported by this library. If
Codename One is capable of rendering the gradient natively then the theme resource file generated
will only include encoded parameters for the gradients. If the gradient is not supported by
Codename One, then the module will fall back to an image background which it generates at
compile-time. It is generally preferable to try to stick to gradients that Codename One supports
natively. This will result in a smaller theme resource file since it doesn’t need to generate any
images for the gradient.

Natively Supported linear-gradient Syntax

In order for a linear gradient to be natively supported by Codename One, the following properties
must be met:

1. The gradient function has exactly two color stops, and these colors have the same opacity.

2. The gradient is either perfectly horizontal or perfectly vertical. (e.g Direction can be 0deg, 90deg,
180deg, or 270deg.

Examples

168

https://www.codenameone.com/javadoc/com/codename1/ui/plaf/RoundBorder.html#shadowY-float-
https://www.codenameone.com/javadoc/com/codename1/ui/plaf/RoundBorder.html#shadowBlur-float-
https://developer.mozilla.org/en-US/docs/Web/CSS/background
Images

MyContainer {
 background: linear-gradient(0deg, #ccc, #666);
}

Figure 176. Native linear gradient 0 degrees

MyContainer {
 background: linear-gradient(to top, #ccc, #666);
}

Figure 177. Native linear gradient to top

169

MyContainer {
 background: linear-gradient(90deg, #ccc, #666);
}

Figure 178. Native linear gradient 90deg

MyContainer {
 background: linear-gradient(to left, #ccc, #666);
}

Figure 179. Native linear gradient to left

Unsupported linear-gradient syntax

The following are some examples of linear gradients that aren’t supported natively by Codename

170

One, and will result in a background image to be generated at compile-time:

MyComponent {
 background: linear-gradient(45deg, #eaeaea, #666666);
}

Figure 180. 45deg gradient rendered at compile-time — uses background image

The above example is not supported natively because the gradient direction is 45 degrees.
Codename One only supports 0, 90, 180, and 270 degrees natively. Therefore this would result in a
background image being generated at compile-time with the appropriate gradient.

MyComponent {
 background: linear-gradient(90deg, rgba(255, 0, 0, 0.6), blue);
}

171

Figure 181. Linear gradient with different alpha

The above linear-gradient is not supported natively because the stop colors have different
transparencies. The first color has an opacity of 0.5, and the second as an opacity of 1.0 (implicitly).
Therefore, this would result in the gradient being generated as an image at compile-time.

Natively Supported radial-gradient Syntax

The following syntax is supported natively for radial gradients. Other syntaxes are also supported
by the CSS library, but they will use compile-time image generation for the gradients rather than
generating them at runtime.

background: radial-gradient(circle [closest-side] [at <position>], <color stop>, <color stop>)

• <position> — The position using either offset keywords or percentages.

• <color stop> — Either a color alone, or a color followed by a percentage. 0% indicates that color
begins at center of the circle. 100% indicates that the color begins at the closest edge of the
bounding box. Higher/lower values (>0%) will shift the color further or closer to circle’s center.
If the first color stop is set to a non-zero value, the gradient cannot be rendered natively by
Codename One, and an image of the gradient will instead be generated at compile-time.

More complex gradients are supported by this library, but they will be generated at compile-time.
For more information about the radial-gradient CSS function see its MDN Wiki page
[https://developer.mozilla.org/en-US/docs/Web/CSS/radial-gradient].

Examples

MyContainer {
 background: radial-gradient(circle, gray, white);
}

172

https://developer.mozilla.org/en-US/docs/Web/CSS/radial-gradient

Figure 182. Radial gradient 0 to 100

MyContainer {
 background: radial-gradient(circle, gray, white 200%);
}

Figure 183. Radial gradient 0 to 200

MyContainer {
 background: radial-gradient(circle at left, gray, white);
}

173

Figure 184. Radial gradient at left

MyContainer {
 background: radial-gradient(circle at right, gray, white);
}

Figure 185. Radial gradient at right

5.7.4. cn1-background-type

It also supports some special Codename One values, which are identifiers with a "cn1-" prefix. The
following special values are available. They map to the standard Codename One values we
discussed in the theming chapter:

• cn1-image-scaled

• cn1-image-scaled-fill

• cn1-image-scaled-fit

• cn1-image-tile-both

• cn1-image-tile-valign-left

• cn1-image-tile-valign-center

174

• cn1-image-tile-valign-right

• cn1-image-tile-halign-top

• cn1-image-tile-halign-center

• cn1-image-tile-halign-bottom

• cn1-image-align-bottom

• cn1-image-align-left

• cn1-image-align-right

• cn1-image-align-center

• cn1-image-align-top-left

• cn1-image-align-top-right

• cn1-image-align-bottom-left

• cn1-image-align-bottom-right

• cn1-image-border

• cn1-none

• cn1-round-border

• cn1-pill-border

5.8. Images
Images are supported as both "inputs" of the stylesheet, and as outputs to the compiled resource
file. "Input" images are usually specified via the background-image property in a selector. "Output"
images are always saved as multi-images inside the resource file.

5.8.1. Image DPI and Device Densities

In order to appropriately size the image, the CSS compiler needs to know what the source density of
the image is. E.g. if an image is 160x160 pixels with a source density of 160dpi (i.e. medium density -
or the same as an iPhone 3G), then the resulting multi-image will be sized at 160x160 for medium
density devices and 320x320 on very high density devices (e.g. iPhone 4S Retina) - which will result
in the same perceived size to the user of 1x1 inch.

However if the image has a source density of 320dpi, then the resulting multi-image would be
80x80 pixels on medium density devices and 160x160 pixels on very high density devices.

Some images have this density information embedded in the image itself so that the CSS processor
will know how to resize the image properly. However, it is usually better to explicitly document
your intentions by including the cn1-source-dpi property as follows:

175

SomeStyle {
 background-image: url(images/my-image.png);
 cn1-source-dpi: 160;
}

cn1-source-dpi values are meant to fall into threshold ranges. Values less than or
equal to 120, are interpreted as low density. 121 - 160 are medium density (iPhone
3GS). 161 - 320, very high density (iPhone 4S). 321 - 480 == HD. 481 and higher ==
2HD. In general, you should try to use images that are one of these DPIs exactly:
160, 320, or 480, then images will be scaled up or down to the other densities
accordingly.

5.8.2. Multi-Images vs Regular Images

By default all images are imported as multi-images. If you want to import an image as a "regular"
image, you can simply set cn1-source-dpi to 0. E.g.

SomeStyle {
 background-image: url(images/my-image.png);
 cn1-source-dpi: 0;
}

5.8.3. Multi-Images as Inputs

If you have already generated images in all of the appropriate sizes for all densities, you can
provide them in the same file structure used by the Codename One XML resource files: The image
path is a directory that contains images named after the density that they are intended to be used
for. The possible names include:

• verylow.png

• low.png

• medium.png

• high.png

• veryhigh.png

• 560.png

• hd.png

• 2hd.png

• 4k.png

E.g. Given the CSS directives:

176

MyStyle {
 background-image: url(images/mymultiimage.png);
}

The files would look like:

css/
 +--- mycssfile.css
 +--- images/
 +--- mymultiimage.png/
 +--- verylow.png
 +--- low.png
 +--- medium.png
 ... etc...

Multi-image inputs are only supported for local URLs. You cannot use remote (e.g.
http://) urls with multi-image inputs

5.8.4. Image Constants

Theme constants can be images. The convention is to suffix the constant name with "Image" so that
it will be treated as an image. In addition to the standard url() notation for specifying a constant
image, you can provide a simple string name of the image, and the CSS processor will try to find an
image by that name specified as a background image for one of the styles. If it cannot find one, it
will look inside a special directory named "res" (located in the same directory as the CSS stylesheet),
inside which it will look for a directory named the same as the stylesheet, inside which it will look
for a directory with the specified multi-image. This directory structure is the same as used for
Codename One’s XML resources directory.

E.g. In the CSS file "mycssfile.css":

radioSelectedFocusImage: "Radio_btn_Press.png";

Will look for a directory located at res/mycssfile.css/Radio_btn_Press.png/ with the following
images:

• verylow.png

• low.png

• medium.png

• high.png

• veryhigh.png

• 560.png

• hd.png

177

• 2hd.png

• 4k.png

It will then create a multi-image from these images and include them in the resource file.

5.9. Image Recipes

5.9.1. Import Multiple Images In Single Selector

It is quite useful to be able to embed images inside the resource file that is generated from the CSS
stylesheet so that you can access the images using the Resources.getImage() method in your app and
set it as an icon on a button or label. In this case, it is easier to simply create a dummy style that you
don’t intend to use and include multiple images in the background-image property like so:

Images {
 background-image: url(images/NowLogo.png),
 url(images/Username-icon.png),
 url(images/Password-icon.png),
 url(images/Name-icon.png),
 url(images/Email-icon.png),
 url(images/SeaIce.png),
 url(images/Back-icon.png),
 url(images/Source-icon.png),
 url(images/Date-icon.png),
 url(images/Arrow-right.png),
 url(images/Share-icon.png),
 url(images/Text-icon.png),
 url(images/Comments-icon.png),
 url(images/RedPlanet.png),
 url(images/News-icon.png),
 url(images/Channels-icon.png),
 url(images/Bookmarks-icon.png),
 url(images/Overview-icon.png),
 url(images/Calendar-icon.png),
 url(images/Timeline-icon.png),
 url(images/Profile-icon.png),
 url(images/Widgets-icon.png),
 url(images/Settings-icon.png),
 url(images/Bookmark-icon.png);
}

Then in Java, I might do something like:

Resources theme = Resources.openLayered("/theme.css.res");

Label bookmark = new Label(theme.getImage("Bookmark-icon.png"));

178

5.9.2. Loading Images from URLs

You can also load images from remote URLs. E.g.

Images {
 background-image: url(http://solutions.weblite.ca/logo.png);
}

5.9.3. Generating 9-Piece Image Borders

9-Piece image borders can be created using the image-border and image-border-slice properties.

E.g.

NinePiece {
 border-image:url('dashbg_landscape.png');
}

In the above example we omitted the border-image-slice property, so it defaults to "40%", which
means that the image is sliced 40% from the top, 40% from the bottom, 40% from the left, and 40%
from the right.

If you want more specific "slice" points, you can add the border-image-slice property. E.g.

179

NinePiece {
 border-image:url('dashbg_landscape.png');
 border-image-slice:10% 49%; /*vertical horizontal*/
}

NinePiece2 {
 border-image:url('dashbg_landscape.png');
 border-image-slice:10% 49% 20%; /*top horizontal bottom*/
}

NinePiece3 {
 border-image:url('dashbg_landscape.png');
 border-image-slice:10% 30% 40% 20%; /*top right bottom left*/
}

NinePiece4 {
 border-image:url('dashbg_landscape.png');
 border-image-slice:10%; /*all*/
}

5.9.4. Image Backgrounds

Component backgrounds in Codename One are a common source of confusion for newcomers
because there are 3 different properties that can be used to define what a component’s background
looks like, and they have priorities:

1. Background Color - You can specify an RGB color to be used as the background for a component.

2. Background Image - You can specify an image to be used as the background for a component.
Codename One includes settings to define how the image is treated, e.g. scale/fill, tile, etc. If a
background image is specified, it will override the background color setting - unless the image
has transparent regions.

3. Image Border - You can define a 9-piece image border which will effectively cover the entire
background of the component. If an image border is specified, it will override the background
image of the component.

A common scenario that I run into is trying to set the background color of a component and see no
change when I preview my form because the style had an image background defined - which
overrides my background color change.

The potential for confusion is mitigated somewhat, but still exists when using CSS. You can make
your intentions explicit by adding the cn1-background-type property to your style. Possible values
include:

• cn1-image-scaled

• cn1-image-scaled-fill

• cn1-image-scaled-fit

• cn1-image-tile-both

180

• cn1-image-tile-valign-left

• cn1-image-tile-valign-center

• cn1-image-tile-valign-right

• cn1-image-tile-halign-top

• cn1-image-tile-halign-center

• cn1-image-tile-halign-bottom

• cn1-image-align-bottom

• cn1-image-align-left

• cn1-image-align-right

• cn1-image-align-center

• cn1-image-align-top-left

• cn1-image-align-top-right

• cn1-image-align-bottom-left

• cn1-image-align-bottom-right

• cn1-image-border

• cn1-none

• none

Example Setting Background Image to Scale Fill

MyContainer {
 background-image: url(myimage.png);
 cn1-background-type: cn1-image-scaled-fill;
}

5.10. Image Compression
CN1 resource files support both PNG and JPEG images, but PNG is the default. Multi-images that are
generated by the CSS compiler will be PNG if they include alpha transparency, and JPEG otherwise.
This is to try to reduce the file size as much as possible while not sacrificing quality.

5.11. Fonts
This library supports the font [https://developer.mozilla.org/en/docs/Web/CSS/font], font-size
[https://developer.mozilla.org/en/docs/Web/CSS/font-size], font-family [https://developer.mozilla.org/en/docs/Web/

CSS/font-family], font-style [https://developer.mozilla.org/en/docs/Web/CSS/font-style], font-weight
[https://developer.mozilla.org/en/docs/Web/CSS/font-weight], and text-decoration [https://developer.mozilla.org/

en/docs/Web/CSS/text-decoration] properties, as well at the @font-face [https://developer.mozilla.org/en/docs/

Web/CSS/@font-face] CSS "at" rule for including TTF/OTF fonts.

181

https://developer.mozilla.org/en/docs/Web/CSS/font
https://developer.mozilla.org/en/docs/Web/CSS/font-size
https://developer.mozilla.org/en/docs/Web/CSS/font-family
https://developer.mozilla.org/en/docs/Web/CSS/font-style
https://developer.mozilla.org/en/docs/Web/CSS/font-weight
https://developer.mozilla.org/en/docs/Web/CSS/text-decoration
https://developer.mozilla.org/en/docs/Web/CSS/@font-face

5.11.1. font-family

By default, CN1’s native fonts [https://www.codenameone.com/blog/good-looking-by-default-native-fonts-

simulator-detection-more.html] are used. The appropriate native font is selected for the provided font-
weight and font-style properties. You can also explicitly specify the native font you wish to use in
the font-family property. E.g.

SideCommand {
 font-family: "native:MainThin";
}

If you omit the font-family directive altogether, it will use native:MainRegular. The following native
fonts are available:

1. native:MainThin

2. native:MainLight

3. native:MainRegular

4. native:MainBold

5. native:MainBlack

6. native:ItalicThin

7. native:ItalicLight

8. native:ItalicRegular

9. native:ItalicBold

10. native:ItalicBlack

Using TTF Fonts

If you want to use a font other than the built-in fonts, you’ll need to define the font using the @font-
face rule. E.g.

@font-face {
 font-family: "Montserrat";
 src: url(res/Montserrat-Regular.ttf);
}

Then you’ll be able to reference the font using the specified font-family in any CSS element. E.g.

MyLabel {
 font-family: "Montserrat";
}

The @font-face directive’s src property will accept both local and remote URLs. E.g.

182

https://www.codenameone.com/blog/good-looking-by-default-native-fonts-simulator-detection-more.html

@font-face {
 font-family: "MyFont";
 src: url(http://example.com/path/to/myfont.ttf);
}

In this case, it will download the myfont.ttf file to the same directory as the CSS file. From then on
it will use that locally downloaded version of the font so that it doesn’t have to make a network
request for each build.

Fonts are automatically copied to the project’s "src" directory when the CSS file is compiled so that
they will be distributed with the app and available at runtime.

Github URLs

Fonts hosted on GitHub are accessible using a special github: protocol to make it easier to reference
such fonts. E.g. the following directive includes the "FontAwesome" font directly from Github

@font-face {
 font-family: "FontAwesome";
 src: url(github://FontAwesome/Font-Awesome/blob/master/fonts/fontawesome-webfont.ttf);
}

Apparently FontAwesome has removed its public repositories from Github so this
URL no longer works.

5.11.2. font-size

It is best practice to size your fonts using millimetres (mm) (or another "real-world" measurement
unit such as inches (in), centimetres (cm). This will allow the font to be sized appropriate for all
display densities. If you specify size in pixels (px), it will treat it the same as if you sized it in points
(pt), where 1pt == 1/72 inches (one seventy-second of an inch).

If you size your font in percentage units (e.g. 150%) it will set the font size relative to the medium
font size of the platform. This is different than the standard behaviour of a web browser, which
would size it relative to the parent element’s font size.

You can use system fonts, true type fonts, and native fonts in your CSS stylesheet. True Type fonts
need to be defined in a @font-face directive before they can be referenced. True-type fonts and
native fonts have the advantage that you can specify their sizes in generic terms (e.g. small, medium,
large) and in more specific units such as millimeters (mm) or pixels (px).

5.11.3. text-decoration

See the text-decoration section [Supported-Properties#text-decoration] in the "Supported Properties"
page.

183

Supported-Properties#text-decoration

5.11.4. Some Sample CSS Directives

@font-face {
 font-family: "Montserrat";
 src: url(res/Montserrat-Regular.ttf);
}

@font-face {
 font-family: "Montserrat-Bold";
 src: url(res/Montserrat-Bold.ttf);
}

@font-face {
 font-family: "FontAwesome";
 src: url(github://FontAwesome/Font-Awesome/blob/master/fonts/fontawesome-webfont.ttf);
}

PlainText0p5mm {
 font-size: 0.5mm;
}

PlainText1mm {
 font-size: 1mm;
}

PlainText2mm {
 font-size: 2mm;
}

PlainText5mm {
 font-size: 5mm;
}

PlainText10mm {
 font-size: 10mm;
}

PlainText50mm {
 font-size: 50mm;
}

PlainTextSmall {
 font-size: small;
}

PlainTextMedium {
 font-size: medium;
}

PlainTextLarge {
 font-size: large;
}

184

PlainText3pt {
 font-size: 3pt;
}

PlainText6pt {
 font-size: 6pt;
}

PlainText12pt {
 font-size: 12pt;
}

PlainText20pt {
 font-size: 20pt;
}

PlainText36pt {
 font-size: 36pt;
}

BoldText {
 font-weight: bold;
}

BoldText1mm {
 font-weight: bold;
 font-size: 1mm;
}

BoldText2mm {
 font-weight: bold;
 font-size: 2mm;
}

BoldText3mm {
 font-weight: bold;
 font-size: 3mm;
}

BoldText5mm {
 font-weight: bold;
 font-size: 5mm;
}

ItalicText {
 font-style: italic;
}

ItalicText3mm {
 font-style: italic;
 font-size: 3mm;
}

185

ItalicBoldText {
 font-style: italic;
 font-weight: bold;
}

PlainTextUnderline {
 text-decoration: underline;
}

BoldTextUnderline {
 text-decoration: underline;
 font-weight: bold;
}

ItalicTextUnderline {
 text-decoration: underline;
 font-style: italic;
}

PlainText3d {
 text-decoration: cn1-3d;
 color:white;
 background-color: #3399ff
}

BoldText3d {
 text-decoration: cn1-3d;
 font-weight: bold;
 color:white;
 background-color: #3399ff;
}

ItalicText3d {
 text-decoration: cn1-3d;
 font-style: italic;
 color:white;
 background-color: #3399ff;
}

PlainText3dLowered {
 text-decoration: cn1-3d-lowered;
 color:black;
 background-color: #3399ff;
}

BoldText3dLowered {
 text-decoration: cn1-3d-lowered;
 font-weight: bold;
 color:black;
 background-color: #3399ff;
}

186

ItalicText3dLowered {
 text-decoration: cn1-3d-lowered;
 font-style: italic;
 color:black;
 background-color: #3399ff;
}

PlainText3dShadow {
 text-decoration: cn1-3d-shadow-north;
 color:white;
 background-color: #3399ff;
}

BoldText3dShadow {
 text-decoration: cn1-3d-shadow-north;
 font-weight: bold;
 color:white;
 background-color: #3399ff;
}

ItalicText3dShadow {
 text-decoration: cn1-3d-shadow-north;
 font-style: italic;
 color:white;
 background-color: #3399ff;
}

MainThin {

 font-size: 200%;
 background: radial-gradient(circle at top left, yellow, blue 100%);
}

MainRegular0001 {
 font-family: "native:MainRegular";
 /*background: cn1-pill-border;
 background-color: red;*/
 color: blue;
 border: 1px cn1-pill-border blue;
 /*box-shadow: 1mm 1mm 0 2mm rgba(0,0,0,1.0);*/
 padding: 2mm;
}

MainRegular0001.pressed {
 font-family: "native:MainRegular";
 background: cn1-pill-border blue;
 /*background-color: red;*/
 color: white;
 border: 1px solid white;
 /*box-shadow: 1mm 1mm 0 2mm rgba(0,0,0,1.0);*/
 padding: 2mm;
}

187

Heading {
 font-size: 4mm;
 font-family: "Montserrat-Bold";
 color: black;
 padding: 2mm;
 text-align: center;
}

XMLVIewIcon {
 font-family: "FontAwesome";
}

5.12. Media Queries
You can use media queries to target styles to specific platforms, devices, and device densities.
Currently the following media queries are supported:

1. platform-xxx - Target a specific platform. E.g. platform-and, platform-ios, platform-mac, platform-
win.

2. density-xxx - Target a specific device density. E.g. density-very-low, density-low, density-medium,
density-high, density-very-high, density-hd, density-2hd, and density-560.

3. device-xxx - Target a specific device type. E.g. device-desktop, device-tablet, device-phone.

Listing 15. Example: Different font colors on Android and iOS. On Android, labels will appear green. On
iOS, they will appear red. On all other platforms, they will appear black.

Label {
 color: black;
}

@media platform-and {
 Label {
 color: green;
 }
}

@media platform-ios {
 Label {
 color: red;
 }
}

188

Listing 16. Example: Different font colors based on device density. On lower densities, labels will be green.
On higher densities, labels will be red.

Label {
 color: black;
}

@media density-very-low, density-low, density-medium, density-high {
 Label {
 color: green;
 }
}

@media density-very-high, density-h2, density-2hd, density-560 {
 Label {
 color: red;
 }
}

Listing 17. Example: Different label colors based on device type.

Label {
 color: black;
}

@media device-desktop {
 Label {
 color: green;
 }
}

@media device-tablet, device-phone {
 Label {
 color: red;
 }
}

When deploying your app using the Javascript port, it will use a platform name
derived from the "UserAgent" string in the browser, rather than the result of
Display.getPlatformName(), which is used for other ports. When running on
Android, then, the platform will be "and". When running on iOS, the platform will
be "ios". Etc…

5.12.1. Compound Media Queries

You can combine multiple media queries together, separated by a comma. Queries of the same type
are "OR"ed together. Queries of different types are "AND"ed together. For example if you have a
media query that specifies two different device densities (e.g. density-low and density-high) the

189

query will match both devices with low density and high density. However, if the query specifies a
device density and a platform (e.g. density-low and platform-and), then it will only match a device if
it matches the platform and the density.

Listing 18. Example: Targeting styles to only Android devices with high density

@media platform-and, density-high {

}

Listing 19. Example: Targeting styles to iOS devices with high or low density

@media platform-ios, density-high, density-low {

}

Listing 20. Example: Targeting only Mac Desktop.

@media device-desktop, platform-mac {

}

5.12.2. Order or Precedence

The order of precendence when applying styles differs slightly from the way styles would be
applied in standard CSS. The order of precendence is as follows:

1. Styles defined inside @media blocks will always take precendence over styles defined outside of
@media blocks.

2. @media blocks with more query matches will take precendence over blocks with fewer query
matches. E.g. A media block matching density, platform, and device will take precendence over
a block that only matches the density and platform.

3. If the same style is defined in two media blocks which contain the same number of query
matches, then the order precedence is platform, device, density in decreasing order. I.e. the
block that matches on platform will take precedence over the block that matches on density.

4. If the same style is defined in two media blocks with identical query matches, then the order of
precedence is undefined.

5.12.3. Font Scaling Constants

In some cases you may find that fonts are coming out too large or too small across the board on
certain types of devices. You can use standard media queries to customize font sizes, but you can
also use font-scaling constants to scale font sizes for the entires stylesheet based on platform,
device, and/or density. In some cases you may find this approach easier.

For example, consider the following simple stylesheet that defines a font size of 2mm on labels:

190

Label {
 font-size: 3mm;
}

During testing, perhaps you find that, on desktop, the fonts are a little bit too small. In this case, you
can apply a font-scale constant that only applies to the desktop.

#Constants {
 device-desktop-font-scale: "1.5";
}

Label {
 font-size: 3mm;
}

Now, on most devices the Label style will have 3mm fonts. But on desktop, it will have 4.5mm fonts.

The above would be roughly equivalent to:

Label {
 font-size: 3mm;
}

@media device-desktop {
 Label {
 font-size: 4.5mm;
 }
}

Listing 21. Example: Font-scaling based on device, platform, and density

#Constants {
 device-phone-font-scale: "1.5";
 device-tablet-font-scale: "1.2";
 device-desktop-font-scale: "1.4";
 platform-ios-font-scale: "0.9";
 density-low-font-scale: "1.2";
 platform-ios-density-low-font-scale: "1.3";
}

All matching font-scale constants will be applied to the styles. If you define 3 font-
scale constants that all match the current runtime environment, they will all be
applied. E.g. If there are 3 matching font-scale constants with "2.0", "3.0", and "4.0",
then fonts will be scaled by 2*3*4=24!

191

192

6. The Components of Codename One
This chapter covers the components of Codename One. Not all components are covered, but it tries
to go deeper than the JavaDocs [https://www.codenameone.com/javadoc/].

6.1. Container
The Codename One container is a base class for many high level components; a container is a
component that can contain other components.

Every component has a parent container that can be null if it isn’t within a container at the
moment or is a top-level container. A container can have many children.

Figure 186. Component-Container relationship expressed as UML

Components are arranged in containers using layout managers which are algorithms that
determine the arrangement of components within the container.

You can read more about layout managers in the basics section [https://www.codenameone.com/manual/

basics.html#component-container-hierarchy].

6.1.1. Composite Components

Codename One components share a very generic hierarchy of inheritance e.g. Button
[https://www.codenameone.com/javadoc/com/codename1/ui/Button.html] derives from Label
[https://www.codenameone.com/javadoc/com/codename1/ui/Label.html] and thus receives all its abilities.

However, some components are composites and derive from the Container
[https://www.codenameone.com/javadoc/com/codename1/ui/Container.html] class. E.g. the MultiButton
[https://www.codenameone.com/javadoc/com/codename1/components/MultiButton.html] is a composite button
that derives from Container but acts/looks like a Button. Normally this is pretty seamless for the
developer, with a few things to keep in mind.

• You should not use the Container derived methods on such a composite component (e.g. add
/remove etc.).

• You can’t cast it to the type that it relates to e.g. you can’t cast MultiButton to Button.

• Events might be more nuanced. E.g. if you rely on ActionEvent.getSource()
[https://www.codenameone.com/javadoc/com/codename1/ui/events/ActionEvent.html#getSource--] or
ActionEvent.getComponent() [https://www.codenameone.com/javadoc/com/codename1/ui/events/

ActionEvent.html#getComponent--] notice that they might not behave the way you would expect. For
a MultiButton they will return the underlying Button. To workaround this we have
ActionEvent.getActualComponent() [https://www.codenameone.com/javadoc/com/codename1/ui/events/

193

https://www.codenameone.com/javadoc/
https://www.codenameone.com/manual/basics.html#component-container-hierarchy
https://www.codenameone.com/javadoc/com/codename1/ui/Button.html
https://www.codenameone.com/javadoc/com/codename1/ui/Label.html
https://www.codenameone.com/javadoc/com/codename1/ui/Container.html
https://www.codenameone.com/javadoc/com/codename1/components/MultiButton.html
https://www.codenameone.com/javadoc/com/codename1/ui/events/ActionEvent.html#getSource--
https://www.codenameone.com/javadoc/com/codename1/ui/events/ActionEvent.html#getComponent--
https://www.codenameone.com/javadoc/com/codename1/ui/events/ActionEvent.html#getActualComponent--

ActionEvent.html#getActualComponent--].

Lead Component

Codename One has a rather unique feature for creating composite components: "lead
components". This feature effectively allows components like MultiButton to act as if they are
a single component while really being comprised of multiple components.

Lead components work by setting a single component within as the "leader" it determines the
style state for all the components in the hierarchy so if we have a Container that is lead by a
Button the button will determine if the selected/pressed state is returned for the entire
container hierarchy.

This creates a case where a single Component has multiple nested UIID’s e.g. `MultiButton has
UIID’s such as `MultiLine1 that can be customized via API’s such as setUIIDLine1
[https://www.codenameone.com/javadoc/com/codename1/components/MultiButton.html#setUIIDLine1-

java.lang.String-].

The lead component also handles the events from a single source so clicking in one of the
other components within the hierarchy will send the event to the leading Button resulting in
action events that behave "oddly" (hence the need for getActualComponent);

You can learn more about lead components in here [https://www.codenameone.com/manual/misc-

features.html#lead-component-section].

6.2. Form
Form [https://www.codenameone.com/javadoc/com/codename1/ui/Form.html] is the top-level container of
Codename One, Form derives from Container and is the element we “show”. Only one form can be
visible at any given time. We can get the currently visible Form using the code:

Form currentForm = Display.getInstance().getCurrent();

A form is a unique container in the sense that it has a title, a content area and optionally a
menu/menu bar area. When invoking methods such as add/remove on a form, you are in fact
invoking something that maps to this:

myForm.getContentPane().add(...);

Form is in effect just a Container [https://www.codenameone.com/javadoc/com/codename1/ui/Container.html]
that has a border layout, its north section is occupied by the title area and its south section by the
optional menu bar. The center (which stretches) is the content pane. The content pane is where you
place all your components.

194

https://www.codenameone.com/javadoc/com/codename1/components/MultiButton.html#setUIIDLine1-java.lang.String-
https://www.codenameone.com/manual/misc-features.html#lead-component-section
https://www.codenameone.com/javadoc/com/codename1/ui/Form.html
https://www.codenameone.com/javadoc/com/codename1/ui/Container.html

Figure 187. Form layout graphic

You can see that every Form has space allocated for the title area. If you don’t set the title it won’t
show up (its size will be zero), but it will still be there. The same isn’t always true for the case of the
menu bar, which can vary significantly. Effectively, the section that matters is the content pane, so
the form tries to do the “right thing” by pretending to be the content pane. However, this isn’t
always seamless and sometimes code needs to just invoke getContentPane() in order to work
directly with the container.

A good example for such a case is with layout animations. Animating the form
might not produce the right results. When in doubt its pretty easy to just use
getContentPane instead of working with the Form directly.

As you can see from the graphic, Form has two layers that reside on top of the content pane/title. The
first is the layered pane which allows you to place "always on top" components. The layered pane
added implicitly when you invoke getLayeredPane().

You still need to place components using layout managers in order to get them to
appear in the right place when using the layered pane.

The second layer is the glass pane which allows you to draw arbitrary things on top of everything.
The order in the image is indeed accurate:

1. ContentPane is lowest

2. LayeredPane is second

3. GlassPane is painted last

Its important to notice that a layered pane is on top of the ContentPane only and
doesn’t stretch to the title. A GlassPane usually stretches all the way but only with a
"lightweight" title area e.g. the Toolbar API [https://www.codenameone.com/javadoc/com/

codename1/ui/Toolbar.html].

The GlassPane allows developers to overlay UI on top of existing UI and paint as they see fit. This is
useful for things that provide notification but don’t want to intrude with application functionality.

In earlier versions of Codename One (pre-3.6), LayeredPane & GlassPane didn’t work
with "native" peer components such as media, browser, native maps etc, because
peer components were always rendered "in front" of the Codename One UI canvas.
However, current versions now allow for proper layering of peer components and
light-weight components so that LayeredPane and GlassPane can be used
seamlessly with peer components.

195

https://www.codenameone.com/javadoc/com/codename1/ui/Toolbar.html

6.3. Dialog
A Dialog [https://www.codenameone.com/javadoc/com/codename1/ui/Dialog.html] is a special kind of Form that
can occupy only a portion of the screen, it also has the additional functionality of the modal show
method.

When showing a dialog we have two basic options: modeless and modal:

• Modal dialogs (the default) block the current EDT thread until the dialog is dismissed (to
understand how they do it, read about invokeAndBlock).
Modal dialogs are an extremely useful way to prompt the user since the code can assume the
user responded in the next line of execution. This promotes a linear & intuitive way of writing
code.

• Modless dialogs return immediately so a call to show such a dialog can’t assume anything in the
next line of execution. This is useful for features such as progress indicators where we aren’t
waiting for user input.

E.g. a modal dialog can be expressed as such:

if(Dialog.show("Click Yes Or No", "Select one", "Yes", "No")) {
 // user clicked yes
} else {
 // user clicked no
}

Notice that during the show call above the execution of the next line was "paused" until we got a
response from the user and once the response was returned we could proceed directly.

All usage of Dialog must be within the Event Dispatch Thread (the default thread of
Codename One). This is especially true for modal dialogs. The Dialog class knows
how to "block the EDT" without blocking it.

To learn more about invokeAndBlock which is the workhorse behind the modal dialog functionality
check out the EDT section [https://www.codenameone.com/manual/edt.html].

The Dialog class contains multiple static helper methods to quickly show user notifications, but also
allows a developer to create a Dialog instance, add information to its content pane and show the
dialog.

 Dialogs contain a ContentPane just like Form.

When showing a dialog in this way, you can either ask Codename One to position the dialog in a
specific general location (taken from the BorderLayout [https://www.codenameone.com/javadoc/com/

codename1/ui/layouts/BorderLayout.html] concept for locations) or position it by spacing it (in pixels)
from the 4 edges of the screen.

E.g. you could do something like this to show a simple modal Dialog:

196

https://www.codenameone.com/javadoc/com/codename1/ui/Dialog.html
https://www.codenameone.com/manual/edt.html
https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BorderLayout.html

Dialog d = new Dialog("Title");
d.setLayout(new BorderLayout());
d.add(BorderLayout.CENTER, new SpanLabel("Dialog Body", "DialogBody"));
d.showPacked(BorderLayout.SOUTH, true);

Figure 188. Custom modal Dialog in the south position

You can turn the code above to a modless Dialog by flipping the boolean true
argument to false.

We can position a Dialog absolutely by determining the space from the edges e.g. with this code we
can occupy the bottom portion of the screen:

Dialog d = new Dialog("Title");
d.setLayout(new BorderLayout());
d.add(BorderLayout.CENTER, new SpanLabel("Dialog Body", "DialogBody"));
d.show(hi.getHeight() / 2, 0, 0, 0);

Figure 189. Custom Dialog positioned absolutely

 hi is the name of the parent Form in the sample above.

6.3.1. Styling Dialogs

It’s important to style a Dialog using getDialogStyle() [https://www.codenameone.com/javadoc/com/

codename1/ui/Dialog.html#getDialogStyle--] or setDialogUIID [https://www.codenameone.com/javadoc/com/

197

https://www.codenameone.com/javadoc/com/codename1/ui/Dialog.html#getDialogStyle--
https://www.codenameone.com/javadoc/com/codename1/ui/Dialog.html#setDialogUIID-java.lang.String-

codename1/ui/Dialog.html#setDialogUIID-java.lang.String-] methods rather than styling the dialog object
directly.

The reason for this is that the Dialog is really a Form that takes up the whole screen. The Form that is
visible behind the Dialog is rendered as a screenshot. So customizing the actual UIID of the Dialog
won’t produce the desired results.

6.3.2. Tint and Blurring

By default a Dialog uses a platform specific tint color when it is showing e.g. notice the background
in the image below is tinted:

Form hi = new Form("Tint Dialog", new BoxLayout(BoxLayout.Y_AXIS));
Button showDialog = new Button("Tint");
showDialog.addActionListener((e) -> Dialog.show("Tint", "Is On....", "OK", null));
hi.add(showDialog);
hi.show();

Figure 190. Dialog with tinted background

The tint color can be manipulated on the parent form, you can set it to any AARRGGBB value to set
any color using the setTintColor method. Notice that this is invoked on the parent form and not on
the Dialog!

This is an AARRGGBB value and not an RRGGBB value! This means that 0 will be
transparent.

You can also manipulate this default value globally using the theme constant tintColor. The sample
below tints the background in green:

Form hi = new Form("Tint Dialog", new BoxLayout(BoxLayout.Y_AXIS));
hi.setTintColor(0x7700ff00);
Button showDialog = new Button("Tint");
showDialog.addActionListener((e) -> Dialog.show("Tint", "Is On....", "OK", null));
hi.add(showDialog);
hi.show();

198

Figure 191. Dialog with green tinted background

We can apply Gaussian blur to the background of a dialog to highlight the foreground further and
produce a very attractive effect. We can use the setDefaultBlurBackgroundRadius to apply this
globally, we can use the theme constant dialogBlurRadiusInt to do the same or we can do this on a
per Dialog basis using setBlurBackgroundRadius.

Not all device types support blur you can test if your device supports it using
Display.getInstnace().isGaussianBlurSupported(). If blur isn’t supported the blur
setting will be ignored.

Form hi = new Form("Blur Dialog", new BoxLayout(BoxLayout.Y_AXIS));
Dialog.setDefaultBlurBackgroundRadius(8);
Button showDialog = new Button("Blur");
showDialog.addActionListener((e) -> Dialog.show("Blur", "Is On....", "OK", null));
hi.add(showDialog);
hi.show();

Figure 192. The blur effect coupled with the OS default tint

It might be a bit hard to notice the blur effect with the tinting so here is the same code with tinting
disabled:

hi.setTintColor(0);

199

Figure 193. The blur effect is more pronounced when the tint is disabled

6.3.3. Popup Dialog

A popup dialog is a common mobile paradigm showing a Dialog that points at a specific component.
It’s just a standard Dialog that is shown in a unique way:

Dialog d = new Dialog("Title");
d.setLayout(new BorderLayout());
d.add(BorderLayout.CENTER, new SpanLabel("Dialog Body", "DialogBody"));
d.showPopupDialog(showDialog);

Figure 194. Popup Dialog

The popup dialog accepts a Component [https://www.codenameone.com/javadoc/com/codename1/ui/

Component.html] or Rectangle [https://www.codenameone.com/javadoc/com/codename1/ui/geom/Rectangle.html]
to point at and handles the rest.

Styling The Arrow Of The Popup Dialog

When Codename One was young we needed a popup arrow implementation but our low level
graphics API was pretty basic. As a workaround we created a version of the 9-piece image border
that supported pointing arrows at a component.

Today Codename One supports pointing an arrow from the RoundRectBorder class. This is implicit
for the PopupDialog UI. This allows for better customization of the border (color etc.) and it looks
better on newer displays. It also works on all OSs. Right now only the iOS theme has the old image
border approach.

200

https://www.codenameone.com/javadoc/com/codename1/ui/Component.html
https://www.codenameone.com/javadoc/com/codename1/ui/geom/Rectangle.html

This will change with a future update where all OS’s will align and iOS will use the
lightweight popup too

You can make all OS’s act the same way by overriding the PopupDialog UIID and
defining its style to RoundRectBorder

The new RoundRectBorder support works by setting the track component property on border. When
that’s done the border implicitly points to the right location.

If you still need deeper customization of the arrow you can still use the old 9-piece border
functionality illustrated below.

Legacy 9-Piece Border Arrow

One of the harder aspects of a popup dialog is the construction of the theme elements required for
arrow styling. To get that sort of behavior you will need a custom image border and 4 arrows
pointing in each direction that will be overlaid with the border.

The sizes of the arrow images should be similarly proportioned and fit within the
image borders whitespace. The block image of the dialog should have empty pixels
in the sides to reserve space for the arrow. E.g. if the arrows are all 32x32 pixels
then the PopupDialog image should have 32 pixels of transparent pixels around it.

You will need to define the following theme constants for the arrow to work:

PopupDialogArrowBool=true
PopupDialogArrowTopImage=arrow up image
PopupDialogArrowBottomImage=arrow down image
PopupDialogArrowLeftImage=arrow left image
PopupDialogArrowRightImage=arrow right image

Then style the PopupDialog UIID with the image for the Dialog itself.

6.4. InteractionDialog
Dialogs in Codename One can be modal or modeless, the former blocks the calling thread and the
latter does not. However, there is another definition to those terms: A modal dialog blocks access to
the rest of the UI while a modeless dialog "floats" on top of the UI.

In that sense, all dialogs in Codename One are modal; they block the parent form since they are
effectively just forms that show the "parent" in their background. InteractionDialog
[https://www.codenameone.com/javadoc/com/codename1/components/InteractionDialog.html] has an API that is
very similar to the Dialog [https://www.codenameone.com/javadoc/com/codename1/ui/Dialog.html] API but,
unlike dialog, it never blocks anything. Neither the calling thread nor the UI.

201

https://www.codenameone.com/javadoc/com/codename1/components/InteractionDialog.html
https://www.codenameone.com/javadoc/com/codename1/ui/Dialog.html

InteractionDialog isn’t a Dialog since it doesn’t share the same inheritance
hierarchy. However, it acts and "feels" like a Dialog despite the fact that it’s just a
Container in the LayeredPane.

InteractionDialog is really just a container that is positioned within the layered pane. Notice that
because of that design, you can have only one such dialog at the moment and, if you add something
else to the layered pane, you might run into trouble.

Using the interaction dialog is pretty trivial and very similar to dialog:

InteractionDialog dlg = new InteractionDialog("Hello");
dlg.setLayout(new BorderLayout());
dlg.add(BorderLayout.CENTER, new Label("Hello Dialog"));
Button close = new Button("Close");
close.addActionListener((ee) -> dlg.dispose());
dlg.addComponent(BorderLayout.SOUTH, close);
Dimension pre = dlg.getContentPane().getPreferredSize();
dlg.show(0, 0, Display.getInstance().getDisplayWidth() - (pre.getWidth() + pre.getWidth() / 6), 0);

Figure 195. Interaction Dialog

This will show the dialog on the right hand side of the screen, which is pretty useful for a floating in
place dialog.

The InteractionDialog can only be shown at absolute or popup locations. This is
inherent to its use case which is "non-blocking". When using this component you
need to be very aware of its location.

6.5. Label
Label [https://www.codenameone.com/javadoc/com/codename1/ui/Label.html] represents a text, icon or both.
Label is also the base class of Button which in turn is the base class for RadioButton & CheckBox. Thus
the functionality of the Label class extends to all of these components.

Label text can be positioned in one of 4 locations as such:

202

https://www.codenameone.com/javadoc/com/codename1/ui/Label.html

Label left = new Label("Left", icon);
left.setTextPosition(Component.LEFT);
Label right = new Label("Right", icon);
right.setTextPosition(Component.RIGHT);
Label bottom = new Label("Bottom", icon);
bottom.setTextPosition(Component.BOTTOM);
Label top = new Label("Top", icon);
top.setTextPosition(Component.TOP);
hi.add(left).add(right).add(bottom).add(top);

Figure 196. Label positions

Label allows only a single line of text, line breaking is a very expensive operation on mobile devices
[2] and so the Label class doesn’t support it.

SpanLabel supports multiple lines with a single label, notice that it does carry a
performance penalty for this functionality.

Labels support tickering and the ability to end with “…” if there isn’t enough space to render the
label. Developers can determine the placement of the label relatively to its icon in quite a few
powerful ways.

6.5.1. Label Gap

The gap between the label text & the icon defaults to 2 pixels due to legacy settings. The setGap
method of Label accepts a gap size in pixels.

Two pixels is low for most cases & it’s hard to customize for each Label.

You can use the theme constant labelGap which is a floating point value you can specify in
millimeters that will allow you to determine the default gap for a label. You can also customize this
manually using the method Label.setDefaultGap(int) which determines the default gap in pixels.

6.5.2. Autosizing Labels

One of the common requests we received over the years is a way to let text "fit" into the allocated
space so the font will match almost exactly the width available. In some designs this is very
important but it’s also very tricky. Measuring the width of a String is a surprisingly expensive

203

operation on some OS’s. Unfortunately, there is no other way other than trial & error to find the
"best size".

Still despite the fact that something is "slow" we might still want to use it for some cases, this isn’t
something you should use in a renderer, infinite scroll etc. and we recommend minimizing the
usage of this feature as much as possible.

This feature is only applicable to Label and its subclasses (e.g. Button), with components such as
TextArea (e.g. SpanButton) the choice between shrinking and line break would require some complex
logic.

To activate this feature just use setAutoSizeMode(true) e.g.:

Form hi = new Form("AutoSize", BoxLayout.y());

Label a = new Label("Short Text");
a.setAutoSizeMode(true);
Label b = new Label("Much Longer Text than the previous line...");
b.setAutoSizeMode(true);
Label c = new Label("MUCH MUCH MUCH Much Longer Text than the previous line by a pretty big margin...");
c.setAutoSizeMode(true);

Label a1 = new Button("Short Text");
a1.setAutoSizeMode(true);
Label b1 = new Button("Much Longer Text than the previous line...");
b1.setAutoSizeMode(true);
Label c1 = new Button("MUCH MUCH MUCH Much Longer Text than the previous line by a pretty big margin...");
c1.setAutoSizeMode(true);
hi.addAll(a, b, c, a1, b1, c1);

hi.show();

Figure 197. Automatically sizes the fonts of the buttons/labels based on text and available space

6.6. TextField and TextArea
The TextField [https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html] class derives from
the TextArea [https://www.codenameone.com/javadoc/com/codename1/ui/TextArea.html] class, and both are
used for text input in Codename One.

TextArea defaults to multi-line input and TextField defaults to single line input but both can be used

204

https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html
https://www.codenameone.com/javadoc/com/codename1/ui/TextArea.html

in both cases. The main differences between TextField and TextArea are:

• Blinking cursor is rendered on TextField only

• DataChangeListener [https://www.codenameone.com/javadoc/com/codename1/ui/events/

DataChangedListener.html] is only available in TextField. This is crucial for character by character
input event tracking

• Done listener [https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html#setDoneListener-

com.codename1.ui.events.ActionListener-] is only available in the TextField

• Different UIID

The semantic difference between TextField & TextArea dates back to the ancestor
of Codename One: LWUIT. Feature phones don’t have “proper” in-place editing
capabilities & thus TextField was introduced to allow such input.

Because it lacks the blinking cursor capability TextArea is often used as a multi-line label and is
used internally in SpanLabel, SpanButton etc.

A common use case is to have an important text component in edit mode
immediately as we enter a Form. Codename One forms support this exact use case
thru the Form.setEditOnShow(TextArea) [https://www.codenameone.com/javadoc/com/

codename1/ui/Form.html#setEditOnShow-com.codename1.ui.TextArea-] method.

TextField & TextArea support constraints for various types of input such as NUMERIC, EMAIL, URL, etc.
Those usually affect the virtual keyboard used, but might not limit input in some platforms. E.g. on
iOS even with NUMERIC constraint you would still be able to input characters.

 If you need to prevent specific types of input check out the validation section.

The following sample shows off simple text field usage:

205

https://www.codenameone.com/javadoc/com/codename1/ui/events/DataChangedListener.html
https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html#setDoneListener-com.codename1.ui.events.ActionListener-
https://www.codenameone.com/javadoc/com/codename1/ui/Form.html#setEditOnShow-com.codename1.ui.TextArea-

TableLayout tl;
int spanButton = 2;
if(Display.getInstance().isTablet()) {
 tl = new TableLayout(7, 2);
} else {
 tl = new TableLayout(14, 1);
 spanButton = 1;
}
tl.setGrowHorizontally(true);
hi.setLayout(tl);

TextField firstName = new TextField("", "First Name", 20, TextArea.ANY);
TextField surname = new TextField("", "Surname", 20, TextArea.ANY);
TextField email = new TextField("", "E-Mail", 20, TextArea.EMAILADDR);
TextField url = new TextField("", "URL", 20, TextArea.URL);
TextField phone = new TextField("", "Phone", 20, TextArea.PHONENUMBER);

TextField num1 = new TextField("", "1234", 4, TextArea.NUMERIC);
TextField num2 = new TextField("", "1234", 4, TextArea.NUMERIC);
TextField num3 = new TextField("", "1234", 4, TextArea.NUMERIC);
TextField num4 = new TextField("", "1234", 4, TextArea.NUMERIC);

Button submit = new Button("Submit");
TableLayout.Constraint cn = tl.createConstraint();
cn.setHorizontalSpan(spanButton);
cn.setHorizontalAlign(Component.RIGHT);
hi.add("First Name").add(firstName).
 add("Surname").add(surname).
 add("E-Mail").add(email).
 add("URL").add(url).
 add("Phone").add(phone).
 add("Credit Card").
 add(GridLayout.encloseIn(4, num1, num2, num3, num4)).
 add(cn, submit);

Figure 198. Simple text component sample

The Toolbar section contains a very elaborate TextField search sample with
DataChangeListener and rather unique styling.

206

6.6.1. Masking

A common use case when working with text components is the ability to "mask" input e.g. in the
credit card number above we would want 4 digits for each text field and don’t want the user to tap
Next 3 times.

Masking allows us to accept partial input in one field and implicitly move to the next, this can be
used to all types of complex input thanks to the text component API. E.g with the code above we can
mask the credit card input so the cursor jumps to the next field implicitly using this code:

automoveToNext(num1, num2);
automoveToNext(num2, num3);
automoveToNext(num3, num4);

Then implement the method automoveToNext as:

private void automoveToNext(final TextField current, final TextField next) {
 current.addDataChangedListener((type, index) -> {
 if(current.getText().length() == 5) {
 current.stopEditing();
 current.setText(val.substring(0, 4));
 next.setText(val.substring(4));
 next.startEditingAsync();
 }
 });
}

Notice we can invoke stopEditing(Runnable) where we receive a callback as editing is stopped.

6.6.2. The Virtual Keyboard

A common misconception for developers is assuming the virtual keyboard represents "keys". E.g.
developers often override the "keyEvent" callbacks which are invoked for physical keyboard typing
and expect those to occur with a virtual keyboard.

This isn’t the case since a virtual keyboard is a very different beast. With a virtual keyboard
characters typed might produce a completely different output due to autocorrect. Some keyboards
don’t even have "keys" in the traditional sense or don’t type them in the traditional sense (e.g.
swiping).

 The constraint property for the TextField/TextArea is crucial for a virtual keyboard.

When working with a virtual keyboard it’s important that the parent Container for
the TextField/TextArea is scrollable. Otherwise the component won’t be reachable
or the UI might be distorted when the keyboard appears.

207

Action Button Client Property

By default, the virtual keyboard on Android has a "Done" button, you can customize it to be a
search icon, a send icon, or a go icon using a hint such as this:

searchTextField.putClientProperty("searchField", Boolean.TRUE);
sendTextField.putClientProperty("sendButton", Boolean.TRUE);
goTextField.putClientProperty("goButton", Boolean.TRUE);

This will adapt the icon for the action on the keys.

Next and Done on iOS

We try to hide a lot of the platform differences in Codename One, input is very different between
OS’s. A common reliance is the ability to send the "Done" event when the user presses the Done
button. Unfortunately this button doesn’t always exist e.g. if there is an Enter button (due to
multiline input) or if there is a Next button in that place.

To make the behavior more uniform we slightly customized the iOS keyboard as such:

Figure 199. Next virtual keyboard with toolbar

Figure 200. Done virtual keyboard without toolbar

 This works with 3rd party keyboards too…

However, this behavior might not be desired so to block that we can do:

tf.putClientProperty("iosHideToolbar", Boolean.TRUE);

This will hide the toolbar for that given field.

You can customize the color of the Done button in the toolbar by setting the
ios.doneButtonColor display property. E.g. To change the color to red, you could do
Display.getInstance().setProperty("ios.doneButtonColor",
String.valueOf(0xff0000)). @since 5.0

208

6.6.3. Clearable Text Field

iOS has a convention where an X can be placed after the text field to clear it. Some Android apps
have it but there is no native support for that as of this writing.

You can wrap a TextField with a clearable wrapper to get this effect on all platforms. E.g. replace
this:

cnt.add(myTextField);

With this:

cnt.add(ClearableTextField.wrap(myTextField));

You can also specify the size of the clear icon if you wish. This is technically just a Container with
the text field style and a button to clear the text at the edge.

6.7. TextComponent
When building input forms we sometimes want to adapt to the native OS behavior and create a UI
that’s a bit more distinct to the native OS. TextField and TextArea are very low level, you can create
an Android style UI with such components but it might look out of place in iOS.

E.g. this is how most of us would expect the UI to look on iOS and Android respectively:

Figure 201. Text Input on iOS

Figure 202. Text Input on Android

Doing this with text fields is possible but would require code that looks a bit different and jumps
through hoops. TextComponent allows this exact UI without forcing developers to write OS specific
code:

209

TextModeLayout tl = new TextModeLayout(3, 2);
Form f = new Form("Pixel Perfect", tl);
TextComponent title = new TextComponent().label("Title");
TextComponent price = new TextComponent().label("Price");
TextComponent location = new TextComponent().label("Location");
TextComponent description = new TextComponent().label("Description").multiline(true);

f.add(tl.createConstraint().horizontalSpan(2), title);
f.add(tl.createConstraint().widthPercentage(30), price);
f.add(tl.createConstraint().widthPercentage(70), location);
f.add(tl.createConstraint().horizontalSpan(2), description);
f.setEditOnShow(title.getField());
f.show();

 This code uses the TextModeLayout which is discussed in the layouts section

The text component uses a builder approach to set various values e.g.:

TextComponent t = new TextComponent().
 text("This appears in the text field").
 hint("This is the hint").
 label("This is the label").
 multiline(true);

The code is pretty self explanatory and more convenient than typical setters/getters. It
automatically handles the floating hint style of animation when running on Android.

6.7.1. Error Handling

The validator class supports text component and it should "just work". But the cool thing is that it
uses the material design convention for error handling!

So if we add to the sample above a Validator:

Validator val = new Validator();
val.addConstraint(title, new LengthConstraint(2));
val.addConstraint(price, new NumericConstraint(true));

You would see something that looks like this on Android:

210

Figure 203. Error handling when the text is blank

Figure 204. Error handling when there is some input (notice red title label)

Figure 205. On iOS the situation hasn’t changed much yet

The underlying system is the errorMessage method which you can chain like the other methods on
TextComponent as such:

TextComponent tc = new TextComponent().
 label("Input Required").
 errorMessage("Input is essential in this field");

6.7.2. InputComponent and PickerComponent

To keep the code common and generic we use the InputComponent abstract base class and derive the
other classes from that. PickerComponent is currently the only other option.

A picker can work with our existing sample using code like this:

211

TextModeLayout tl = new TextModeLayout(3, 2);
Form f = new Form("Pixel Perfect", tl);
TextComponent title = new TextComponent().label("Title");
TextComponent price = new TextComponent().label("Price");
TextComponent location = new TextComponent().label("Location");
PickerComponent date = PickerComponent.createDate(new Date()).label("Date");
TextComponent description = new TextComponent().label("Description").multiline(true);
Validator val = new Validator();
val.addConstraint(title, new LengthConstraint(2));
val.addConstraint(price, new NumericConstraint(true));
f.add(tl.createConstraint().widthPercentage(60), title);
f.add(tl.createConstraint().widthPercentage(40), date);
f.add(location);
f.add(price);
f.add(tl.createConstraint().horizontalSpan(2), description);
f.setEditOnShow(title.getField());
f.show();

This produces the following which looks pretty standard:

Figure 206. Picker component taking place in iOS

Figure 207. And in Android

The one tiny thing you should notice with the PickerComponent is that we don’t construct the picker
component using new PickerComponent(). Instead we use create methods such as
PickerComponent.createDate(new Date()). The reason for that is that we have many types of pickers
and it wouldn’t make sense to have one constructor.

6.7.3. Underlying Theme Constants and UIID’s

These varying looks are implemented via a combination of layouts, theme constants and UIID’s. The
most important UIID’s are: TextComponent, FloatingHint & TextHint.

212

There are several theme constants related that can manipulate some pieces of this functionality:

• textComponentErrorColor a hex RGB color which defaults to null in which case this has no effect.
When defined this will change the color of the border and label to the given color to match the
material design styling. This implements the red border underline in cases of error and the
label text color change

• textComponentOnTopBool toggles the on top mode which makes things look like they do on
Android. This defaults to true on Android and false on other OS’s. This can also be manipulated
via the onTopMode(boolean) method in InputComponent however the layout will only use the theme
constant

• textComponentAnimBool toggles the animation mode which again can be manipulated by a
method in InputComponent. If you want to keep the UI static without the floating hint effect set
this to false. Notice this defaults to true only on Android

• textComponentFieldUIID sets the UIID of the text field to something other than TextField this is
useful for platforms such as iOS where the look of the text field is different within the text
component. This allows us to make the background of the text field transparent when it’s within
the TextComponent and make it different from the regular text field

6.8. Button
Button [https://www.codenameone.com/javadoc/com/codename1/ui/Button.html] is a subclass of Label and as a
result it inherits all of its functionality, specifically icon placement, tickering, etc.

Button adds to the mix some additional states such as a pressed UIID state and pressed icon.

 There are additional icon states in Button such as rollover and disabled icon.

Button also exposes some functionality for subclasses specifically the setToggle method call which
has no meaning when invoked on a Button but has a lot of implications for CheckBox & RadioButton.

Button event handling can be performed via an ActionListener [https://www.codenameone.com/javadoc/

com/codename1/ui/events/ActionListener.html] or via a Command [https://www.codenameone.com/javadoc/com/

codename1/ui/Command.html].

Changes in a Command won’t be reflected into the Button after the command was set
to the Button.

Here is a trivial hello world style Button:

Form hi = new Form("Button");
Button b = new Button("My Button");
hi.add(b);
b.addActionListener((e) -> Log.p("Clicked"));

213

https://www.codenameone.com/javadoc/com/codename1/ui/Button.html
https://www.codenameone.com/javadoc/com/codename1/ui/events/ActionListener.html
https://www.codenameone.com/javadoc/com/codename1/ui/Command.html

Figure 208. Simple button in the iOS styling, notice iOS doesn’t have borders on buttons…

Such a button can be styled to look like a link using code like this or simply by making these settings
in the theme and using code such as btn.setUIID("Hyperlink").

Form hi = new Form("Button");
Button b = new Button("Link Button");
b.getAllStyles().setBorder(Border.createEmpty());
b.getAllStyles().setTextDecoration(Style.TEXT_DECORATION_UNDERLINE);
hi.add(b);
b.addActionListener((e) -> Log.p("Clicked"));

Figure 209. Button styled to look like a link

6.8.1. Uppercase Buttons

Buttons on Android’s material design UI use upper case styling which isn’t the case for iOS. To solve
this we have the method setCapsText(boolean) in Button which has the corresponding isCapsText,
isCapsTextDefault & setCapsTextDefault(boolean). This is pretty core to Codename One so to prevent
this from impacting everything unless you explicitly invoke setCapsText(boolean) the default value
of true will only apply when the UIID is Button, RaisedButton or for the builtin Dialog buttons.

We also have a theme constant: capsButtonTextBool. This constant controls caps text behavior from
the theme and is set to true in the Android native theme.

6.8.2. Raised Button

Raised button is a style of button that’s available on Android and used to highlight an important
action within a form. To confirm with the material design UI guidelines you might want to leverage
a raised button UI element on Android but use a regular button everywhere else.

First we need to know whether a raised button exists in the theme. So on Android this will return
true but on other OS’s it will return false. A potential future update might make another platform
true based on UI guidelines in other OS’s.

For this purpose we’ve got the theme constant hasRaisedButtonBool which will return true on
Android but will be false elsewhere. You can use it like this:

214

if(UIManager.getInstance().isThemeConstant("hasRaisedButtonBool", false)) {
 // that means we can use a raised button
}

To enable this we have the RaisedButton UIID that derives from Button and will act like it except for
the places where hasRaisedButtonBool is true in which case it will look like this:

Figure 210. Raised and flat button in simulator

Notice that you can easily customize the colors of these buttons now since the border respects user
colors…

In this case I just set the background color to purple and the foreground to white:

Figure 211. Purple raised button

Form f = new Form("Pixel Perfect", BoxLayout.y());
Button b = new Button("Raised Button", "RaisedButton");
Button r = new Button("Flat Button");
f.add(b);
f.add(r);
f.show();

6.8.3. Ripple Effect

The ripple effect in material design highlights the location of the finger and grows as a circle to
occupy the full area of the component as the user presses the button.

We have the ability to perform a ripple effect by darkening the touched area and growing that in a
quick animation.

Ripple effect can be applied to any component but we currently only have it turned on for buttons
on Android which also applies to things like title commands, side menu elements etc. This might not
apply at this moment to lead components like multi-buttons but that might change in the future.

Component has a property to enable the ripple effect setRippleEffect(boolean) and the corresponding
isRippleEffect(). You can turn it on or off individually in the component level. However, Button has
static setButtonRippleEffectDefault(boolean) and isButtonRippleEffectDefault(). These allow us to
define the default behavior for all the buttons and that can be configured via the theme constant
buttonRippleBool which is currently on by default on the native Android theme.

215

6.9. CheckBox/RadioButton
CheckBox [https://www.codenameone.com/javadoc/com/codename1/ui/CheckBox.html] & RadioButton
[https://www.codenameone.com/javadoc/com/codename1/ui/RadioButton.html] are subclasses of button that
allow for either a toggle state or exclusive selection state.

Both CheckBox & RadioButton have a selected state that allows us to determine their selection.

RadioButton doesn’t allow us to "deselect" it, the only way to "deselect" a
RadioButton is by selecting another RadioButton.

The CheckBox can be added to a Container like any other Component but the RadioButton must be
associated with a ButtonGroup otherwise if we have more than one set of RadioButton’s in the form
we might have an issue.

Notice in the sample below that we associate all the radio buttons with a group but don’t do
anything with the group as the radio buttons keep the reference internally. We also show the
opposite side functionality and icon behavior:

CheckBox cb1 = new CheckBox("CheckBox No Icon");
cb1.setSelected(true);
CheckBox cb2 = new CheckBox("CheckBox With Icon", icon);
CheckBox cb3 = new CheckBox("CheckBox Opposite True", icon);
CheckBox cb4 = new CheckBox("CheckBox Opposite False", icon);
cb3.setOppositeSide(true);
cb4.setOppositeSide(false);
RadioButton rb1 = new RadioButton("Radio 1");
RadioButton rb2 = new RadioButton("Radio 2");
RadioButton rb3 = new RadioButton("Radio 3", icon);
new ButtonGroup(rb1, rb2, rb3);
rb2.setSelected(true);
hi.add(cb1).add(cb2).add(cb3).add(cb4).add(rb1).add(rb2).add(rb3);

Figure 212. RadioButton & CheckBox usage

Both of these components can be displayed as toggle buttons (see the toggle button section below),
or just use the default check mark/filled circle appearance based on the type/OS.

216

https://www.codenameone.com/javadoc/com/codename1/ui/CheckBox.html
https://www.codenameone.com/javadoc/com/codename1/ui/RadioButton.html

6.9.1. Toggle Button

A toggle button is a button that is pressed and stays pressed. When a toggle button is pressed again
it’s released from the pressed state. Hence the button has a selected state to indicate if it’s pressed
or not exactly like the CheckBox/RadioButton components in Codename One.

To turn any CheckBox or RadioButton to a toggle button just use the setToggle(true) method.
Alternatively you can use the static createToggle method on both CheckBox and RadioButton to create
a toggle button directly.

Invoking setToggle(true) implicitly converts the UIID to ToggleButton unless it was
changed by the user from its original default value.

We can easily convert the sample above to use toggle buttons as such:

CheckBox cb1 = CheckBox.createToggle("CheckBox No Icon");
cb1.setSelected(true);
CheckBox cb2 = CheckBox.createToggle("CheckBox With Icon", icon);
CheckBox cb3 = CheckBox.createToggle("CheckBox Opposite True", icon);
CheckBox cb4 = CheckBox.createToggle("CheckBox Opposite False", icon);
cb3.setOppositeSide(true);
cb4.setOppositeSide(false);
ButtonGroup bg = new ButtonGroup();
RadioButton rb1 = RadioButton.createToggle("Radio 1", bg);
RadioButton rb2 = RadioButton.createToggle("Radio 2", bg);
RadioButton rb3 = RadioButton.createToggle("Radio 3", icon, bg);
rb2.setSelected(true);
hi.add(cb1).add(cb2).add(cb3).add(cb4).add(rb1).add(rb2).add(rb3);

Figure 213. Toggle button converted sample

That’s half the story though, to get the full effect of some cool toggle button UI’s we can use a
ComponentGroup [https://www.codenameone.com/javadoc/com/codename1/ui/ComponentGroup.html]. This
allows us to create a button bar effect with the toggle buttons.

E.g. lets enclose the CheckBox components in a vertical ComponentGroup and the RadioButton’s in a
horizontal group. We can do this by changing the last line of the code above as such:

217

https://www.codenameone.com/javadoc/com/codename1/ui/ComponentGroup.html

hi.add(ComponentGroup.enclose(cb1, cb2, cb3, cb4)).
 add(ComponentGroup.encloseHorizontal(rb1, rb2, rb3));

Figure 214. Toggle button converted sample wrapped in ComponentGroup

6.10. ComponentGroup
ComponentGroup [https://www.codenameone.com/javadoc/com/codename1/ui/ComponentGroup.html] is a
special container that can be either horizontal or vertical (BoxLayout [https://www.codenameone.com/

javadoc/com/codename1/ui/layouts/BoxLayout.html] X_AXIS or Y_AXIS respectively).

ComponentGroup "restyles" the elements within the group to have a UIID that allows us to create a
"round border" effect that groups elements together.

The following code adds 4 component groups to a Container to demonstrate the various UIID
changes:

hi.add("Three Labels").
 add(ComponentGroup.enclose(new Label("GroupElementFirst UIID"), new Label("GroupElement UIID"), new
Label("GroupElementLast UIID"))).
 add("One Label").
 add(ComponentGroup.enclose(new Label("GroupElementOnly UIID"))).
 add("Three Buttons").
 add(ComponentGroup.enclose(new Button("ButtonGroupFirst UIID"), new Button("ButtonGroup UIID"), new
Button("ButtonGroupLast UIID"))).
 add("One Button").
 add(ComponentGroup.enclose(new Button("ButtonGroupOnly UIID")));

218

https://www.codenameone.com/javadoc/com/codename1/ui/ComponentGroup.html
https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BoxLayout.html

Figure 215. ComponentGroup adapts the UIID’s of the components added so we can style them

Notice the following about the code above and the resulting image:

• Buttons have a different UIID than other element types. Their styling is slightly different in such
UI’s so you need to pay attention to that.

• When an element is placed alone within a ComponentGroup its a special case UIID.

By default, ComponentGroup does nothing. You need to explicitly activate it in the
theme by setting a theme property to true. Specifically you need to set
ComponentGroupBool to true for ComponentGroup to do something otherwise its just a
box layout container! The ComponentGroupBool flag is true by default in the iOS
native theme.

When ComponentGroupBool is set to true, the component group will modify the styles of all
components placed within it to match the element UIID given to it (GroupElement by default) with
special caveats to the first/last/only elements. E.g.

1. If I have one element within a component group it will have the UIID: GroupElementOnly

2. If I have two elements within a component group they will have the UIID’s GroupElementFirst,
GroupElementLast

3. If I have three elements within a component group they will have the UIID’s GroupElementFirst,
GroupElement, GroupElementLast

4. If I have four elements within a component group they will have the UIID’s GroupElementFirst,
GroupElement, GroupElement, GroupElementLast

This allows you to define special styles for the edges.

You can customize the UIID set by the component group by calling setElementUIID in the component
group e.g. setElementUIID("ToggleButton") for three elements result in the following UIID’s:

ToggleButtonFirst, ToggleButton, ToggleButtonLast

6.11. MultiButton
MultiButton [https://www.codenameone.com/javadoc/com/codename1/components/MultiButton.html] is a

219

https://www.codenameone.com/javadoc/com/codename1/components/MultiButton.html

composite component (lead component) that acts like a versatile Button
[https://www.codenameone.com/javadoc/com/codename1/ui/Button.html]. It supports up to 4 lines of text (it
doesn’t automatically wrap the text), an emblem (usually navigational arrow, or check box) and an
icon.

MultiButton can be used as a button, a CheckBox or a RadioButton for creating rich UI’s.

 The MultiButton was inspired by the aesthetics of the UITableView iOS component.

A common source of confusion in the MultiButton is the difference between the icon and the
emblem, since both may have an icon image associated with them. The icon is an image
representing the entry while the emblem is an optional visual representation of the action that will
be undertaken when the element is pressed. Both may be used simultaneously or individually of
one another.

MultiButton twoLinesNoIcon = new MultiButton("MultiButton");
twoLinesNoIcon.setTextLine2("Line 2");
MultiButton oneLineIconEmblem = new MultiButton("Icon + Emblem");
oneLineIconEmblem.setIcon(icon);
oneLineIconEmblem.setEmblem(emblem);
MultiButton twoLinesIconEmblem = new MultiButton("Icon + Emblem");
twoLinesIconEmblem.setIcon(icon);
twoLinesIconEmblem.setEmblem(emblem);
twoLinesIconEmblem.setTextLine2("Line 2");

MultiButton twoLinesIconEmblemHorizontal = new MultiButton("Icon + Emblem");
twoLinesIconEmblemHorizontal.setIcon(icon);
twoLinesIconEmblemHorizontal.setEmblem(emblem);
twoLinesIconEmblemHorizontal.setTextLine2("Line 2 Horizontal");
twoLinesIconEmblemHorizontal.setHorizontalLayout(true);

MultiButton twoLinesIconCheckBox = new MultiButton("CheckBox");
twoLinesIconCheckBox.setIcon(icon);
twoLinesIconCheckBox.setCheckBox(true);
twoLinesIconCheckBox.setTextLine2("Line 2");

MultiButton fourLinesIcon = new MultiButton("With Icon");
fourLinesIcon.setIcon(icon);
fourLinesIcon.setTextLine2("Line 2");
fourLinesIcon.setTextLine3("Line 3");
fourLinesIcon.setTextLine4("Line 4");

hi.add(oneLineIconEmblem).
 add(twoLinesNoIcon).
 add(twoLinesIconEmblem).
 add(twoLinesIconEmblemHorizontal).
 add(twoLinesIconCheckBox).
 add(fourLinesIcon);

220

https://www.codenameone.com/javadoc/com/codename1/ui/Button.html

Figure 216. Multiple usage scenarios for the MultiButton

6.11.1. Styling The MultiButton

Since the MultiButton is a composite component setting its UIID will only impact the top level UI.

To customize everything you need to customize the UIID’s for MultiLine1, MultiLine2, MultiLine3,
MultiLine4 & Emblem.

You can customize the individual UIID’s thru the API directly using the setIconUIID, setUIIDLine1,
setUIIDLine2, setUIIDLine3, setUIIDLine4 & setEmblemUIID.

6.12. SpanButton
SpanButton [https://www.codenameone.com/javadoc/com/codename1/components/SpanButton.html] is a
composite component (lead component) that looks/acts like a Button but can break lines rather than
crop them when the text is very long.

Unlike the MultiButton it uses the TextArea internally to break lines seamlessly. The SpanButton is far
simpler than the MultiButton and as a result isn’t as configurable.

SpanButton sb = new SpanButton("SpanButton is a composite component (lead component) that looks/acts like a Button but
can break lines rather than crop them when the text is very long.");
sb.setIcon(icon);
hi.add(sb);

Figure 217. The SpanButton Component

SpanButton is slower than both Button and MultiButton. We recommend using it
only when there is a genuine need for its functionality.

6.13. SpanLabel
SpanLabel [https://www.codenameone.com/javadoc/com/codename1/components/SpanLabel.html] is a
composite component (lead component) that looks/acts like a Label [https://www.codenameone.com/

221

https://www.codenameone.com/javadoc/com/codename1/components/SpanButton.html
https://www.codenameone.com/javadoc/com/codename1/components/SpanLabel.html
https://www.codenameone.com/javadoc/com/codename1/ui/Label.html

javadoc/com/codename1/ui/Label.html] but can break lines rather than crop them when the text is very
long.

SpanLabel uses the TextArea internally to break lines seamlessly and so doesn’t provide all the
elaborate configuration options of Label.

One of the features of label that moved into SpanLabel to some extent is the ability to position the
icon. However, unlike a Label the icon position is determined by the layout manager of the
composite so setIconPosition accepts a BorderLayout constraint.

SpanLabel d = new SpanLabel("Default SpanLabel that can seamlessly line break when the text is really long.");
d.setIcon(icon);
SpanLabel l = new SpanLabel("NORTH Positioned Icon SpanLabel that can seamlessly line break when the text is really
long.");
l.setIcon(icon);
l.setIconPosition(BorderLayout.NORTH);
SpanLabel r = new SpanLabel("SOUTH Positioned Icon SpanLabel that can seamlessly line break when the text is really
long.");
r.setIcon(icon);
r.setIconPosition(BorderLayout.SOUTH);
SpanLabel c = new SpanLabel("EAST Positioned Icon SpanLabel that can seamlessly line break when the text is really
long.");
c.setIcon(icon);
c.setIconPosition(BorderLayout.EAST);
hi.add(d).add(l).add(r).add(c);

Figure 218. The SpanLabel Component

SpanLabel is significantly slower than Label. We recommend using it only when
there is a genuine need for its functionality.

6.14. OnOffSwitch
The OnOffSwitch [https://www.codenameone.com/javadoc/com/codename1/components/OnOffSwitch.html]
allows you to write an application where the user can swipe a switch between two states (on/off).
This is a common UI paradigm in Android and iOS, although it’s implemented in a radically
different way in both platforms.

This is a rather elaborate component because of its very unique design on iOS, but we we’re able to
accommodate most of the small behaviors of the component into our version, and it seamlessly
adapts between the Android style and the iOS style.

222

https://www.codenameone.com/javadoc/com/codename1/components/OnOffSwitch.html

The image below was generated based on the default use of the OnOffSwitch:

OnOffSwitch onOff = new OnOffSwitch();
hi.add(onOff);

Figure 219. The OnOffSwitch component as it appears on/off on iOS (top) and on Android (bottom)

As you can understand the difference between the way iOS and Android render this component has
triggered two very different implementations within a single component. The Android
implementation just uses standard buttons and is the default for non-iOS platforms.

You can force the Android or iOS mode by using the theme constant
onOffIOSModeBool.

6.14.1. Validation

Validation is an inherent part of text input, and the Validator [https://www.codenameone.com/javadoc/

com/codename1/ui/validation/Validator.html] class allows just that. You can enable validation thru the
Validator class to add constraints for a specific component. It’s also possible to define components
that would be enabled/disabled based on validation state and the way in which validation errors
are rendered (change the components UIID, paint an emblem on top, etc.). A Constraint
[https://www.codenameone.com/javadoc/com/codename1/ui/validation/Constraint.html] is an interface that
represents validation requirements. You can define a constraint in Java or use some of the builtin
constraints such as LengthConstraint [https://www.codenameone.com/javadoc/com/codename1/ui/validation/

LengthConstraint.html], RegexConstraint [https://www.codenameone.com/javadoc/com/codename1/ui/validation/

RegexConstraint.html], etc.

This sample below continues from the place where the TextField sample above stopped by adding
validation to that code.

223

https://www.codenameone.com/javadoc/com/codename1/ui/validation/Validator.html
https://www.codenameone.com/javadoc/com/codename1/ui/validation/Constraint.html
https://www.codenameone.com/javadoc/com/codename1/ui/validation/LengthConstraint.html
https://www.codenameone.com/javadoc/com/codename1/ui/validation/RegexConstraint.html

Validator v = new Validator();
v.addConstraint(firstName, new LengthConstraint(2)).
 addConstraint(surname, new LengthConstraint(2)).
 addConstraint(url, RegexConstraint.validURL()).
 addConstraint(email, RegexConstraint.validEmail()).
 addConstraint(phone, new RegexConstraint(phoneRegex, "Must be valid phone number")).
 addConstraint(num1, new LengthConstraint(4)).
 addConstraint(num2, new LengthConstraint(4)).
 addConstraint(num3, new LengthConstraint(4)).
 addConstraint(num4, new LengthConstraint(4));

v.addSubmitButtons(submit);

Figure 220. Validation & Regular Expressions

6.15. InfiniteProgress
The InfiniteProgress [https://www.codenameone.com/javadoc/com/codename1/components/

InfiniteProgress.html] indicator spins an image infinitely to indicate that a background process is still
working.

 This style of animation is often nicknamed "washing machine" as it spins endlessly.

InfiniteProgress can be used in one of two ways either by embedding the component into the UI
thru something like this:

myContainer.add(new InfiniteProgress());

InfiniteProgress can also appear over the entire screen, thus blocking all input. This tints the
background while the infinite progress rotates:

Dialog ip = new InfiniteProgress().showInifiniteBlocking();

// do some long operation here using invokeAndBlock or do something in a separate thread and callback later
// when you are done just call

ip.dispose();

224

https://www.codenameone.com/javadoc/com/codename1/components/InfiniteProgress.html

Figure 221. Infinite progress

The image used in the InfiniteProgress animation is defined by the native theme. You can override
that definition either by defining the theme constant infiniteImage or by invoking the setAnimation
[https://www.codenameone.com/javadoc/com/codename1/components/InfiniteProgress.html#setAnimation-

com.codename1.ui.Image-] method.

Despite the name of the method setAnimation expects a static image that will be
rotated internally. Don’t use an animated image.

6.16. InfiniteScrollAdapter and InfiniteContainer
InfiniteScrollAdapter [https://www.codenameone.com/javadoc/com/codename1/components/

InfiniteScrollAdapter.html] & InfiniteContainer [https://www.codenameone.com/javadoc/com/codename1/ui/

InfiniteContainer.html] allow us to create a scrolling effect that "never" ends with the typical Container
/Component paradigm.

The motivation behind these classes is simple, say we have a lot of data to fetch from storage or
from the internet. We can fetch the data in batches and show progress indication while we do this.

Infinite scroll fetches the next batch of data dynamically as we reach the end of the Container.
InfiniteScrollAdapter & InfiniteContainer represent two similar ways to accomplish that task
relatively easily.

Let start by exploring how we can achieve this UI that fetches data from a webservice:

Figure 222. InfiniteScrollAdapter demo code fetching property cross data

The first step is creating the webservice call, we won’t go into too much detail here as webservices
& IO are discussed later in the guide:

225

https://www.codenameone.com/javadoc/com/codename1/components/InfiniteProgress.html#setAnimation-com.codename1.ui.Image-
https://www.codenameone.com/javadoc/com/codename1/components/InfiniteScrollAdapter.html
https://www.codenameone.com/javadoc/com/codename1/ui/InfiniteContainer.html

int pageNumber = 1;
java.util.List<Map<String, Object>> fetchPropertyData(String text) {
 try {
 ConnectionRequest r = new ConnectionRequest();
 r.setPost(false);
 r.setUrl("http://api.nestoria.co.uk/api");
 r.addArgument("pretty", "0");
 r.addArgument("action", "search_listings");
 r.addArgument("encoding", "json");
 r.addArgument("listing_type", "buy");
 r.addArgument("page", "" + pageNumber);
 pageNumber++;
 r.addArgument("country", "uk");
 r.addArgument("place_name", text);
 NetworkManager.getInstance().addToQueueAndWait(r);
 Map<String,Object> result = new JSONParser().parseJSON(new InputStreamReader(new
ByteArrayInputStream(r.getResponseData()), "UTF-8"));
 Map<String, Object> response = (Map<String, Object>)result.get("response");
 return (java.util.List<Map<String, Object>>)response.get("listings");
 } catch(Exception err) {
 Log.e(err);
 return null;
 }
}

The demo code here doesn’t do any error handling! This is a very bad practice and
it is taken here to keep the code short and readable. Proper error handling is used
in the Property Cross demo.

The fetchPropertyData is a very simplistic tool that just fetches the next page of listings for the
nestoria webservice. Notice that this method is synchronous and will block the calling thread
(legally) until the network operation completes.

Now that we have a webservice lets proceed to create the UI. Check out the code annotations below:

226

Form hi = new Form("InfiniteScrollAdapter", new BoxLayout(BoxLayout.Y_AXIS));

Style s = UIManager.getInstance().getComponentStyle("MultiLine1");
FontImage p = FontImage.createMaterial(FontImage.MATERIAL_PORTRAIT, s);
EncodedImage placeholder = EncodedImage.createFromImage(p.scaled(p.getWidth() * 3, p.getHeight() * 3), false); ①

InfiniteScrollAdapter.createInfiniteScroll(hi.getContentPane(), () -> { ②
 java.util.List<Map<String, Object>> data = fetchPropertyData("Leeds"); ③
 MultiButton[] cmps = new MultiButton[data.size()];
 for(int iter = 0 ; iter < cmps.length ; iter++) {
 Map<String, Object> currentListing = data.get(iter);
 if(currentListing == null) { ④
 InfiniteScrollAdapter.addMoreComponents(hi.getContentPane(), new Component[0], false);
 return;
 }
 String thumb_url = (String)currentListing.get("thumb_url");
 String guid = (String)currentListing.get("guid");
 String summary = (String)currentListing.get("summary");
 cmps[iter] = new MultiButton(summary);
 cmps[iter].setIcon(URLImage.createToStorage(placeholder, guid, thumb_url));
 }
 InfiniteScrollAdapter.addMoreComponents(hi.getContentPane(), cmps, true); ⑤
}, true); ⑥

① Placeholder is essential for the URLImage [https://www.codenameone.com/javadoc/com/codename1/ui/

URLImage.html] class which we will discuss at a different place.

② The InfiniteScrollAdapter accepts a runnable which is invoked every time we reach the edge of
the scrolling. We used a closure instead of the typical run() method override.

③ This is a blocking call, after the method completes we’ll have all the data we need. Notice that
this method doesn’t block the EDT illegally.

④ If there is no more data we call the addMoreComponents method with a false argument. This
indicates that there is no additional data to fetch.

⑤ Here we add the actual components to the end of the form. Notice that we must not invoke the
add/remove method of Container. Those might conflict with the work of the InfiniteScrollAdapter.

⑥ We pass true to indicate that the data isn’t "prefilled" so the method should be invoked
immediately when the Form is first shown

Do not violate the EDT in the callback. It is invoked on the event dispatch thread
and it is crucial

6.16.1. The InfiniteContainer

InfiniteContainer [https://www.codenameone.com/javadoc/com/codename1/ui/InfiniteContainer.html] was
introduced to simplify and remove some of the boilerplate of the InfiniteScrollAdapter. It takes a
more traditional approach of inheriting the Container class to provide its functionality.

Unlike the InfiniteScrollAdapter the InfiniteContainer accepts an index and amount to fetch. This
is useful for tracking your position but also important since the InfiniteContainer also implements
Pull To Refresh as part of its functionality.

Converting the code above to an InfiniteContainer is pretty simple we just moved all the code into

227

https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.html
https://www.codenameone.com/javadoc/com/codename1/ui/InfiniteContainer.html

the callback fetchComponents method and returned the array of Component’s as a response.

Unlike the InfiniteScrollAdapter we can’t use the ContentPane directly so we have to use a
BorderLayout and place the InfiniteContainer there:

Form hi = new Form("InfiniteContainer", new BorderLayout());

Style s = UIManager.getInstance().getComponentStyle("MultiLine1");
FontImage p = FontImage.createMaterial(FontImage.MATERIAL_PORTRAIT, s);
EncodedImage placeholder = EncodedImage.createFromImage(p.scaled(p.getWidth() * 3, p.getHeight() * 3), false);

InfiniteContainer ic = new InfiniteContainer() {
 @Override
 public Component[] fetchComponents(int index, int amount) {
 java.util.List<Map<String, Object>> data = fetchPropertyData("Leeds");
 MultiButton[] cmps = new MultiButton[data.size()];
 for(int iter = 0 ; iter < cmps.length ; iter++) {
 Map<String, Object> currentListing = data.get(iter);
 if(currentListing == null) {
 return null;
 }
 String thumb_url = (String)currentListing.get("thumb_url");
 String guid = (String)currentListing.get("guid");
 String summary = (String)currentListing.get("summary");
 cmps[iter] = new MultiButton(summary);
 cmps[iter].setIcon(URLImage.createToStorage(placeholder, guid, thumb_url));
 }
 return cmps;
 }
};
hi.add(BorderLayout.CENTER, ic);

6.17. List, MultiList, Renderers & Models

6.17.1. InfiniteContainer/InfiniteScrollAdapter vs. List/ContainerList

Our recommendation is to always go with Container, InfiniteContainer or InfiniteScrollAdapter.

We recommend avoiding List or its subclasses/related classes specifically ContainerList &
MultiList.

We recommend replacing ComboBox with Picker but that’s a completely different
discussion.

A Container with ~5000 nested containers within it can perform on par with a List and probably
exceed its performance when used correctly.

Larger sets of data are rarely manageable on phones or tablets so the benefits for lists are dubious.

In terms of API we found that even experienced developers experienced a great deal of pain when
wrangling the Swing styled lists and their stateless approach.

Since animation, swiping and other capabilities that are so common in mobile are so hard to

228

accomplish with lists we see no actual reason to use them.

6.17.2. Why Isn’t List Deprecated?

We deprecated ContainerList which performs really badly and has some inherent complexity
issues. List has some unique use cases and is still used all over Codename One.

MultiList is a reasonable version of List that is far easier to use without most of the pains related to
renderer configuration.

There are cases where using List or MultiList is justified, they are just rarer than usual hence our
recommendation.

6.17.3. MVC In Lists

A Codename One List [https://www.codenameone.com/javadoc/com/codename1/ui/List.html] doesn’t contain
components, but rather arbitrary data; this seems odd at first but makes sense. If you want a list to
contain components, just use a Container.

The advantage of using a List in this way is that we can display it in many ways (e.g. fixed focus
positions, horizontally, etc.), and that we can have more than a million entries without performance
overhead. We can also do some pretty nifty things, like filtering the list on the fly or fetching it
dynamically from the Internet as the user scrolls down the list. To achieve these things the list uses
two interfaces: ListModel [https://www.codenameone.com/javadoc/com/codename1/ui/list/ListModel.html] and
ListCellRenderer. List [https://www.codenameone.com/javadoc/com/codename1/ui/List.html] model
represents the data; its responsibility is to return the arbitrary object within the list at a given
offset. Its second responsibility is to notify the list when the data changes, so the list can refresh.

 Think of the model as an array of objects that can notify you when it changes.

The list renderer is like a rubber stamp that knows how to draw an object from the model, it’s
called many times per entry in an animated list and must be very fast. Unlike standard Codename
One components, it is only used to draw the entry in the model and is immediately discarded, hence
it has no memory overhead, but if it takes too long to process a model value it can be a big
bottleneck!

Think of the render as a translation layer that takes the "data" from the model and
translates it to a visual representation.

This is all very generic, but a bit too much for most, doing a list "properly" requires some
understanding. The main source of confusion for developers is the stateless nature of the list and
the transfer of state to the model (e.g. a checkbox list needs to listen to action events on the list and
update the model, in order for the renderer to display that state). Once you understand that it’s
easy.

6.17.4. Understanding MVC

Let’s recap, what is MVC:

229

https://www.codenameone.com/javadoc/com/codename1/ui/List.html
https://www.codenameone.com/javadoc/com/codename1/ui/list/ListModel.html
https://www.codenameone.com/javadoc/com/codename1/ui/List.html

• Model - Represents the data for the component (list), the model can tell us exactly how many
items are in it and which item resides at a given offset within the model. This differs from a
simple Vector (or array), since all access to the model is controlled (the interface is simpler), and
unlike a Vector/Array, the model can notify us of changes that occur within it.

• View - The view draws the content of the model. It is a "dumb" layer that has no notion of what
is displayed and only knows how to draw. It tracks changes in the model (the model sends
events) and redraws itself when it changes.

• Controller - The controller accepts user input and performs changes to the model, which in turn
cause the view to refresh.

Figure 223. Typical MVC Diagram [3]

Codename One’s List [https://www.codenameone.com/javadoc/com/codename1/ui/List.html] component uses
the MVC paradigm in its implementation. List itself is the Controller (with a bit of the View mixed
in). The ListCellRenderer [https://www.codenameone.com/javadoc/com/codename1/ui/list/ListCellRenderer.html]
interface is the rest of the View and the ListModel [https://www.codenameone.com/javadoc/com/codename1/

ui/list/ListModel.html] is (you guessed it by now) the Model.

When the list is painted, it iterates over the visible elements in the model and asks the model for
the data, it then draws them using the renderer. Notice that because of this both the model and the
renderer must be REALLY fast and that’s hard.

Why is this useful?

Since the model is a lightweight interface, it can be implemented by you and replaced in runtime if
so desired, this allows several use cases:

1. A list can contain thousands of entries but only load the portion visible to the user. Since the
model will only be queried for the elements that are visible to the user, it won’t need to load the
large data set into memory until the user starts scrolling down (at which point other elements
may be offloaded from memory).

2. A list can cache efficiently. E.g. a list can mirror data from the server into local RAM without
actually downloading all the data. Data can also be mirrored from storage for better
performance and discarded for better memory utilization.

3. The is no need for state copying. Since renderers allow us to display any object type, the list
model interface can be implemented by the application’s data structures (e.g.
persistence/network engine), which would return internal application data structures saving
you the need of copying application state into a list specific data structure. Note that this

230

https://www.codenameone.com/javadoc/com/codename1/ui/List.html
https://www.codenameone.com/javadoc/com/codename1/ui/list/ListCellRenderer.html
https://www.codenameone.com/javadoc/com/codename1/ui/list/ListModel.html

advantage only applies with a custom renderer which is pretty difficult to get right.

4. Using the proxy pattern we can layer logic such as filtering, sorting, caching, etc. on top of
existing models without changing the model source code.

5. We can reuse generic models for several views, e.g. a model that fetches data from the server
can be initialized with different arguments, to fetch different data for different views. View
objects in different Forms can display the same model instance in different view instances, thus
they would update automatically when we change one global model.

Most of these use cases work best for lists that grow to a larger size, or represent complex data,
which is what the list object is designed to do.

6.17.5. Important - Lists & Layout Managers

Usually when working with lists, you want the list to handle the scrolling (otherwise it will perform
badly). This means you should place the list in a non-scrollable container (no parent can be
scrollable), notice that the content pane is scrollable by default, so you should disable that.

It is also recommended to place the list in the CENTER location of a BorderLayout
[https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BorderLayout.html] to produce the most
effective results. e.g.:

form.setScrollable(false);
form.setLayout(new BorderLayout());
form.add(BorderLayout.CENTER, myList);

6.17.6. MultiList & DefaultListModel

So after this long start lets show the first sample of creating a list using the MultiList
[https://www.codenameone.com/javadoc/com/codename1/ui/list/MultiList.html].

The MultiList is a preconfigured list that contains a ready made renderer with defaults that make
sense for the most common use cases. It still retains most of the power available to the List
component but reduces the complexity of one of the hardest things to grasp for most developers:
rendering.

The full power of the ListModel is still available and allows you to create a million entry list with
just a few lines of code. However the objects that the model returns should always be in the form of
Map objects and not an arbitrary object like the standard List allows.

Here is a simple example of a MultiList containing a highly popular subject matter:

231

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BorderLayout.html
https://www.codenameone.com/javadoc/com/codename1/ui/list/MultiList.html

Form hi = new Form("MultiList", new BorderLayout());

ArrayList<Map<String, Object>> data = new ArrayList<>();

data.add(createListEntry("A Game of Thrones", "1996"));
data.add(createListEntry("A Clash Of Kings", "1998"));
data.add(createListEntry("A Storm Of Swords", "2000"));
data.add(createListEntry("A Feast For Crows", "2005"));
data.add(createListEntry("A Dance With Dragons", "2011"));
data.add(createListEntry("The Winds of Winter", "2016 (please, please, please)"));
data.add(createListEntry("A Dream of Spring", "Ugh"));

DefaultListModel<Map<String, Object>> model = new DefaultListModel<>(data);
MultiList ml = new MultiList(model);
hi.add(BorderLayout.CENTER, ml);

Figure 224. Basic usage of the MultiList & DefaultListModel]

createListEntry is relatively trivial:

private Map<String, Object> createListEntry(String name, String date) {
 Map<String, Object> entry = new HashMap<>();
 entry.put("Line1", name);
 entry.put("Line2", date);
 return entry;
}

There is one major piece missing here and that is the cover images for the books. A simple
approach would be to just place the image objects into the entries using the "icon" property as such:

private Map<String, Object> createListEntry(String name, String date, Image cover) {
 Map<String, Object> entry = new HashMap<>();
 entry.put("Line1", name);
 entry.put("Line2", date);
 entry.put("icon", cover);
 return entry;
}

232

Figure 225. With cover images in place

Since the MultiList uses the GenericListCellRenderer internally we can use
URLImage [https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.html] to
dynamically fetch the data. This is discussed in the graphics section of this guide.

Going Further With the ListModel

Lets assume that GRRM [http://www.georgerrmartin.com/] was really prolific and wrote 1 million books.
The default list model won’t make much sense in that case but we would still be able to render
everything in a list model.

We’ll fake it a bit but notice that 1M components won’t be created even if we somehow scroll all the
way down…

The ListModel [https://www.codenameone.com/javadoc/com/codename1/ui/list/ListModel.html] interface can be
implemented by anyone in this case we just did a really stupid simple implementation:

class GRMMModel implements ListModel<Map<String,Object>> {
 @Override
 public Map<String, Object> getItemAt(int index) {
 int idx = index % 7;
 switch(idx) {
 case 0:
 return createListEntry("A Game of Thrones " + index, "1996");
 case 1:
 return createListEntry("A Clash Of Kings " + index, "1998");
 case 2:
 return createListEntry("A Storm Of Swords " + index, "2000");
 case 3:
 return createListEntry("A Feast For Crows " + index, "2005");
 case 4:
 return createListEntry("A Dance With Dragons " + index, "2011");
 case 5:
 return createListEntry("The Winds of Winter " + index, "2016 (please, please, please)");
 default:
 return createListEntry("A Dream of Spring " + index, "Ugh");
 }
 }

 @Override
 public int getSize() {
 return 1000000;

233

https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.html
http://www.georgerrmartin.com/
https://www.codenameone.com/javadoc/com/codename1/ui/list/ListModel.html

 }

 @Override
 public int getSelectedIndex() {
 return 0;
 }

 @Override
 public void setSelectedIndex(int index) {
 }

 @Override
 public void addDataChangedListener(DataChangedListener l) {
 }

 @Override
 public void removeDataChangedListener(DataChangedListener l) {
 }

 @Override
 public void addSelectionListener(SelectionListener l) {
 }

 @Override
 public void removeSelectionListener(SelectionListener l) {
 }

 @Override
 public void addItem(Map<String, Object> item) {
 }

 @Override
 public void removeItem(int index) {
 }
}

We can now replace the existing model by removing all the model related logic and changing the
constructor call as such:

MultiList ml = new MultiList(new GRMMModel());

Figure 226. It took ages to scroll this far… This goes to a million…

234

6.17.7. List Cell Renderer

The Renderer is a simple interface with 2 methods:

public interface ListCellRenderer {
 //This method is called by the List for each item, when the List paints itself.
 public Component getListCellRendererComponent(List list, Object value, int index, boolean isSelected);

 //This method returns the List animated focus which is animated when list selection changes
 public Component getListFocusComponent(List list);
}

The most simple/naive implementation may choose to implement the renderer as follows:

public Component getListCellRendererComponent(List list, Object value, int index, boolean isSelected){
 return new Label(value.toString());
}

public Component getListFocusComponent(List list){
 return null;
}

This will compile and work, but won’t give you much, notice that you won’t see the List selection
move on the List, this is just because the renderer returns a Label [https://www.codenameone.com/

javadoc/com/codename1/ui/Label.html] with the same style regardless if it’s selected or not.

Now Let’s try to make it a bit more useful.

public Component getListCellRendererComponent(List list, Object value, int index, boolean isSelected){
 Label l = new Label(value.toString());
if (isSelected) {
 l.setFocus(true);
 l.getAllStyles().setBgTransparency(100);
 } else {
 l.setFocus(false);
 l.getAllStyles().setBgTransparency(0);
 }
 return l;
} public Component getListFocusComponent(List list){
 return null;
}

In this renderer we set the Label.setFocus(true) if it’s selected, calling to this method doesn’t really
give the focus to the Label, it simply renders the label as selected.

Then we invoke Label.getAllStyles().setBgTransparency(100) to give the selection semi
transparency, and 0 for full transparency if not selected.

That is still not very efficient because we create a new Label each time the method is invoked.

To make the code tighter, keep a reference to the Component or extend it as DefaultListCellRenderer

235

https://www.codenameone.com/javadoc/com/codename1/ui/Label.html
https://www.codenameone.com/javadoc/com/codename1/ui/list/DefaultListCellRenderer.html

[https://www.codenameone.com/javadoc/com/codename1/ui/list/DefaultListCellRenderer.html] does.

class MyRenderer extends Label implements ListCellRenderer {
 public Component getListCellRendererComponent(List list, Object value, int index, boolean isSelected){
 setText(value.toString());
 if (isSelected) {
 setFocus(true);
 getAllStyles().setBgTransparency(100);
 } else {
 setFocus(false);
 getAllStyles().setBgTransparency(0);
 }
 return this;
 }
 }
}

Now Let’s have a look at a more advanced Renderer.

class ContactsRenderer extends Container implements ListCellRenderer {

 private Label name = new Label("");
 private Label email = new Label("");
 private Label pic = new Label("");

 private Label focus = new Label("");

 public ContactsRenderer() {
 setLayout(new BorderLayout());
 addComponent(BorderLayout.WEST, pic);
 Container cnt = new Container(new BoxLayout(BoxLayout.Y_AXIS));
 name.getAllStyles().setBgTransparency(0);
 name.getAllStyles().setFont(Font.createSystemFont(Font.FACE_SYSTEM, Font.STYLE_BOLD, Font.SIZE_MEDIUM));
 email.getAllStyles().setBgTransparency(0);
 cnt.addComponent(name);
 cnt.addComponent(email);
 addComponent(BorderLayout.CENTER, cnt);

 focus.getStyle().setBgTransparency(100);
 }

 public Component getListCellRendererComponent(List list, Object value, int index, boolean isSelected) {

 Contact person = (Contact) value;
 name.setText(person.getName());
 email.setText(person.getEmail());
 pic.setIcon(person.getPic());
 return this;
 }

 public Component getListFocusComponent(List list) {
 return focus;
 }
}

In this renderer we want to render a Contact object to the Screen, we build the Component in the

236

constructor and in the getListCellRendererComponent we simply update the Labels' texts according
to the Contact object.

Notice that in this renderer we return a focus Label with semi transparency, as mentioned before,
the focus component can be modified within this method.

For example, I can modify the focus Component to have an icon.

focus.getAllStyles().setBgTransparency(100);
try {
 focus.setIcon(Image.createImage("/duke.png"));
 focus.setAlignment(Component.RIGHT);
} catch (IOException ex) {
 ex.printStackTrace();
}

6.17.8. Generic List Cell Renderer

As part of the GUI builder work, we needed a way to customize rendering for a List, but the
renderer/model approach seemed impossible to adapt to a GUI builder (it seems the Swing GUI
builders had a similar issue). Our solution was to introduce the GenericListCellRenderer, which
while introducing limitations and implementation requirements still manages to make life easier,
both in the GUI builder and outside of it.

GenericListCellRenderer [https://www.codenameone.com/javadoc/com/codename1/ui/list/

GenericListCellRenderer.html] is a renderer designed to be as simple to use as a Component-Container
hierarchy, we effectively crammed most of the common renderer use cases into one class. To enable
that, we need to know the content of the objects within the model, so the GenericListCellRenderer
assumes the model contains only Map objects. Since Maps can contain arbitrary data the list model is
still quite generic and allows storing application specific data. Furthermore a Map can still be
derived and extended to provide domain specific business logic.

The GenericListCellRenderer accepts two container instances (more later on why at least two, and
not one), which it maps to individual Map entries within the model, by finding the appropriate
components within the given container hierarchy. Components are mapped to the Map entries based
on the name property of the component (getName/setName) and the key/value within the Map, e.g.:

For a model that contains a Map entry like this:

"Foo": "Bar"
"X": "Y"
"Not": "Applicable"
"Number": Integer(1)

A renderer will loop over the component hierarchy in the container, searching for components
whose name matches Foo, X, Not, and Number, and assigning the appropriate value to them.

237

https://www.codenameone.com/javadoc/com/codename1/ui/list/GenericListCellRenderer.html

You can also use image objects as values, and they will be assigned to labels as
expected. However, you can’t assign both an image and a text to a single label,
since the key will be taken. That isn’t a big problem, since two labels can be used
quite easily in such a renderer.

To make matters even more attractive the renderer seamlessly supports list tickering when
appropriate, and if a CheckBox [https://www.codenameone.com/javadoc/com/codename1/ui/CheckBox.html]
appears within the renderer, it will toggle a boolean flag within the Map seamlessly.

One issue that crops up with this approach is that, if a value is missing from the Map, it is treated as
empty and the component is reset.

This can pose an issue if we hardcode an image or text within the renderer and we don’t want them
replaced (e.g. an arrow graphic on a Label within the renderer). The solution for this is to name the
component with Fixed in the end of the name, e.g. HardcodedIconFixed.

Naming a component within the renderer with $number will automatically set it as a counter
component for the offset of the component within the list.

Styling the GenericListCellRenderer is slightly different, the renderer uses the UIID of the Container
passed to the generic list cell renderer, and the background focus uses that same UIID with the word
"Focus" appended to it.

It is important to notice that the generic list cell renderer will grant focus to the child components
of the selected entry if they are focusable, thus changing the style of said entries. E.g. a Container
[https://www.codenameone.com/javadoc/com/codename1/ui/Container.html] might have a child Label that has
one style when the parent container is unselected and another when it’s selected (focused), this can
be easily achieved by defining the label as focusable. Notice that the component will never receive
direct focus, since it is still part of a renderer.

Last but not least, the generic list cell renderer accepts two or four instances of a Container, rather
than the obvious choice of accepting only one instance. This allows the renderer to treat the
selected entry differently, which is especially important to tickering, although it’s also useful for the
fisheye effect [4]. Since it might not be practical to seamlessly clone the Container for the renderer’s
needs, Codename One expects the developer to provide two separate instances, they can be
identical in all respects, but they must be separate instances for tickering to work. The renderer
also allows for a fisheye effect, where the selected entry is actually different from the unselected
entry in its structure, it also allows for a pinstripe effect, where odd/even rows have different styles
(this is accomplished by providing 4 instances of the containers selected/unselected for odd/even).

The best way to learn about the generic list cell renderer and the Map model is by playing with them
in the old GUI builder. Notice they can be used in code without any dependency on the GUI builder
and can be quite useful at that.

Here is a simple example of a list with checkboxes that gets updated automatically:

238

https://www.codenameone.com/javadoc/com/codename1/ui/CheckBox.html
https://www.codenameone.com/javadoc/com/codename1/ui/Container.html

com.codename1.ui.List list = new com.codename1.ui.List(createGenericListCellRendererModelData());
list.setRenderer(new GenericListCellRenderer(createGenericRendererContainer(), createGenericRendererContainer()));

private Container createGenericRendererContainer() {
 Label name = new Label();
 name.setFocusable(true);
 name.setName("Name");
 Label surname = new Label();
 surname.setFocusable(true);
 surname.setName("Surname");
 CheckBox selected = new CheckBox();
 selected.setName("Selected");
 selected.setFocusable(true);
 Container c = BorderLayout.center(name).
 add(BorderLayout.SOUTH, surname).
 add(BorderLayout.WEST, selected);
 c.setUIID("ListRenderer");
 return c;
}

private Object[] createGenericListCellRendererModelData() {
 Map<String,Object>[] data = new HashMap[5];
 data[0] = new HashMap<>();
 data[0].put("Name", "Shai");
 data[0].put("Surname", "Almog");
 data[0].put("Selected", Boolean.TRUE);
 data[1] = new HashMap<>();
 data[1].put("Name", "Chen");
 data[1].put("Surname", "Fishbein");
 data[1].put("Selected", Boolean.TRUE);
 data[2] = new HashMap<>();
 data[2].put("Name", "Ofir");
 data[2].put("Surname", "Leitner");
 data[3] = new HashMap<>();
 data[3].put("Name", "Yaniv");
 data[3].put("Surname", "Vakarat");
 data[4] = new HashMap<>();
 data[4].put("Name", "Meirav");
 data[4].put("Surname", "Nachmanovitch");
 return data;
}

Figure 227. GenericListCellRenderer demo code

239

Custom UIID Of Entry in GenenricListCellRenderer/MultiList

With MultiList [https://www.codenameone.com/javadoc/com/codename1/ui/list/MultiList.html

]/GenenricListCellRenderer one of the common issues is making a UI where a specific component
within the list renderer has a different UIID style based on data. E.g. this can be helpful to mark a
label within the list as red, for instance, in the case of a list of monetary transactions.

This can be achieved with a custom renderer, but that is a pretty difficult task.
GenericListCellRenderer (MultiList uses GenericListCellRenderer internally) has another option.

Normally, to build the model for a renderer of this type, we use something like:

map.put("componentName", "Component Value");

What if we want componentName to be red? Just use:

map.put("componentName_uiid", "red");

This will apply the UIID "red" to the component, which you can then style in the theme. Notice that
once you start doing this, you need to define this entry for all entries, e.g.:

map.put("componentName_uiid", "blue");

Otherwise the component will stay red for the next entry (since the renderer acts like a rubber
stamp).

Rendering Prototype

Because of the rendering architecture of a List its pretty hard to calculate the right preferred size
for such a component. The default behavior includes querying a few entries from the model then
constructing their renderers to get a "sample" of the preferred size value.

As you might guess this triggers a performance penalty that is paid with every reflow of the UI. The
solution is to use setRenderingPrototype.

setRenderingPrototype accepts a "fake" value that represents a reasonably large amount of data and
it will be used to calculate the preferred size. E.g. for a multiList that should render 2 lines of text
with 20 characters and a 5mm square icon I can do something like this:

Map<String, Object> proto = new HashMap<>();
map.put("Line1", "WWWWWWWWWWWWWWWWWWWW");
map.put("Line2", "WWWWWWWWWWWWWWWWWWWW");
int mm5 = Display.getInstance().convertToPixels(5, true);
map.put("icon", Image.create(mm5, mm5));
myMultiList.setRenderingPrototype(map);

240

https://www.codenameone.com/javadoc/com/codename1/ui/list/MultiList.html

6.17.9. ComboBox

The ComboBox [https://www.codenameone.com/javadoc/com/codename1/ui/ComboBox.html] is a
specialization of List that displays a single selected entry. When clicking that entry a popup is
presented allowing the user to pick an entry from the full list of entries.

The ComboBox UI paradigm isn’t as common on OS’s such as iOS where there is no
native equivalent to it. We recommend using either the Picker
[https://www.codenameone.com/javadoc/com/codename1/ui/spinner/Picker.html] class or the
AutoCompleteTextField [https://www.codenameone.com/javadoc/com/codename1/ui/

AutoCompleteTextField.html].

ComboBox is notoriously hard to style properly as it relies on a complex dynamic of popup renderer
and instantly visible renderer. The UIID for the ComboBox is ComboBox however if you set it to
something else all the other UIID’s will also change their prefix. E.g. the ComboBoxPopup UIID will
become MyNewUIIDPopup.

The combo box defines the following UIID’s by default:

• ComboBox

• ComboBoxItem

• ComboBoxFocus

• PopupContentPane

• PopupItem

• PopupFocus

The ComboBox also defines theme constants that allow some native themes to manipulate its
behavior e.g.:

• popupTitleBool - shows the "label for" value as the title of the popup dialog

• popupCancelBodyBool - Adds a cancel button into the popup dialog

• centeredPopupBool - shows the popup dialog in the center of the screen instead of under the
popup

• otherPopupRendererBool - Uses a different list cell render for the popup than the one used for the
ComboBox itself. When this is false PopupItem & PopupFocus become irrelevant. Notice that the
Android native theme defines this to true.

Since a ComboBox is really a List you can use everything we learned about a List to build a ComboBox
including models, GenericListCellRenderer etc.

E.g. the demo below uses the GRRM demo data from above to build a ComboBox:

241

https://www.codenameone.com/javadoc/com/codename1/ui/ComboBox.html
https://www.codenameone.com/javadoc/com/codename1/ui/spinner/Picker.html
https://www.codenameone.com/javadoc/com/codename1/ui/AutoCompleteTextField.html

Form hi = new Form("ComboBox", new BoxLayout(BoxLayout.Y_AXIS));
ComboBox<Map<String, Object>> combo = new ComboBox<> (
 createListEntry("A Game of Thrones", "1996"),
 createListEntry("A Clash Of Kings", "1998"),
 createListEntry("A Storm Of Swords", "2000"),
 createListEntry("A Feast For Crows", "2005"),
 createListEntry("A Dance With Dragons", "2011"),
 createListEntry("The Winds of Winter", "2016 (please, please, please)"),
 createListEntry("A Dream of Spring", "Ugh"));

combo.setRenderer(new GenericListCellRenderer<>(new MultiButton(), new MultiButton()));

Figure 228. GRRM ComboBox

6.18. Slider
A Slider [https://www.codenameone.com/javadoc/com/codename1/ui/Slider.html] is an empty component that
can be filled horizontally or vertically to allow indicating progress, setting volume etc. It can be
editable to allow the user to determine its value or none editable to just relay that information to
the user. It can have a thumb on top to show its current position.

Figure 229. Slider

The interesting part about the slider is that it has two separate style UIID’s, Slider & SliderFull. The
Slider UIID is always painted and SliderFull is rendered on top based on the amount the Slider
should be filled.

Slider is highly customizable e.g. a slider can be used to replicate a 5 star rating widget as such.
Notice that this slider will only work when its given its preferred size otherwise additional stars
will appear. That’s why we place it within a FlowLayout:

Form hi = new Form("Star Slider", new BoxLayout(BoxLayout.Y_AXIS));
hi.add(FlowLayout.encloseCenter(createStarRankSlider()));
hi.show();

The slider itself is initialized in the code below. Notice that you can achieve almost the same result
using a theme by setting the Slider & SliderFull UIID’s (both in selected & unselected states).

In fact doing this in the theme might be superior as you could use one image that contains 5 stars
already and that way you won’t need the preferred size hack below:

242

https://www.codenameone.com/javadoc/com/codename1/ui/Slider.html

private void initStarRankStyle(Style s, Image star) {
 s.setBackgroundType(Style.BACKGROUND_IMAGE_TILE_BOTH);
 s.setBorder(Border.createEmpty());
 s.setBgImage(star);
 s.setBgTransparency(0);
}

private Slider createStarRankSlider() {
 Slider starRank = new Slider();
 starRank.setEditable(true);
 starRank.setMinValue(0);
 starRank.setMaxValue(10);
 Font fnt = Font.createTrueTypeFont("native:MainLight", "native:MainLight").
 derive(Display.getInstance().convertToPixels(5, true), Font.STYLE_PLAIN);
 Style s = new Style(0xffff33, 0, fnt, (byte)0);
 Image fullStar = FontImage.createMaterial(FontImage.MATERIAL_STAR, s).toImage();
 s.setOpacity(100);
 s.setFgColor(0);
 Image emptyStar = FontImage.createMaterial(FontImage.MATERIAL_STAR, s).toImage();
 initStarRankStyle(starRank.getSliderEmptySelectedStyle(), emptyStar);
 initStarRankStyle(starRank.getSliderEmptyUnselectedStyle(), emptyStar);
 initStarRankStyle(starRank.getSliderFullSelectedStyle(), fullStar);
 initStarRankStyle(starRank.getSliderFullUnselectedStyle(), fullStar);
 starRank.setPreferredSize(new Dimension(fullStar.getWidth() * 5, fullStar.getHeight()));
 return starRank;
}
private void showStarPickingForm() {
 Form hi = new Form("Star Slider", new BoxLayout(BoxLayout.Y_AXIS));
 hi.add(FlowLayout.encloseCenter(createStarRankSlider()));
 hi.show();
}

Figure 230. Star Slider set to 5 (its between 0 - 10)

This slider goes all the way to 0 stars which is less common. You can use a Label to
represent the first star and have the slider work between 0 - 8 values to provide 4
additional stars.

6.19. Table
Table [https://www.codenameone.com/javadoc/com/codename1/ui/table/Table.html] is a composite component
(but it isn’t a lead component), this means it is a subclass of Container [https://www.codenameone.com/

javadoc/com/codename1/ui/Container.html]. It’s effectively built from multiple components.

243

https://www.codenameone.com/javadoc/com/codename1/ui/table/Table.html
https://www.codenameone.com/javadoc/com/codename1/ui/Container.html

Table is heavily based on the TableLayout [https://www.codenameone.com/javadoc/com/

codename1/ui/table/TableLayout.html] class. It’s important to be familiar with that
layout manager when working with Table.

Here is a trivial sample of using the standard table component:

Form hi = new Form("Table", new BorderLayout());
TableModel model = new DefaultTableModel(new String[] {"Col 1", "Col 2", "Col 3"}, new Object[][] {
 {"Row 1", "Row A", "Row X"},
 {"Row 2", "Row B", "Row Y"},
 {"Row 3", "Row C", "Row Z"},
 {"Row 4", "Row D", "Row K"},
 }) {
 public boolean isCellEditable(int row, int col) {
 return col != 0;
 }
 };
Table table = new Table(model);
hi.add(BorderLayout.CENTER, table);
hi.show();

Figure 231. Simple Table usage

In the sample above the title area and first column aren’t editable. The other two
columns are editable.

The more "interesting" capabilities of the Table class can be utilized via the TableLayout. You can use
the layout constraints (also exposed in the table class) to create spanning and elaborate UI’s.

E.g.:

244

https://www.codenameone.com/javadoc/com/codename1/ui/table/TableLayout.html

Form hi = new Form("Table", new BorderLayout());
TableModel model = new DefaultTableModel(new String[] {"Col 1", "Col 2", "Col 3"}, new Object[][] {
 {"Row 1", "Row A", "Row X"},
 {"Row 2", "Row B can now stretch", null},
 {"Row 3", "Row C", "Row Z"},
 {"Row 4", "Row D", "Row K"},
 }) {
 public boolean isCellEditable(int row, int col) {
 return col != 0;
 }
 };
Table table = new Table(model) {
 @Override
 protected TableLayout.Constraint createCellConstraint(Object value, int row, int column) {
 TableLayout.Constraint con = super.createCellConstraint(value, row, column);
 if(row == 1 && column == 1) {
 con.setHorizontalSpan(2);
 }
 con.setWidthPercentage(33);
 return con;
 }
};
hi.add(BorderLayout.CENTER, table);

Figure 232. Table with spanning & fixed widths to 33%

In order to customize the table cell behavior you can derive the Table to create a "renderer like"
widget, however unlike the list this component is "kept" and used as is. This means you can bind
listeners to this component and work with it as you would with any other component in Codename
One.

So lets fix the example above to include far more capabilities:

245

Table table = new Table(model) {
 @Override
 protected Component createCell(Object value, int row, int column, boolean editable) { ①
 Component cell;
 if(row == 1 && column == 1) { ②
 Picker p = new Picker();
 p.setType(Display.PICKER_TYPE_STRINGS);
 p.setStrings("Row B can now stretch", "This is a good value", "So Is This", "Better than text field");
 p.setSelectedString((String)value); ③
 p.setUIID("TableCell");
 p.addActionListener((e) -> getModel().setValueAt(row, column, p.getSelectedString())); ④
 cell = p;
 } else {
 cell = super.createCell(value, row, column, editable);
 }
 if(row > -1 && row % 2 == 0) { ⑤
 // pinstripe effect
 cell.getAllStyles().setBgColor(0xeeeeee);
 cell.getAllStyles().setBgTransparency(255);
 }
 return cell;
 }

 @Override
 protected TableLayout.Constraint createCellConstraint(Object value, int row, int column) {
 TableLayout.Constraint con = super.createCellConstraint(value, row, column);
 if(row == 1 && column == 1) {
 con.setHorizontalSpan(2);
 }
 con.setWidthPercentage(33);
 return con;
 }
};

① The createCell method is invoked once per component but is similar conceptually to the List
renderer. Notice that it doesn’t return a "rubber stamp" though, it returns a full component.

② We only apply the picker to one cell for simplicities sake.

③ We need to set the value of the component manually, this is crucial since the Table doesn’t "see"
this.

④ We need to track the event and update the model in this case as the Table isn’t aware of the data
change.

⑤ We set the "pinstripe" effect by coloring even rows. Notice that unlike renderers we only need to
apply the coloring once as the Components are stateful.

246

Figure 233. Table with customize cells using the pinstripe effect

Figure 234. Picker table cell during edit

To line wrap table cells we can just override the createCell method and return a TextArea
[https://www.codenameone.com/javadoc/com/codename1/ui/TextArea.html] instead of a TextField
[https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html] since the TextArea defaults to the
multi-line behavior this should work seamlessly. E.g.:

247

https://www.codenameone.com/javadoc/com/codename1/ui/TextArea.html
https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html

Form hi = new Form("Table", new BorderLayout());
TableModel model = new DefaultTableModel(new String[] {"Col 1", "Col 2", "Col 3"}, new Object[][] {
 {"Row 1", "Row A", "Row X"},
 {"Row 2", "Row B can now stretch very long line that should span multiple rows as much as possible", "Row Y"},
 {"Row 3", "Row C", "Row Z"},
 {"Row 4", "Row D", "Row K"},
 }) {
 public boolean isCellEditable(int row, int col) {
 return col != 0;
 }
 };
Table table = new Table(model) {
 @Override
 protected Component createCell(Object value, int row, int column, boolean editable) {
 TextArea ta = new TextArea((String)value);
 ta.setUIID("TableCell");
 return ta;
 }

 @Override
 protected TableLayout.Constraint createCellConstraint(Object value, int row, int column) {
 TableLayout.Constraint con = super.createCellConstraint(value, row, column);
 con.setWidthPercentage(33);
 return con;
 }
};
hi.add(BorderLayout.CENTER, table);
hi.show();

Notice that we don’t really need to do anything else as binding to the TextArea is
builtin to the Table.

We must set the column width constraint when we want multi-line to work.
Otherwise the preferred size of the column might be too wide and the remaining
columns might not have space left.

Figure 235. Multiline table cell in portrait mode

Figure 236. Multiline table cell in landscape mode. Notice the cell row count adapts seamlessly

248

6.19.1. Sorting Tables

Sorting tables by clicking the titles is something that should generally work out of the box by using
an API like setSortSupported(true).

Form hi = new Form("Table", new BorderLayout());
TableModel model = new DefaultTableModel(new String[] {"Col 1", "Col 2", "Col 3"}, new Object[][] {
 {"Row 1", "Row A", 1},
 {"Row 2", "Row B", 4},
 {"Row 3", "Row C", 7.5},
 {"Row 4", "Row D", 2.24},
 });
Table table = new Table(model);
table.setSortSupported(true);
hi.add(BorderLayout.CENTER, table);
hi.add(NORTH, new Button("Button"));
hi.show();

Notice this works with numbers, Strings and might work with dates but you can generally support
any object type by overriding the method protected Comparator createColumnSortComparator(int
column) which should return a comparator for your custom object type in the column.

6.20. Tree
Tree [https://www.codenameone.com/javadoc/com/codename1/ui/tree/Tree.html] allows displaying
hierarchical data such as folders and files in a collapsible/expandable UI. Like the Table it is a
composite component (but it isn’t a lead component). Like the Table it works in consort with a
model to construct its user interface on the fly but doesn’t use a stateless renderer (as List does).

The data of the Tree arrives from a model model e.g. this:

249

https://www.codenameone.com/javadoc/com/codename1/ui/tree/Tree.html

class StringArrayTreeModel implements TreeModel {
 String[][] arr = new String[][] {
 {"Colors", "Letters", "Numbers"},
 {"Red", "Green", "Blue"},
 {"A", "B", "C"},
 {"1", "2", "3"}
 };

 public Vector getChildren(Object parent) {
 if(parent == null) {
 Vector v = new Vector();
 for(int iter = 0 ; iter < arr[0].length ; iter++) {
 v.addElement(arr[0][iter]);
 }
 return v;
 }
 Vector v = new Vector();
 for(int iter = 0 ; iter < arr[0].length ; iter++) {
 if(parent == arr[0][iter]) {
 if(arr.length > iter + 1 && arr[iter + 1] != null) {
 for(int i = 0 ; i < arr[iter + 1].length ; i++) {
 v.addElement(arr[iter + 1][i]);
 }
 }
 }
 }
 return v;
 }

 public boolean isLeaf(Object node) {
 Vector v = getChildren(node);
 return v == null || v.size() == 0;
 }
}

Tree dt = new Tree(new StringArrayTreeModel());

Will result in this:

Figure 237. Tree

250

Since Tree is hierarchy based we can’t have a simple model like we have for the
Table as deep hierarchy is harder to represent with arrays.

A more practical "real world" example would be working with XML data. We can use something
like this to show an XML Tree:

Form hi = new Form("XML Tree", new BorderLayout());
InputStream is = Display.getInstance().getResourceAsStream(getClass(), "/build.xml");
try(Reader r = new InputStreamReader(is, "UTF-8");) {
 Element e = new XMLParser().parse(r);
 Tree xmlTree = new Tree(new XMLTreeModel(e)) {
 @Override
 protected String childToDisplayLabel(Object child) {
 if(child instanceof Element) {
 return ((Element)child).getTagName();
 }
 return child.toString();
 }
 };
 hi.add(BorderLayout.CENTER, xmlTree);
} catch(IOException err) {
 Log.e(err);
}

The try(Stream) syntax is a try with resources clogic that implicitly closes the
stream.

Figure 238. XML Tree

The model for the XML hierarchy is implemented as such:

251

class XMLTreeModel implements TreeModel {
 private Element root;
 public XMLTreeModel(Element e) {
 root = e;
 }

 public Vector getChildren(Object parent) {
 if(parent == null) {
 Vector c = new Vector();
 c.addElement(root);
 return c;
 }
 Vector result = new Vector();
 Element e = (Element)parent;
 for(int iter = 0 ; iter < e.getNumChildren() ; iter++) {
 result.addElement(e.getChildAt(iter));
 }
 return result;
 }

 public boolean isLeaf(Object node) {
 Element e = (Element)node;
 return e.getNumChildren() == 0;
 }
}

6.21. ShareButton
ShareButton [https://www.codenameone.com/javadoc/com/codename1/components/ShareButton.html] is a
button you can add into the UI to let a user share an image or block of text.

The ShareButton uses a set of predefined share options on the simulator. On Android & iOS the
ShareButton is mapped to the OS native sharing functionality and can share the image/text with the
services configured on the device (e.g. Twitter, Facebook etc.).

Sharing text is trivial but to share an image we need to save it to the
FileSystemStorage [https://www.codenameone.com/javadoc/com/codename1/io/

FileSystemStorage.html]. Notice that saving to Storage won’t work!

In the sample code below we take a screenshot which is saved to FileSystemStorage
[https://www.codenameone.com/javadoc/com/codename1/io/FileSystemStorage.html] for sharing:

252

https://www.codenameone.com/javadoc/com/codename1/components/ShareButton.html
https://www.codenameone.com/javadoc/com/codename1/io/FileSystemStorage.html
https://www.codenameone.com/javadoc/com/codename1/io/FileSystemStorage.html

Form hi = new Form("ShareButton");
ShareButton sb = new ShareButton();
sb.setText("Share Screenshot");
hi.add(sb);

Image screenshot = Image.createImage(hi.getWidth(), hi.getHeight());
hi.revalidate();
hi.setVisible(true);
hi.paintComponent(screenshot.getGraphics(), true);

String imageFile = FileSystemStorage.getInstance().getAppHomePath() + "screenshot.png";
try(OutputStream os = FileSystemStorage.getInstance().openOutputStream(imageFile);) {
 ImageIO.getImageIO().save(screenshot, os, ImageIO.FORMAT_PNG, 1);
} catch(IOException err) {
 Log.e(err);
}
sb.setImageToShare(imageFile, "image/png");

Figure 239. The share button running on the simulator

 ShareButton behaves very differently on the device…

Figure 240. The share button running on the Android device and screenshot sent into twitter

253

The ShareButton features some share service classes to allow plugging in additional
share services. However, this functionality is only relevant to devices where native
sharing isn’t supported. So this code isn’t used on iOS/Android…

6.22. Tabs
The Tabs [https://www.codenameone.com/javadoc/com/codename1/ui/Tabs.html] Container arranges
components into groups within "tabbed" containers. Tabs is a container type that allows leafing
through its children using labeled toggle buttons. The tabs can be placed in multiple different ways
(top, bottom, left or right) with the default being determined by the platform. This class also allows
swiping between components to leaf between said tabs (for this purpose the tabs themselves can
also be hidden).

Since Tabs are a Container its a common mistake to try and add a Tab using the add method. That
method won’t work since a Tab can have both an Image and text String associated with it.

Form hi = new Form("Tabs", new BorderLayout());

Tabs t = new Tabs();
Style s = UIManager.getInstance().getComponentStyle("Tab");
FontImage icon1 = FontImage.createMaterial(FontImage.MATERIAL_QUESTION_ANSWER, s);

Container container1 = BoxLayout.encloseY(new Label("Label1"), new Label("Label2"));
t.addTab("Tab1", icon1, container1);
t.addTab("Tab2", new SpanLabel("Some text directly in the tab"));

hi.add(BorderLayout.CENTER, t);

Figure 241. Simple usage of Tabs

A common usage for Tabs is the the swipe to proceed effect which is very common in iOS
applications. In the code below we use RadioButton [https://www.codenameone.com/javadoc/com/

codename1/ui/RadioButton.html] and LayeredLayout [https://www.codenameone.com/javadoc/com/codename1/

ui/layouts/LayeredLayout.html] with hidden tabs to produce that effect:

254

https://www.codenameone.com/javadoc/com/codename1/ui/Tabs.html
https://www.codenameone.com/javadoc/com/codename1/ui/RadioButton.html
https://www.codenameone.com/javadoc/com/codename1/ui/layouts/LayeredLayout.html

Form hi = new Form("Swipe Tabs", new LayeredLayout());
Tabs t = new Tabs();
t.hideTabs();

Style s = UIManager.getInstance().getComponentStyle("Button");
FontImage radioEmptyImage = FontImage.createMaterial(FontImage.MATERIAL_RADIO_BUTTON_UNCHECKED, s);
FontImage radioFullImage = FontImage.createMaterial(FontImage.MATERIAL_RADIO_BUTTON_CHECKED, s);
((DefaultLookAndFeel)UIManager.getInstance().getLookAndFeel()).setRadioButtonImages(radioFullImage, radioEmptyImage,
radioFullImage, radioEmptyImage);

Container container1 = BoxLayout.encloseY(new Label("Swipe the tab to see more"),
 new Label("You can put anything here"));
t.addTab("Tab1", container1);
t.addTab("Tab2", new SpanLabel("Some text directly in the tab"));

RadioButton firstTab = new RadioButton("");
RadioButton secondTab = new RadioButton("");
firstTab.setUIID("Container");
secondTab.setUIID("Container");
new ButtonGroup(firstTab, secondTab);
firstTab.setSelected(true);
Container tabsFlow = FlowLayout.encloseCenter(firstTab, secondTab);

hi.add(t);
hi.add(BorderLayout.south(tabsFlow));

t.addSelectionListener((i1, i2) -> {
 switch(i2) {
 case 0:
 if(!firstTab.isSelected()) {
 firstTab.setSelected(true);
 }
 break;
 case 1:
 if(!secondTab.isSelected()) {
 secondTab.setSelected(true);
 }
 break;
 }
});

Figure 242. Swipeable Tabs with an iOS carousel effect page 1

255

Figure 243. Swipeable Tabs with an iOS carousel effect page 2

Notice that we used setRadioButtonImages to explicitly set the radio button images
to the look we want for the carousel.

6.23. MediaManager & MediaPlayer

MediaPlayer is a peer component, understanding this is crucial if your application
depends on such a component. You can learn about peer components and their
issues here [https://www.codenameone.com/manual/advanced-topics.html#native-peer-

components].

The MediaPlayer [https://www.codenameone.com/javadoc/com/codename1/components/MediaPlayer.html]
allows you to control video playback. To use the MediaPlayer we need to first load the Media object
from the MediaManager [https://www.codenameone.com/javadoc/com/codename1/media/MediaManager.html].

The MediaManager is the core class responsible for media interaction in Codename One.

You should also check out the Capture [https://www.codenameone.com/javadoc/com/

codename1/capture/Capture.html] class for things that aren’t covered by the
MediaManager.

In the demo code below we use the gallery functionality to pick a video from the device’s video
gallery.

256

https://www.codenameone.com/manual/advanced-topics.html#native-peer-components
https://www.codenameone.com/javadoc/com/codename1/components/MediaPlayer.html
https://www.codenameone.com/javadoc/com/codename1/media/MediaManager.html
https://www.codenameone.com/javadoc/com/codename1/capture/Capture.html

final Form hi = new Form("MediaPlayer", new BorderLayout());
hi.setToolbar(new Toolbar());
Style s = UIManager.getInstance().getComponentStyle("Title");
FontImage icon = FontImage.createMaterial(FontImage.MATERIAL_VIDEO_LIBRARY, s);
hi.getToolbar().addCommandToRightBar("", icon, (evt) -> {
 Display.getInstance().openGallery((e) -> {
 if(e != null && e.getSource() != null) {
 String file = (String)e.getSource();
 try {
 Media video = MediaManager.createMedia(file, true);
 hi.removeAll();
 hi.add(BorderLayout.CENTER, new MediaPlayer(video));
 hi.revalidate();
 } catch(IOException err) {
 Log.e(err);
 }
 }
 }, Display.GALLERY_VIDEO);
});
hi.show();

Figure 244. Video playback running on the simulator

Figure 245. Video playback running on an Android device. Notice the native playback controls that appear
when the video is tapped

257

Video playback in the simulator will only work with JavaFX enabled. This is the
default for Java 8 or newer so we recommend using that.

6.24. ImageViewer
The ImageViewer [https://www.codenameone.com/javadoc/com/codename1/components/ImageViewer.html]
allows us to inspect, zoom and pan into an image. It also allows swiping between images if you
have a set of images (using an image list model).

The ImageViewer is a complex rich component designed for user interaction. If you
just want to display an image use Label [https://www.codenameone.com/javadoc/com/

codename1/ui/Label.html] if you want the image to scale seamlessly use
ScaleImageLabel [https://www.codenameone.com/javadoc/com/codename1/components/

ScaleImageLabel.html].

You can use the ImageViewer as a tool to view a single image which allows you to zoom in/out to that
image as such:

Form hi = new Form("ImageViewer", new BorderLayout());
ImageViewer iv = new ImageViewer(duke);
hi.add(BorderLayout.CENTER, iv);

You can simulate pinch to zoom on the simulator by dragging the right button
away from the top left corner to zoom in and towards the top left corner to zoom
out. On Mac touchpads you can drag two fingers to achieve that.

Figure 246. ImageViewer as the demo loads with the image from the default icon

258

https://www.codenameone.com/javadoc/com/codename1/components/ImageViewer.html
https://www.codenameone.com/javadoc/com/codename1/ui/Label.html
https://www.codenameone.com/javadoc/com/codename1/components/ScaleImageLabel.html

Figure 247. ImageViewer zoomed in

We can work with a list of images to produce a swiping effect for the image viewer where you can
swipe from one image to the next and also zoom in/out on a specific image:

Form hi = new Form("ImageViewer", new BorderLayout());

Image red = Image.createImage(100, 100, 0xffff0000);
Image green = Image.createImage(100, 100, 0xff00ff00);
Image blue = Image.createImage(100, 100, 0xff0000ff);
Image gray = Image.createImage(100, 100, 0xffcccccc);

ImageViewer iv = new ImageViewer(red);
iv.setImageList(new DefaultListModel<>(red, green, blue, gray));
hi.add(BorderLayout.CENTER, iv);

Figure 248. An ImageViewer with multiple elements is indistinguishable from a single ImageViewer with
the exception of swipe

Notice that we use a ListModel [https://www.codenameone.com/javadoc/com/codename1/ui/list/ListModel.html]
to allow swiping between images.

EncodedImage’s aren’t always fully loaded and so when you swipe if the images are
really large you might see delays!

You can dynamically download images directly into the ImageViewer with a custom list model like
this:

259

https://www.codenameone.com/javadoc/com/codename1/ui/list/ListModel.html

Form hi = new Form("ImageViewer", new BorderLayout());
final EncodedImage placeholder = EncodedImage.createFromImage(
 FontImage.createMaterial(FontImage.MATERIAL_SYNC, s).
 scaled(300, 300), false);

class ImageList implements ListModel<Image> {
 private int selection;
 private String[] imageURLs = {
 "http://awoiaf.westeros.org/images/thumb/9/93/AGameOfThrones.jpg/300px-AGameOfThrones.jpg",
 "http://awoiaf.westeros.org/images/thumb/3/39/AClashOfKings.jpg/300px-AClashOfKings.jpg",
 "http://awoiaf.westeros.org/images/thumb/2/24/AStormOfSwords.jpg/300px-AStormOfSwords.jpg",
 "http://awoiaf.westeros.org/images/thumb/a/a3/AFeastForCrows.jpg/300px-AFeastForCrows.jpg",
 "http://awoiaf.westeros.org/images/7/79/ADanceWithDragons.jpg"
 };
 private Image[] images;
 private EventDispatcher listeners = new EventDispatcher();

 public ImageList() {
 this.images = new EncodedImage[imageURLs.length];
 }

 public Image getItemAt(final int index) {
 if(images[index] == null) {
 images[index] = placeholder;
 Util.downloadUrlToStorageInBackground(imageURLs[index], "list" + index, (e) -> {
 try {
 images[index] = EncodedImage.create(Storage.getInstance().createInputStream("list" + index));
 listeners.fireDataChangeEvent(index, DataChangedListener.CHANGED);
 } catch(IOException err) {
 err.printStackTrace();
 }
 });
 }
 return images[index];
 }

 public int getSize() {
 return imageURLs.length;
 }

 public int getSelectedIndex() {
 return selection;
 }

 public void setSelectedIndex(int index) {
 selection = index;
 }

 public void addDataChangedListener(DataChangedListener l) {
 listeners.addListener(l);
 }

 public void removeDataChangedListener(DataChangedListener l) {
 listeners.removeListener(l);
 }

 public void addSelectionListener(SelectionListener l) {
 }

 public void removeSelectionListener(SelectionListener l) {
 }

 public void addItem(Image item) {
 }

260

 public void removeItem(int index) {
 }
};

ImageList imodel = new ImageList();

ImageViewer iv = new ImageViewer(imodel.getItemAt(0));
iv.setImageList(imodel);
hi.add(BorderLayout.CENTER, iv);

Figure 249. Dynamically fetching an image URL from the internet [5]

This fetches the images in the URL asynchronously and fires a data change event when the data
arrives to automatically refresh the ImageViewer when that happens.

6.25. ScaleImageLabel & ScaleImageButton
ScaleImageLabel [https://www.codenameone.com/javadoc/com/codename1/components/ScaleImageLabel.html] &
ScaleImageButton [https://www.codenameone.com/javadoc/com/codename1/components/ScaleImageButton.html]
allow us to position an image that will grow/shrink to fit available space. In that sense they differ
from Label & Button which keeps the image at the same size.

The default UIID of ScaleImageLabel is “Label”, however the default UIID of
ScaleImageButton is “ScaleImageButton”. The reasoning for the difference is that
the “Button” UIID includes a border and a lot of legacy.

You can use ScaleImageLabel/ScaleImageButton interchangeably. The only major difference between
these components is the buttons ability to handle click events/focus.

Here is a simple example that also shows the difference between the scale to fill and scale to
fit modes:

261

https://www.codenameone.com/javadoc/com/codename1/components/ScaleImageLabel.html
https://www.codenameone.com/javadoc/com/codename1/components/ScaleImageButton.html

TableLayout tl = new TableLayout(2, 2);
Form hi = new Form("ScaleImageButton/Label", tl);
Style s = UIManager.getInstance().getComponentStyle("Button");
Image icon = FontImage.createMaterial(FontImage.MATERIAL_WARNING, s);
ScaleImageLabel fillLabel = new ScaleImageLabel(icon);
fillLabel.setBackgroundType(Style.BACKGROUND_IMAGE_SCALED_FILL);
ScaleImageButton fillButton = new ScaleImageButton(icon);
fillButton.setBackgroundType(Style.BACKGROUND_IMAGE_SCALED_FILL);
hi.add(tl.createConstraint().widthPercentage(20), new ScaleImageButton(icon)).
 add(tl.createConstraint().widthPercentage(80), new ScaleImageLabel(icon)).
 add(fillLabel).
 add(fillButton);
hi.show();

Figure 250. ScaleImageLabel/Button, the top row includes scale to fit versions (the default) whereas the
bottom row includes the scale to fill versions

When styling these components keep in mind that changing attributes such as
background behavior might cause an issue with their functionality or might not
work.

6.26. Toolbar
The Toolbar [https://www.codenameone.com/javadoc/com/codename1/ui/Toolbar.html] API provides deep
customization of the title bar area with more flexibility e.g. placing a TextField
[https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html] for search or buttons in arbitrary
title area positions. The Toolbar API replicates some of the native functionality available on
Android/iOS and integrates with features such as the side menu to provide very fine grained
control over the title area behavior.

The Toolbar needs to be installed into the Form in order for it to work. You can setup the Toolbar in
one of these three ways:

1. form.setToolbar(new Toolbar()); - allows you to activate the Toolbar to a specific Form and not
for the entire application

2. Toolbar.setGlobalToolbar(true); - enables the Toolbar for all the forms in the app

3. Theme constant globalToobarBool - this is equivalent to Toolbar.setGlobalToolbar(true);

The basic functionality of the Toolbar includes the ability to add a command to the following 4
places:

• Left side of the title - addCommandToLeftBar

• Right side of the title - addCommandToRightBar

262

https://www.codenameone.com/javadoc/com/codename1/ui/Toolbar.html
https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html

• Side menu bar (the drawer that opens when you click the icon on the top left or swipe the
screen from left to right) - addCommandToSideMenu

• Overflow menu (the menu that opens when you tap the 3 vertical dots in the top right corner) -
addCommandToOverflowMenu

The code below provides a brief overview of these options:

Toolbar.setGlobalToolbar(true);

Form hi = new Form("Toolbar", new BoxLayout(BoxLayout.Y_AXIS));
hi.getToolbar().addCommandToLeftBar("Left", icon, (e) -> Log.p("Clicked"));
hi.getToolbar().addCommandToRightBar("Right", icon, (e) -> Log.p("Clicked"));
hi.getToolbar().addCommandToOverflowMenu("Overflow", icon, (e) -> Log.p("Clicked"));
hi.getToolbar().addCommandToSideMenu("Sidemenu", icon, (e) -> Log.p("Clicked"));
hi.show();

Figure 251. The Toolbar

Figure 252. The default sidemenu of the Toolbar

Figure 253. The overflow menu of the Toolbar

Normally you can just set a title with a String but if you would want the component to be a text
field or a multi line label you can use setTitleComponent(Component) which allows you to install any
component into the title area.

The code below demonstrates searching using custom code however the Toolbar
also has builtin support for search covered in the next section

The customization of the title area allows for some pretty powerful UI effects e.g. the code below
allows searching dynamically within a set of entries and uses some very neat tricks:

263

Toolbar.setGlobalToolbar(true);
Style s = UIManager.getInstance().getComponentStyle("Title");

Form hi = new Form("Toolbar", new BoxLayout(BoxLayout.Y_AXIS));
TextField searchField = new TextField("", "Toolbar Search"); ①
searchField.getHintLabel().setUIID("Title");
searchField.setUIID("Title");
searchField.getAllStyles().setAlignment(Component.LEFT);
hi.getToolbar().setTitleComponent(searchField);
FontImage searchIcon = FontImage.createMaterial(FontImage.MATERIAL_SEARCH, s);
searchField.addDataChangeListener((i1, i2) -> { ②
 String t = searchField.getText();
 if(t.length() < 1) {
 for(Component cmp : hi.getContentPane()) {
 cmp.setHidden(false);
 cmp.setVisible(true);
 }
 } else {
 t = t.toLowerCase();
 for(Component cmp : hi.getContentPane()) {
 String val = null;
 if(cmp instanceof Label) {
 val = ((Label)cmp).getText();
 } else {
 if(cmp instanceof TextArea) {
 val = ((TextArea)cmp).getText();
 } else {
 val = (String)cmp.getPropertyValue("text");
 }
 }
 boolean show = val != null && val.toLowerCase().indexOf(t) > -1;
 cmp.setHidden(!show); ③
 cmp.setVisible(show);
 }
 }
 hi.getContentPane().animateLayout(250);
});
hi.getToolbar().addCommandToRightBar("", searchIcon, (e) -> {
 searchField.startEditingAsync(); ④
});

hi.add("A Game of Thrones").
 add("A Clash Of Kings").
 add("A Storm Of Swords").
 add("A Feast For Crows").
 add("A Dance With Dragons").
 add("The Winds of Winter").
 add("A Dream of Spring");
hi.show();

264

① We use a TextField the whole time and just style it to make it (and its hint) look like a regular
title. An alternative way is to replace the title component dynamically.

② We use the DataChangeListener to update the search results as we type them.

③ Hidden & Visible use the opposite flag values to say similar things (e.g. when hidden is set to
false you would want to set visible to true).
Visible indicates whether a component can be seen. It will still occupy the physical space on the
screen even when it isn’t visible. Hidden will remove the space occupied by the component from
the screen, but some code might still try to paint it. Normally, visible is redundant but we use it
with hidden for good measure.

④ The search button is totally unnecessary here. We can just click the TextField!
However, that isn’t intuitive to most users so we added the button to start editing.

Figure 254. Search field within the toolbar

Figure 255. Search field after typing a couple of letters

6.26.1. Search Mode

While you can implement search manually using the builtin search offers a simpler and more
uniform UI.

Figure 256. Builtin toolbar search functionality

265

You can customize the appearance of the search bar by using the UIID’s: ToolbarSearch,
TextFieldSearch & TextHintSearch.

In the sample below we fetch all the contacts from the device and enable search thru them, notice it
expects and image called duke.png which is really just the default Codename One icon renamed and
placed in the src folder:

Image duke = null;
try {
 duke = Image.createImage("/duke.png");
} catch(IOException err) {
 Log.e(err);
}
int fiveMM = Display.getInstance().convertToPixels(5);
final Image finalDuke = duke.scaledWidth(fiveMM);
Toolbar.setGlobalToolbar(true);
Form hi = new Form("Search", BoxLayout.y());
hi.add(new InfiniteProgress());
Display.getInstance().scheduleBackgroundTask(()-> {
 // this will take a while...
 Contact[] cnts = Display.getInstance().getAllContacts(true, true, true, true, false, false);
 Display.getInstance().callSerially(() -> {
 hi.removeAll();
 for(Contact c : cnts) {
 MultiButton m = new MultiButton();
 m.setTextLine1(c.getDisplayName());
 m.setTextLine2(c.getPrimaryPhoneNumber());
 Image pic = c.getPhoto();
 if(pic != null) {
 m.setIcon(fill(pic, finalDuke.getWidth(), finalDuke.getHeight()));
 } else {
 m.setIcon(finalDuke);
 }
 hi.add(m);
 }
 hi.revalidate();
 });
});

hi.getToolbar().addSearchCommand(e -> {
 String text = (String)e.getSource();
 if(text == null || text.length() == 0) {
 // clear search
 for(Component cmp : hi.getContentPane()) {
 cmp.setHidden(false);
 cmp.setVisible(true);
 }
 hi.getContentPane().animateLayout(150);
 } else {
 text = text.toLowerCase();
 for(Component cmp : hi.getContentPane()) {
 MultiButton mb = (MultiButton)cmp;
 String line1 = mb.getTextLine1();
 String line2 = mb.getTextLine2();

266

 boolean show = line1 != null && line1.toLowerCase().indexOf(text) > -1 ||
 line2 != null && line2.toLowerCase().indexOf(text) > -1;
 mb.setHidden(!show);
 mb.setVisible(show);
 }
 hi.getContentPane().animateLayout(150);
 }
}, 4);

hi.show();

6.26.2. South Component

A common feature in side menu bar is the ability to add a component to the "south" part of the side
menu.

Notice that this feature only works with the on-top and permanent versions of the side menu and
not with the legacy versions:

toolbar.setComponentToSideMenuSouth(myComponent);

This places the component below the side menu bar. Notice that this component controls its entire
UIID & is separate from the SideNavigationPanel UIID so if you set that component you might want
to place it within a container that has the SideNavigationPanel UIID so it will blend with the rest of
the UI.

6.26.3. Title Animations

Modern UI’s often animate the title upon scrolling to balance the highly functional smaller title
advantage with the gorgeous large image based title. This is pretty easy to do with the Toolbar API
thru the Title animation API.

The code below shows off an attractive title based on a book by GRRM on top of text [6] that is
scrollable. As the text is scrolled the title fades out.

267

Toolbar.setGlobalToolbar(true);

Form hi = new Form("Toolbar", new BoxLayout(BoxLayout.Y_AXIS));
EncodedImage placeholder = EncodedImage.createFromImage(Image.createImage(hi.getWidth(), hi.getWidth() / 5, 0xffff0000),
true);
URLImage background = URLImage.createToStorage(placeholder, "400px-AGameOfThrones.jpg",
 "http://awoiaf.westeros.org/images/thumb/9/93/AGameOfThrones.jpg/400px-AGameOfThrones.jpg");
background.fetch();
Style stitle = hi.getToolbar().getTitleComponent().getUnselectedStyle();
stitle.setBgImage(background);
stitle.setBackgroundType(Style.BACKGROUND_IMAGE_SCALED_FILL);
stitle.setPaddingUnit(Style.UNIT_TYPE_DIPS, Style.UNIT_TYPE_DIPS, Style.UNIT_TYPE_DIPS, Style.UNIT_TYPE_DIPS);
stitle.setPaddingTop(15);
SpanButton credit = new SpanButton("This excerpt is from A Wiki Of Ice And Fire. Please check it out by clicking here!");
credit.addActionListener((e) -> Display.getInstance().execute("http://awoiaf.westeros.org/index.php/A_Game_of_Thrones"));
hi.add(new SpanLabel("A Game of Thrones is the first of seven planned novels in A Song of Ice and Fire, an epic fantasy
series by American author George R. R. Martin. It was first published on 6 August 1996. The novel was nominated for the
1998 Nebula Award and the 1997 World Fantasy Award,[1] and won the 1997 Locus Award.[2] The novella Blood of the Dragon,
comprising the Daenerys Targaryen chapters from the novel, won the 1997 Hugo Award for Best Novella. ")).
 add(new Label("Plot introduction", "Heading")).
 add(new SpanLabel("A Game of Thrones is set in the Seven Kingdoms of Westeros, a land reminiscent of Medieval
Europe. In Westeros the seasons last for years, sometimes decades, at a time.\n\n" +
 "Fifteen years prior to the novel, the Seven Kingdoms were torn apart by a civil war, known alternately as
\"Robert's Rebellion\" and the \"War of the Usurper.\" Prince Rhaegar Targaryen kidnapped Lyanna Stark, arousing the ire
of her family and of her betrothed, Lord Robert Baratheon (the war's titular rebel). The Mad King, Aerys II Targaryen,
had Lyanna's father and eldest brother executed when they demanded her safe return. Her second brother, Eddard, joined
his boyhood friend Robert Baratheon and Jon Arryn, with whom they had been fostered as children, in declaring war against
the ruling Targaryen dynasty, securing the allegiances of House Tully and House Arryn through a network of dynastic
marriages (Lord Eddard to Catelyn Tully and Lord Arryn to Lysa Tully). The powerful House Tyrell continued to support the
King, but House Lannister and House Martell both stalled due to insults against their houses by the Targaryens. The civil
war climaxed with the Battle of the Trident, when Prince Rhaegar was killed in battle by Robert Baratheon. The Lannisters
finally agreed to support King Aerys, but then brutally... ")).
 add(credit);

ComponentAnimation title = hi.getToolbar().getTitleComponent().createStyleAnimation("Title", 200);
hi.getAnimationManager().onTitleScrollAnimation(title);
hi.show();

Figure 257. The Toolbar starts with the large URLImage fetched from the web

268

Figure 258. As we scroll down the image fades and the title shrinks in size returning to the default UIID look

Figure 259. As scrolling continues the title reaches standard size

Almost all of the code above just creates the "look" of the application. The key piece of code above is
this:

ComponentAnimation title = hi.getToolbar().getTitleComponent().createStyleAnimation("Title", 200);
hi.getAnimationManager().onTitleScrollAnimation(title);

In the first line we create a style animation that will translate the style from the current settings to
the destination UIID (the first argument) within 200 pixels of scrolling. We then bind this animation
to the title scrolling animation event.

6.27. BrowserComponent & WebBrowser

BrowserComponent is a peer component, understanding this is crucial if your
application depends on such a component. You can learn about peer components
and their issues here [https://www.codenameone.com/manual/advanced-topics.html#native-

peer-components].

The WebBrowser [https://www.codenameone.com/javadoc/com/codename1/components/WebBrowser.html]
component shows the native device web browser when supported by the device and the
HTMLComponent [https://www.codenameone.com/javadoc/com/codename1/ui/html/HTMLComponent.html]
when the web browser isn’t supported on the given device. If you only intend to target
smartphones you should use the BrowserComponent [https://www.codenameone.com/javadoc/com/

codename1/ui/BrowserComponent.html] directly instead of the WebBrowser.

269

https://www.codenameone.com/manual/advanced-topics.html#native-peer-components
https://www.codenameone.com/javadoc/com/codename1/components/WebBrowser.html
https://www.codenameone.com/javadoc/com/codename1/ui/html/HTMLComponent.html
https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.html

The BrowserComponent can point at an arbitrary URL to load it:

Form hi = new Form("Browser", new BorderLayout());
BrowserComponent browser = new BrowserComponent();
browser.setURL("https://www.codenameone.com/");
hi.add(BorderLayout.CENTER, browser);

Figure 260. Browser Component showing the Codename One website on the simulator

The scrollbars only appear in the simulator, device versions of the browser
component act differently and support touch scrolling.

A BrowserComponent should be in the center of a BorderLayout. Otherwise its
preferred size might be zero before the HTML finishes loading/layout in the native
layer and layout might be incorrect as a result.

You can use WebBrowser and BrowserComponent interchangeably for most basic usage. However, if you
need access to JavaScript or native browser functionality then there is really no use in going thru
the WebBrowser abstraction.

The BrowserComponent has full support for executing local web pages from within the jar. The basic
support uses the jar:/// URL as such:

BrowserComponent wb = new BrowserComponent();
wb.setURL("jar:///Page.html");

On Android a native indicator might show up when the web page is loading. This
can be disabled using the Display.getInstance().setProperty("WebLoadingHidden",
"true"); call. You only need to invoke this once.

270

6.27.1. BrowserComponent Hierarchy

When Codename One packages applications into native apps it hides a lot of details to make the
process simpler. One of the things hidden is the fact that we aren’t dealing with a JAR anymore, so
getResource/getResourceAsStream are problematic… Both of these API’s support hierarchies and a
concept of package relativity both of which might not be supported on all OS’s.

Codename One has its own getResourceAsSteam in the Display [https://www.codenameone.com/javadoc/

com/codename1/ui/Display.html] class and that works just fine, but it requires that all files be in the src
root directory.

That’s why we recommend that you place files inside res files. A resource file
allows you to add arbitrary data files and you can have as many resource files as
you need.

For web developers this isn’t enough since hierarchies are used often to represent the various
dependencies, this means that many links & references are relative. To work with such hierarchies
just place all of your resources in a hierarchy under the html package in the project source
directory (src/html). The build server will tar the entire content of that package and add an
html.tar file into the native package. This tar is seamlessly extracted on the device when you
actually need the resources and only with new application versions (not on every launch). So
assuming the resources are under the html root package they can be displayed with code like this:

try {
 browserComponent.setURLHierarchy("/htmlFile.html");
} catch(IOException err) {
 ...
}

Notice that the path is relative to the html directory and starts with / but inside the HTML files you
should use relative (not absolute) paths.

Also notice that an IOException can be thrown due to the process of untarring. Its unlikely to
happen but is entirely possible.

6.27.2. NavigationCallback

At the core of the BrowserComponent we have the BrowserNavigationCallback
[https://www.codenameone.com/javadoc/com/codename1/ui/events/BrowserNavigationCallback.html]. It might not
seem like the most important interface within the browser but it is the "glue" that allows the
JavaScript code to communicate back into the Java layer.

You can bind a BrowserNavigationCallback by invoking setBrowserNavigationCallback on the
BrowserComponent. At that point with every navigation within the browser the callback will get
invoked.

271

https://www.codenameone.com/javadoc/com/codename1/ui/Display.html
https://www.codenameone.com/javadoc/com/codename1/ui/events/BrowserNavigationCallback.html

The shouldNavigate method from the BrowserNavigationCallback is invoked in a
native thread and NOT ON THE EDT!
It is crucial that this method returns immediately and that it won’t do any changes
on the UI.

The shouldNavigate indicates to the native code whether navigation should proceed or not. E.g. if a
user clicks a specific link we might choose to do something in the Java code so we can just return
false and block the navigation. We can invoke callSerially [https://www.codenameone.com/javadoc/com/

codename1/ui/Display.html#callSerially-java.lang.Runnable-] to do the actual task in the Java side.

Form hi = new Form("BrowserComponent", new BorderLayout());
BrowserComponent bc = new BrowserComponent();
bc.setPage("<html lang=\"en\">\n" +
 " <head>\n" +
 " <meta charset=\"utf-8\">\n" +
 " <script>\n" +
 " function fnc(message) {\n" +
 " document.write(message);\n" +
 " };\n" +
 " </script>\n" +
 " </head>\n" +
 " <body >\n" +
 " <p>Demo</p>\n" +
 " </body>\n" +
 "</html>", null);
hi.add(BorderLayout.CENTER, bc);
bc.setBrowserNavigationCallback((url) -> {
 if(url.startsWith("http://click")) {
 Display.getInstance().callSerially(() -> bc.execute("fnc('<p>You clicked!</p>')"));
 return false;
 }
 return true;
});

Figure 261. Before the link is clicked for the "shouldNavigate" call

Figure 262. After the link is clicked for the "shouldNavigate" call

 The JavaScript Bridge is implemented on top of the BrowserNavigationCallback.

6.27.3. JavaScript

272

https://www.codenameone.com/javadoc/com/codename1/ui/Display.html#callSerially-java.lang.Runnable-

The JavaScript bridge is sometimes confused with the JavaScript Port. The
JavaScript bridge allows us to communicate with JavaScript from Java (and visa
versa). The JavaScript port allows you to compile the Codename One application
into a JavaScript application that runs in a standard web browser without code
changes (think GWT without source changes and with thread support).+ We
discuss the JavaScript port further later in the guide.

Codename One 4.0 introduced a new API for interacting with Javascript in Codename One. This API
is part of the BrowserComponent class, and effectively replaces the com.codename1.javascript package
[https://www.codenameone.com/javadoc/com/codename1/javascript/package-summary.html], which is now
deprecated.

So what was wrong with the old API?

The old API provided a synchronous wrapper around an inherently asynchronous process, and
made extensive use of invokeAndBlock() underneath the covers. This resulted in a very nice API
with high-level abstractions that played nicely with a synchronous programming model, but it
came with a price-tag in terms of performance, complexity, and predictability. Let’s take a simple
example, getting a reference to the “window” object:

JSObject window = ctx.get("window");

This code looks harmless enough, but this is actually quite expensive. It issues a command to the
BrowserComponent, and uses invokeAndBlock() to wait for the command to go through and send back
a response. invokeAndBlock() is a magical tool that allows you to “block” without blocking the EDT,
but it has its costs, and shouldn’t be overused. Most of the Codename One APIs that use
invokeAndBlock() indicate this in their name. E.g. Component.animateLayoutAndWait(). This gives you
the expectation that this call could take some time, and helps to alert you to the underlying cost.

The problem with the ctx.get("window") call is that it looks the same as a call to Map.get(key).
There’s no indication that this call is expensive and could take time. One call like this probably isn’t
a big deal, but it doesn’t take long before you have dozens or even hundreds of calls like this littered
throughout your codebase, and they can be hard to pick out.

The New API

The new API fully embraces the asynchronous nature of Javascript. It uses callbacks instead of
return values, and provides convenience wrappers with the appropriate “AndWait()” naming
convention to allow for synchronous usage. Let’s look at a simple example:

In all of the sample code below, you can assume that variables named bc represent
an instance of BrowserComponent [https://www.codenameone.com/javadoc/com/

codename1/ui/BrowserComponent.html].

273

https://www.codenameone.com/javadoc/com/codename1/javascript/package-summary.html
https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.html

bc.execute(
 "callback.onSuccess(3+4)",
 res -> Log.p("The result was "+res.getInt())
);

This code should output “The result was 7” to the console. It is fully asynchronous, so you can
include this code anywhere without worrying about it “bogging down” your code. The full
signature of this form of the execute() [https://www.codenameone.com/javadoc/com/codename1/ui/

BrowserComponent.html#execute-java.lang.String-com.codename1.util.SuccessCallback-] method is:

public void execute(String js, SuccessCallback<JSRef> callback)

The first parameter is just a javascript expression. This javascript MUST call either
callback.onSuccess(result) or callback.onError(message, errCode) at some point in order for your
callback to be called.

The second parameter is your callback that is executed from the javascript side, when
callback.onSuccess(res) is called. The callback takes a single parameter of type JSRef
[https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.JSRef.html] which is a generic
wrapper around a javascript variable. JSRef has accessors to retrieve the value as some of the
primitive types. E.g. getBoolean(), getDouble(), getInt(), toString(), and it provides some
introspection via the getType() method.

It is worth noting that the callback method can only take a single parameter. If you
need to pass multiple parameters, you may consider including them in a single
string which you parse in your callback.

Synchronous Wrappers

As mentioned before, the new API also provides an executeAndWait() wrapper for execute() that
will work synchronously. It, as its name suggests, uses invokeAndBlock under the hood so as not to
block the EDT while it is waiting.

E.g.

JSRef res = bc.executeAndWait("callback.onSuccess(3+4)");
Log.p("The result was "+res.Int());

Prints “The result was 7”.

When using the andWait() variant, it is extremely important that your Javascript
calls your callback method at some point - otherwise it will block indefinitely. We
provide variants of executeAndWait() that include a timeout in case you want to
hedge against this possibility.

274

https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.html#execute-java.lang.String-com.codename1.util.SuccessCallback-
https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.JSRef.html

Multi-use Callbacks

The callbacks you pass to execute() and executeAndWait() are single-use callbacks. You can’t, for
example, store the callback variable on the javascript side for later use (e.g. to respond to a button
click event). If you need a “multi-use” callback, you should use the addJSCallback() method instead.
Its usage looks identical to execute(), the only difference is that the callback will life on after its first
use. E.g. Consider the following code:

bc.execute(
 "$('#somebutton').click(function(){callback.onSuccess('Button was clicked')})",
 res -> Log.p(res.toString())
);

The above example, assumes that jQuery is loaded in the webpage that we are interacting with, and
we are adding a click handler to a button with ID “somebutton”. The click handler calls our
callback.

If you run this example, the first time the button is clicked, you’ll see “Button was clicked” printed
to the console as expected. However, the 2nd time, you’ll just get an exception. This is because the
callback passed to execute() is only single-use.

We need to modify this code to use the addJSCallback() method as follows:

bc.addJSCallback(
 "$('#somebutton').click(function(){callback.onSuccess('Button was clicked')})",
 res -> Log.p(res.toString())
);

Now it will work no matter how many times the button is clicked.

Passing Parameters to Javascript

In many cases, the javascript expressions that you execute will include parameters from your java
code. Properly escaping these parameters is tricky at worst, and annoying at best. E.g. If you’re
passing a string, you need to make sure that it escapes quotes and new lines properly or it will
cause the javascript to have a syntax error. Luckily we provide variants of execute() and
addJSCallback() [https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.html#

addJSCallback-java.lang.String-com.codename1.util.SuccessCallback-] that allow you to pass your parameters
and have them automatically escaped.

For example, suppose we want to pass a string with text to set in a textarea within the webpage. We
can do something like:

275

https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.html#addJSCallback-java.lang.String-com.codename1.util.SuccessCallback-

bc.execute(
 "jQuery('#bio').text(${0}); jQuery('#age').text(${1})",
 new Object[]{
 "A multi-line\n string with \"quotes\"",
 27
 }
);

The gist is that you embed placeholders in the javascript expression that are replaced by the
corresponding entry in an array of parameters. The ${0} placeholder is replaced by the first item in
the parameters array, the ${1} placeholder is replaced by the 2nd, and so on.

Proxy Objects

The new API also includes a JSProxy [https://www.codenameone.com/javadoc/com/codename1/ui/

BrowserComponent.JSProxy.html] class that encapsulates a Javascript object simplify the getting and
setting of properties on Javascript objects - and the calling of their methods. It provides essentially
three core methods, along with several variants of each to allow for async or synchronous usages,
parameters, and timeouts.

E.g. We might want to create a proxy for the window.location [https://developer.mozilla.org/en-US/docs/

Web/API/Window/location] object so that we can access its properties more easily from Java.

JSProxy location = bc.createJSProxy("window.location");

Then we can retrieve its properties using the get() method:

location.get("href", res -> Log.p("location.href="+res));

Or synchronously:

JSRef href = location.getAndWait("href");
Log.p("location.href="+href);

We can also set its properties:

location.set("href", "http://www.google.com");

And call its methods:

location.call("replace", new Object[]{"http://www.google.com"},
 res -> Log.p("Return value was "+res)
);

276

https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.JSProxy.html
https://developer.mozilla.org/en-US/docs/Web/API/Window/location

Legacy JSObject Support

This section describes the now deprecated JSObject approach. It’s here for reference by developers
working with older code. We suggest using the new API when starting a new project.

BrowserComponent can communicate with the HTML code using JavaScript calls. E.g. we can create
HTML like this:

Form hi = new Form("BrowserComponent", new BorderLayout());
BrowserComponent bc = new BrowserComponent();
bc.setPage("<html lang=\"en\">\n" +
 " <head>\n" +
 " <meta charset=\"utf-8\">\n" +
 " <script>\n" +
 " function fnc(message) {\n" +
 " document.write(message);\n" +
 " };\n" +
 " </script>\n" +
 " </head>\n" +
 " <body >\n" +
 " <p>Demo</p>\n" +
 " </body>\n" +
 "</html>", null);
TextField tf = new TextField();
hi.add(BorderLayout.CENTER, bc).
 add(BorderLayout.SOUTH, tf);
bc.addWebEventListener("onLoad", (e) -> bc.execute("fnc('<p>Hello World</p>')"));
tf.addActionListener((e) -> bc.execute("fnc('<p>" + tf.getText() +"</p>')"));
hi.show();

Figure 263. JavaScript code was invoked to append text into the browser image above

 Notice that opening an alert in an embedded native browser might not work

We use the execute method above to execute custom JavaScript code. We also have an
executeAndReturnString method that allows us to receive a response value from the JavaScript side.

Coupled with shouldNavigate we can effectively do everything which is exactly what the JavaScript
Bridge tries to do.

277

The JavaScript Bridge

While it’s possible to just build everything on top of execute and shouldNavigate, both of these
methods have their limits. That is why we introduced the javascript package, it allows you to
communicate with JavaScript using intuitive code/syntax.

The JavascriptContext [https://www.codenameone.com/javadoc/com/codename1/javascript/

JavascriptContext.html] class lays the foundation by enabling you to call JavaScript code directly from
Java. It provides automatic type conversion between Java and JavaScript types as follows:

Table 5. Java to JavaScript

Java Type Javascript Type

String String

Double/Integer/Float/Long Number

Boolean Boolean

JSObject Object

null null

Other Not Allowed

Table 6. JavaScript to Java

Javascript Type Java Type

String String

Number Double

Boolean Boolean

Object JSObject

Function JSObject

Array JSObject

null null

undefined null

This conversion table is more verbose than necessary, since JavaScript functions
and arrays are, in fact Objects themselves, so those rows are redundant. All
JavaScript objects are converted to JSObject [https://www.codenameone.com/javadoc/

com/codename1/javascript/JSObject.html].

We can access JavaScript variables easily from the context by using code like this:

278

https://www.codenameone.com/javadoc/com/codename1/javascript/JavascriptContext.html
https://www.codenameone.com/javadoc/com/codename1/javascript/JSObject.html

Form hi = new Form("BrowserComponent", new BorderLayout());
BrowserComponent bc = new BrowserComponent();
bc.setPage("<html lang=\"en\">\n" +
 " <head>\n" +
 " <meta charset=\"utf-8\">\n" +
 " </head>\n" +
 " <body >\n" +
 " <p>This will appear twice...</p>\n" +
 " </body>\n" +
 "</html>", null);
hi.add(BorderLayout.CENTER, bc);
bc.addWebEventListener("onLoad", (e) -> {
 // Create a Javascript context for this BrowserComponent
 JavascriptContext ctx = new JavascriptContext(bc);

 String pageContent = (String)ctx.get("document.body.innerHTML");
 hi.add(BorderLayout.SOUTH, pageContent);
 hi.revalidate();
});
hi.show();

Figure 264. The contents was copied from the DOM and placed in the south position of the form

Notice that when you work with numeric values or anything related to the types mentioned above
your code must be aware of the typing. E.g. in this case the type is Double and not String:

Double outerWidth = (Double)ctx.get("window.outerWidth");

You can also query the context for objects and modify their value e.g.

279

Form hi = new Form("BrowserComponent", new BorderLayout());
BrowserComponent bc = new BrowserComponent();
bc.setPage("<html lang=\"en\">\n" +
 " <head>\n" +
 " <meta charset=\"utf-8\">\n" +
 " </head>\n" +
 " <body >\n" +
 " <p>Please Wait...</p>\n" +
 " </body>\n" +
 "</html>", null);
hi.add(BorderLayout.CENTER, bc);
bc.addWebEventListener("onLoad", (e) -> {
 // Create a Javascript context for this BrowserComponent
 JavascriptContext ctx = new JavascriptContext(bc);

 JSObject jo = (JSObject)ctx.get("window");
 jo.set("location", "https://www.codenameone.com/");
});

This code effectively navigates to the Codename One home page by fetching the DOM’s window
object and setting its location property to https://www.codenameone.com/
[https://www.codenameone.com/].

6.27.4. Cordova/PhoneGap Integration

PhoneGap was one of the first web app packager tools in the market. It’s a tool that is effectively a
browser component within a native wrapper coupled with native access API’s. Cordova is the open
source extension of this popular project.

Codename One supports embedding PhoneGap/Cordova applications directly into Codename One
applications. This is relatively easy to do with the BrowserComponent and JavaScript integration. The
main aspect that this integration requires is support for Cordova plugins & its JavaScript API’s.

The effort to integrate Cordova/PhoneGap support into Codename One is handled within an open
source github project here [https://github.com/codenameone/CN1Cordova]. The chief benefits of picking
Codename One rather than using Cordova directly are:

• Build Cloud

• Better Native Code Support

• Better Protection Of IP

• IDE Integration Java - JavaScript - HTML

• Easy, Doesn’t Require A Mac, Automates Certificates/Signing

• Migration To Java

This is discussed further in the original announcement [https://www.codenameone.com/blog/phonegap-

cordova-compatibility-for-codename-one.html].

280

https://www.codenameone.com/
https://github.com/codenameone/CN1Cordova
https://www.codenameone.com/blog/phonegap-cordova-compatibility-for-codename-one.html

6.28. AutoCompleteTextField
The AutoCompleteTextField [https://www.codenameone.com/javadoc/com/codename1/ui/

AutoCompleteTextField.html] allows us to write text into a text field and select a completion entry from
the list in a similar way to a search engine.

This is really easy to incorporate into your code, just replace your usage of TextField
[https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html] with AutoCompleteTextField and
define the data that the autocomplete should work from. There is a default implementation that
accepts a String array or a ListModel [https://www.codenameone.com/javadoc/com/codename1/ui/list/

ListModel.html] for completion strings, this can work well for a "small" set of thousands (or tens of
thousands) of entries.

E.g. This is a trivial use case that can work well for smaller sample sizes:

Form hi = new Form("Auto Complete", new BoxLayout(BoxLayout.Y_AXIS));
AutoCompleteTextField ac = new AutoCompleteTextField("Short", "Shock", "Sholder", "Shrek");
ac.setMinimumElementsShownInPopup(5);
hi.add(ac);

Figure 265. Autocomplete Text Field

However, if you wish to query a database or a web service you will need to derive the class and
perform more advanced filtering by overriding the filter method:

281

https://www.codenameone.com/javadoc/com/codename1/ui/AutoCompleteTextField.html
https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html
https://www.codenameone.com/javadoc/com/codename1/ui/list/ListModel.html

public void showForm() {
 final DefaultListModel<String> options = new DefaultListModel<>();
 AutoCompleteTextField ac = new AutoCompleteTextField(options) {
 @Override
 protected boolean filter(String text) {
 if(text.length() == 0) {
 return false;
 }
 String[] l = searchLocations(text);
 if(l == null || l.length == 0) {
 return false;
 }

 options.removeAll();
 for(String s : l) {
 options.addItem(s);
 }
 return true;
 }

 };
 ac.setMinimumElementsShownInPopup(5);
 hi.add(ac);
 hi.add(new SpanLabel("This demo requires a valid google API key to be set below "
 + "you can get this key for the webservice (not the native key) by following the instructions here: "
 + "https://developers.google.com/places/web-service/get-api-key"));
 hi.add(apiKey);
 hi.getToolbar().addCommandToRightBar("Get Key", null, e ->
Display.getInstance().execute("https://developers.google.com/places/web-service/get-api-key"));
 hi.show();
}

TextField apiKey = new TextField();

String[] searchLocations(String text) {
 try {
 if(text.length() > 0) {
 ConnectionRequest r = new ConnectionRequest();
 r.setPost(false);
 r.setUrl("https://maps.googleapis.com/maps/api/place/autocomplete/json");
 r.addArgument("key", apiKey.getText());
 r.addArgument("input", text);
 NetworkManager.getInstance().addToQueueAndWait(r);
 Map<String,Object> result = new JSONParser().parseJSON(new InputStreamReader(new
ByteArrayInputStream(r.getResponseData()), "UTF-8"));
 String[] res = Result.fromContent(result).getAsStringArray("//description");
 return res;
 }
 } catch(Exception err) {
 Log.e(err);
 }
 return null;
}

Figure 266. Autocomplete Text Field with a webservice

282

6.28.1. Using Images In AutoCompleteTextField

One question I got a few times is "How do you customize the results of the auto complete field"?

This sounds difficult to most people as we can only work with Strings so how do we represent
additional data or format the date correctly?

The answer is actually pretty simple, we still need to work with Strings because auto-complete is
first and foremost a text field. However, that doesn’t preclude our custom renderer from fetching
data that might be placed in a different location and associated with the result.

The following source code presents an auto-complete text field with images in the completion
popup and two lines for every entry:

283

final String[] characters = { "Tyrion Lannister", "Jaime Lannister", "Cersei Lannister", "Daenerys Targaryen",
 "Jon Snow", "Petyr Baelish", "Jorah Mormont", "Sansa Stark", "Arya Stark", "Theon Greyjoy"
 // snipped the rest for clarity
};

Form current = new Form("AutoComplete", BoxLayout.y());

AutoCompleteTextField ac = new AutoCompleteTextField(characters);

final int size = Display.getInstance().convertToPixels(7);
final EncodedImage placeholder = EncodedImage.createFromImage(Image.createImage(size, size, 0xffcccccc), true);

final String[] actors = { "Peter Dinklage", "Nikolaj Coster-Waldau", "Lena Headey"}; ①
final Image[] pictures = {
 URLImage.createToStorage(placeholder, "tyrion","http://i.lv3.hbo.com/assets/images/series/game-of-
thrones/character/s5/tyrion-lannister-512x512.jpg"),
 URLImage.createToStorage(placeholder, "jaime","http://i.lv3.hbo.com/assets/images/series/game-of-
thrones/character/s5/jamie-lannister-512x512.jpg"),
 URLImage.createToStorage(placeholder, "cersei","http://i.lv3.hbo.com/assets/images/series/game-of-
thrones/character/s5/cersei-lannister-512x512.jpg")
};

ac.setCompletionRenderer(new ListCellRenderer() {
 private final Label focus = new Label(); ②
 private final Label line1 = new Label(characters[0]);
 private final Label line2 = new Label(actors[0]);
 private final Label icon = new Label(pictures[0]);
 private final Container selection = BorderLayout.center(
 BoxLayout.encloseY(line1, line2)).add(BorderLayout.EAST, icon);

 @Override
 public Component getListCellRendererComponent(com.codename1.ui.List list, Object value, int index, boolean
isSelected) {
 for(int iter = 0 ; iter < characters.length ; iter++) {
 if(characters[iter].equals(value)) {
 line1.setText(characters[iter]);
 if(actors.length > iter) {
 line2.setText(actors[iter]);
 icon.setIcon(pictures[iter]);
 } else {
 line2.setText(""); ③
 icon.setIcon(placeholder);
 }
 break;
 }
 }
 return selection;
 }

 @Override
 public Component getListFocusComponent(com.codename1.ui.List list) {
 return focus;
 }
});
current.add(ac);

current.show();

① We have duplicate arrays that are only partial for clarity. This is a separate list of data element
but you can fetch the additional data from anywhere

② We create the renderer UI instantly in the fields with the helper methods for wrapping elements
which is pretty cool & terse

284

③ In a renderer it’s important to always set the value especially if you don’t have a value in place

Figure 267. Auto complete with images

6.29. Picker
Picker [https://www.codenameone.com/javadoc/com/codename1/ui/spinner/Picker.html] occupies the limbo
between native widget and lightweight widget. Picker is more like TextField/TextArea in the sense
that it’s a Codename One widget that calls the native code only during editing.

The reasoning for this is the highly native UX and functionality related to this widget type which
should be quite obvious from the screenshots below.

At this time there are 4 types of pickers:

• Time

• Date & Time

• Date

• Strings

If a platform doesn’t support native pickers an internal fallback implementation is used. This is the
implementation we always use in the simulator so assume different behavior when building for the
device.

While Android supports Date, Time native pickers it doesn’t support the Date &
Time native picker UX and will fallback in that case.

The sample below includes al picker types:

285

https://www.codenameone.com/javadoc/com/codename1/ui/spinner/Picker.html

Form hi = new Form("Picker", new BoxLayout(BoxLayout.Y_AXIS));
Picker datePicker = new Picker();
datePicker.setType(Display.PICKER_TYPE_DATE);
Picker dateTimePicker = new Picker();
dateTimePicker.setType(Display.PICKER_TYPE_DATE_AND_TIME);
Picker timePicker = new Picker();
timePicker.setType(Display.PICKER_TYPE_TIME);
Picker stringPicker = new Picker();
stringPicker.setType(Display.PICKER_TYPE_STRINGS);
Picker durationPicker = new Picker();
durationPicker.setType(Display.PICKER_TYPE_DURATION);
Picker minuteDurationPicker = new Picker();
minuteDurationPicker.setType(Display.PICKER_TYPE_DURATION_MINUTES);
Picker hourDurationPicker = new Picker();
hourDurationPicker.setType(Display.PICKER_TYPE_DURATION_HOURS);

datePicker.setDate(new Date());
dateTimePicker.setDate(new Date());
timePicker.setTime(10 * 60); // 10:00AM = Minutes since midnight
stringPicker.setStrings("A Game of Thrones", "A Clash Of Kings", "A Storm Of Swords", "A Feast For Crows",
 "A Dance With Dragons", "The Winds of Winter", "A Dream of Spring");
stringPicker.setSelectedString("A Game of Thrones");

hi.add(datePicker).add(dateTimePicker).add(timePicker)
 .add(stringPicker).add(durationPicker)
 .add(minuteDurationPicker).add(hourDurationPicker);
hi.show();

Figure 268. The various picker components

Figure 269. The date & time picker on the simulator

286

Figure 270. The date picker component on the Android device

Figure 271. Date & time picker on Android. Notice it didn’t use a builtin widget since there is none

Figure 272. String picker on the native Android device

287

Figure 273. Time picker on the Android device

Figure 274. Duration picker on Android device

Figure 275. Hours Duration picker on Android device

Figure 276. Minutes Duration picker on Android device

The text displayed by the picker on selection is generated automatically by the updateValue()
method. You can override it to display a custom formatted value and call setText(String) with the
correct display string.

A common use case is to format date values based on a specific appearance and Picker has builtin
support for a custom display formatter. Just use the setFormatter(SimpleDateFormat) method and set
the appearance for the field.

288

6.30. SwipeableContainer
The SwipeableContainer [https://www.codenameone.com/javadoc/com/codename1/ui/SwipeableContainer.html]
allows us to place a component such as a MultiButton [https://www.codenameone.com/javadoc/com/

codename1/components/MultiButton.html] on top of additional "options" that can be exposed by swiping
the component to the side.

This swipe gesture is commonly used in touch interfaces to expose features such as delete, edit etc.
It’s trivial to use this component by just determining the components placed on top and bottom (the
revealed component).

SwipeableContainer swip = new SwipeableContainer(bottom, top);

We can combine some of the demos above including the Slider stars demo to rank GRRM’s books in
an interactive way:

Form hi = new Form("Swipe", new BoxLayout(BoxLayout.Y_AXIS));
hi.add(createRankWidget("A Game of Thrones", "1996")).
 add(createRankWidget("A Clash Of Kings", "1998")).
 add(createRankWidget("A Storm Of Swords", "2000")).
 add(createRankWidget("A Feast For Crows", "2005")).
 add(createRankWidget("A Dance With Dragons", "2011")).
 add(createRankWidget("The Winds of Winter", "TBD")).
 add(createRankWidget("A Dream of Spring", "TBD"));
hi.show();

public SwipeableContainer createRankWidget(String title, String year) {
 MultiButton button = new MultiButton(title);
 button.setTextLine2(year);
 return new SwipeableContainer(FlowLayout.encloseCenterMiddle(createStarRankSlider()),
 button);
}

Figure 277. SwipableContainer showing a common use case of ranking on swipe

289

https://www.codenameone.com/javadoc/com/codename1/ui/SwipeableContainer.html
https://www.codenameone.com/javadoc/com/codename1/components/MultiButton.html

6.31. EmbeddedContainer
EmbeddedContainer [https://www.codenameone.com/javadoc/com/codename1/ui/util/EmbeddedContainer.html]
solves a problem that exists only within the GUI builder and the class makes no sense outside of the
context of the GUI builder. The necessity for EmbeddedContainer came about due to iPhone inspired
designs that relied on tabs (iPhone style tabs at the bottom of the screen) where different features
of the application are within a different tab.

This didn’t mesh well with the GUI builder navigation logic and so we needed to rethink some of it.
We wanted to reuse GUI as much as possible while still enjoying the advantage of navigation being
completely managed for me.

Android does this with Activities and the iPhone itself has a view controller, both approaches are
problematic for Codename One. The problem is that you have what is effectively two incompatible
hierarchies to mix and match.

The Component/Container hierarchy is powerful enough to represent such a UI but we needed a
"marker" to indicate to the UIBuilder [https://www.codenameone.com/javadoc/com/codename1/ui/util/

UIBuilder.html] where a "root" component exists so navigation occurs only within the given "root".
Here EmbeddedContainer comes into play, its a simple container that can only contain another GUI
from the GUI builder. Nothing else. So we can place it in any form of UI and effectively have the UI
change appropriately and navigation would default to "sensible values".

Navigation replaces the content of the embedded container; it finds the embedded container based
on the component that broadcast the event. If you want to navigate manually just use the
showContainer() method which accepts a component, you can give any component that is under
the EmbeddedContainer you want to replace and Codename One will be smart enough to replace only
that component.

The nice part about using the EmbeddedContainer is that the resulting UI can be very easily refactored
to provide a more traditional form based UI without duplicating effort and can be easily adapted to
a more tablet oriented UI (with a side bar) again without much effort.

6.32. MapComponent

The MapComponent uses a somewhat outdated tiling API which is not as rich as
modern native maps. We recommend using the GoogleMap’s Native cn1lib
[https://github.com/codenameone/codenameone-google-maps/] to integrate native mapping
functionality into the Codename One app.

The MapComponent [https://www.codenameone.com/javadoc/com/codename1/maps/MapComponent.html] uses
the OpenStreetMap webservice by default to display a navigatable map.

The code was contributed by Roman Kamyk and was originally used for a LWUIT application.

290

https://www.codenameone.com/javadoc/com/codename1/ui/util/EmbeddedContainer.html
https://www.codenameone.com/javadoc/com/codename1/ui/util/UIBuilder.html
https://github.com/codenameone/codenameone-google-maps/
https://www.codenameone.com/javadoc/com/codename1/maps/MapComponent.html

Figure 278. Map Component

The screenshot above was produced using the following code:

Form map = new Form("Map");
map.setLayout(new BorderLayout());
map.setScrollable(false);
final MapComponent mc = new MapComponent();

try {
 //get the current location from the Location API
 Location loc = LocationManager.getLocationManager().getCurrentLocation();

 Coord lastLocation = new Coord(loc.getLatitude(), loc.getLongtitude());
 Image i = Image.createImage("/blue_pin.png");
 PointsLayer pl = new PointsLayer();
 pl.setPointIcon(i);
 PointLayer p = new PointLayer(lastLocation, "You Are Here", i);
 p.setDisplayName(true);
 pl.addPoint(p);
 mc.addLayer(pl);
} catch (IOException ex) {
 ex.printStackTrace();
}
mc.zoomToLayers();

map.addComponent(BorderLayout.CENTER, mc);
map.addCommand(new BackCommand());
map.setBackCommand(new BackCommand());
map.show();

The example below shows how to integrate the MapComponent [https://www.codenameone.com/javadoc/

com/codename1/maps/MapComponent.html] with the Google Location [https://www.codenameone.com/javadoc/

com/codename1/location/Location.html] API. make sure to obtain your secret api key from the Google

291

https://www.codenameone.com/javadoc/com/codename1/maps/MapComponent.html
https://www.codenameone.com/javadoc/com/codename1/location/Location.html

Location [https://www.codenameone.com/javadoc/com/codename1/location/Location.html] data API at:
https://developers.google.com/maps/documentation/places/

Figure 279. MapComponent with Google Location API

 final Form map = new Form("Map");
 map.setLayout(new BorderLayout());
 map.setScrollable(false);
 final MapComponent mc = new MapComponent();
 Location loc = LocationManager.getLocationManager().getCurrentLocation();
 //use the code from above to show you on the map
 putMeOnMap(mc);
 map.addComponent(BorderLayout.CENTER, mc);
 map.addCommand(new BackCommand());
 map.setBackCommand(new BackCommand());

 ConnectionRequest req = new ConnectionRequest() {

 protected void readResponse(InputStream input) throws IOException {
 JSONParser p = new JSONParser();
 Hashtable h = p.parse(new InputStreamReader(input));
 // "status" : "REQUEST_DENIED"
 String response = (String)h.get("status");
 if(response.equals("REQUEST_DENIED")){
 System.out.println("make sure to obtain a key from "
 + "https://developers.google.com/maps/documentation/places/");
 progress.dispose();
 Dialog.show("Info", "make sure to obtain an application key from "
 + "google places api's"
 , "Ok", null);
 return;
 }

 final Vector v = (Vector) h.get("results");

 Image im = Image.createImage("/red_pin.png");
 PointsLayer pl = new PointsLayer();
 pl.setPointIcon(im);
 pl.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent evt) {
 PointLayer p = (PointLayer) evt.getSource();
 System.out.println("pressed " + p);

292

https://www.codenameone.com/javadoc/com/codename1/location/Location.html
https://developers.google.com/maps/documentation/places/

 Dialog.show("Details", "" + p.getName(), "Ok", null);
 }
 });

 for (int i = 0; i < v.size(); i++) {
 Hashtable entry = (Hashtable) v.elementAt(i);
 Hashtable geo = (Hashtable) entry.get("geometry");
 Hashtable loc = (Hashtable) geo.get("location");
 Double lat = (Double) loc.get("lat");
 Double lng = (Double) loc.get("lng");
 PointLayer point = new PointLayer(new Coord(lat.doubleValue(), lng.doubleValue()),
 (String) entry.get("name"), null);
 pl.addPoint(point);
 }
 progress.dispose();

 mc.addLayer(pl);
 map.show();
 mc.zoomToLayers();

 }
 };
 req.setUrl("https://maps.googleapis.com/maps/api/place/search/json");
 req.setPost(false);
 req.addArgument("location", "" + loc.getLatitude() + "," + loc.getLongtitude());
 req.addArgument("radius", "500");
 req.addArgument("types", "food");
 req.addArgument("sensor", "false");

 //get your own key from https://developers.google.com/maps/documentation/places/
 //and replace it here.
 String key = "yourAPIKey";

 req.addArgument("key", key);

 NetworkManager.getInstance().addToQueue(req);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }

6.33. Chart Component
The charts package enables Codename One developers to add charts and visualizations to their
apps without having to include external libraries or embedding web views. We also wanted to
harness the new features in the graphics pipeline to maximize performance.

6.33.1. Device Support

Since the charts package makes use of 2D transformations and shapes, it requires some of the
graphics features that are not yet available on all platforms. Currently the following platforms are
supported:

293

1. Simulator

2. Android

3. iOS

6.33.2. Features

1. Built-in support for many common types of charts including bar charts, line charts, stacked
charts, scatter charts, pie charts and more.

2. Pinch Zoom - The ChartComponent [https://www.codenameone.com/javadoc/com/codename1/charts/

ChartComponent.html] class includes optional pinch zoom support.

3. Panning Support - The ChartComponent [https://www.codenameone.com/javadoc/com/codename1/

charts/ChartComponent.html] class includes optional support for panning.

6.33.3. Chart Types

The com.codename1.charts package includes models and renderers for many different types of
charts. It is also extensible so that you can add your own chart types if required. The following
screen shots demonstrate a small sampling of the types of charts that can be created.

Figure 280. Line Charts

Figure 281. Cubic Line Charts

Figure 282. Bar Charts

294

https://www.codenameone.com/javadoc/com/codename1/charts/ChartComponent.html
https://www.codenameone.com/javadoc/com/codename1/charts/ChartComponent.html

Figure 283. Stacked Bar Charts

Figure 284. Range Bar Charts

Figure 285. Pie Charts

Figure 286. Doughnut Charts

Figure 287. Scatter Charts

Figure 288. Dial Charts

Figure 289. Combined Charts

295

Figure 290. Bubble Charts

Figure 291. Time Charts

The above screenshots were taken from the ChartsDemo app [https://github.com/

codenameone/codenameone-demos/tree/master/ChartsDemo]. You can start playing with
this app by checking it out from our git repository.

6.33.4. How to Create A Chart

Adding a chart to your app involves four steps:

1. Build the model. You can construct a model (aka data set) for the chart using one of the existing
model classes in the com.codename1.charts.models package. Essentially, this is just where you add
the data that you want to display.

2. Set up a renderer. You can create a renderer for your chart using one of the existing renderer
classes in the com.codename1.charts.renderers package. The renderer allows you to specify how
the chart should look. E.g. the colors, fonts, styles, to use.

3. Create the Chart View. Use one of the existing view classes in the com.codename1.charts.views
package.

4. Create a ChartComponent [https://www.codenameone.com/javadoc/com/codename1/charts/

ChartComponent.html]. In order to add your chart to the UI, you need to wrap it in a
ChartComponent [https://www.codenameone.com/javadoc/com/codename1/charts/ChartComponent.html]
object.

You can check out the ChartsDemo [https://github.com/codenameone/codenameone-demos/tree/master/

ChartsDemo] app for specific examples, but here is a high level view of some code that creates a Pie
Chart.

/**
 * Creates a renderer for the specified colors.
 */
private DefaultRenderer buildCategoryRenderer(int[] colors) {
 DefaultRenderer renderer = new DefaultRenderer();
 renderer.setLabelsTextSize(15);
 renderer.setLegendTextSize(15);
 renderer.setMargins(new int[]{20, 30, 15, 0});
 for (int color : colors) {

296

https://github.com/codenameone/codenameone-demos/tree/master/ChartsDemo
https://www.codenameone.com/javadoc/com/codename1/charts/ChartComponent.html
https://www.codenameone.com/javadoc/com/codename1/charts/ChartComponent.html
https://github.com/codenameone/codenameone-demos/tree/master/ChartsDemo

 SimpleSeriesRenderer r = new SimpleSeriesRenderer();
 r.setColor(color);
 renderer.addSeriesRenderer(r);
 }
 return renderer;
}

/**
 * Builds a category series using the provided values.
 *
 * @param titles the series titles
 * @param values the values
 * @return the category series
 */
protected CategorySeries buildCategoryDataset(String title, double[] values) {
 CategorySeries series = new CategorySeries(title);
 int k = 0;
 for (double value : values) {
 series.add("Project " + ++k, value);
 }

 return series;
}

public Form createPieChartForm() {

 // Generate the values
 double[] values = new double[]{12, 14, 11, 10, 19};

 // Set up the renderer
 int[] colors = new int[]{ColorUtil.BLUE, ColorUtil.GREEN, ColorUtil.MAGENTA, ColorUtil.YELLOW, ColorUtil.CYAN};
 DefaultRenderer renderer = buildCategoryRenderer(colors);
 renderer.setZoomButtonsVisible(true);
 renderer.setZoomEnabled(true);
 renderer.setChartTitleTextSize(20);
 renderer.setDisplayValues(true);
 renderer.setShowLabels(true);
 SimpleSeriesRenderer r = renderer.getSeriesRendererAt(0);
 r.setGradientEnabled(true);
 r.setGradientStart(0, ColorUtil.BLUE);
 r.setGradientStop(0, ColorUtil.GREEN);
 r.setHighlighted(true);

 // Create the chart ... pass the values and renderer to the chart object.
 PieChart chart = new PieChart(buildCategoryDataset("Project budget", values), renderer);

 // Wrap the chart in a Component so we can add it to a form
 ChartComponent c = new ChartComponent(chart);

 // Create a form and show it.
 Form f = new Form("Budget");
 f.setLayout(new BorderLayout());
 f.addComponent(BorderLayout.CENTER, c);
 return f;

}

6.34. Calendar
The Calendar [https://www.codenameone.com/javadoc/com/codename1/ui/Calendar.html] class allows us to
display a traditional calendar picker and optionally highlight days in various ways.

297

https://www.codenameone.com/javadoc/com/codename1/ui/Calendar.html

We normally recommend developers use the Picker UI rather than use the
calendar to pick a date. It looks better on the devices.

Simple usage of the Calendar class looks something like this:

Form hi = new Form("Calendar", new BorderLayout());
Calendar cld = new Calendar();
cld.addActionListener((e) -> Log.p("You picked: " + new Date(cld.getSelectedDay())));
hi.add(BorderLayout.CENTER, cld);

Figure 292. The Calendar component

6.35. ToastBar
The ToastBar [https://www.codenameone.com/javadoc/com/codename1/components/ToastBar.html] class allows
us to display none-obtrusive status messages to the user at the bottom of the screen. This is useful
for such things as informing the user of a long-running task (like downloading a file in the
background), or popping up an error message that doesn’t require a response from the user.

Simple usage of the ToastBar class looks something like this:

Status status = ToastBar.getInstance().createStatus();
status.setMessage("Downloading your file...");
status.show();

// ... Later on when download completes
status.clear();

298

https://www.codenameone.com/javadoc/com/codename1/components/ToastBar.html

Figure 293. ToastBar with message

We can show a progress indicator in the ToastBar like this:

Status status = ToastBar.getInstance().createStatus();
status.setMessage("Hello world");
status.setShowProgressIndicator(true);
status.show();

Figure 294. Status Message with Progress Bar

We can automatically clear a status message/progress after a timeout using the setExpires method
as such:

Status status = ToastBar.getInstance().createStatus();
status.setMessage("Hello world");
status.setExpires(3000); // only show the status for 3 seconds, then have it automatically clear
status.show();

We can also delay the showing of the status message using showDelayed as such:

299

Status status = ToastBar.getInstance().createStatus();
status.setMessage("Hello world");
status.showDelayed(300); // Wait 300 ms to show the status

// ... Some time later, clear the status... this may be before it shows at all
status.clear();

Figure 295. ToastBar with a multiline message

6.35.1. Actions In ToastBar

Probably the best usage example for actions in toast is in the gmail style undo. If you are not a
gmail user then the gmail app essentially never prompts for confirmation!

It just does whatever you ask and pops a "toast message" with an option to undo. So if you clicked
by mistake you have 3-4 seconds to take that back.

This simple example shows you how you can undo any addition to the UI in a similar way to gmail:

Form hi = new Form("Undo", BoxLayout.y());
Button add = new Button("Add");

add.addActionListener(e -> {
 Label l = new Label("Added this");
 hi.add(l);
 hi.revalidate();
 ToastBar.showMessage("Added, click here to undo...", FontImage.MATERIAL_UNDO,
 ee -> {
 l.remove();
 hi.revalidate();
 });
});
hi.add(add);
hi.show();

300

6.36. SignatureComponent
The SignatureComponent [https://www.codenameone.com/javadoc/com/codename1/components/

SignatureComponent.html] provides a widget that allows users to draw their signature in the app.

Simple usage of the SignatureComponent class looks like:

Form hi = new Form("Signature Component");
hi.setLayout(new BoxLayout(BoxLayout.Y_AXIS));
hi.add("Enter Your Name:");
hi.add(new TextField());
hi.add("Signature:");
SignatureComponent sig = new SignatureComponent();
sig.addActionListener((evt)-> {
 System.out.println("The signature was changed");
 Image img = sig.getSignatureImage();
 // Now we can do whatever we want with the image of this signature.
});
hi.addComponent(sig);
hi.show();

Figure 296. The signature Component

6.37. Accordion
The Accordion [https://www.codenameone.com/javadoc/com/codename1/components/Accordion.html] displays
collapsible content panels.

Simple usage of the Accordion class looks like:

301

https://www.codenameone.com/javadoc/com/codename1/components/SignatureComponent.html
https://www.codenameone.com/javadoc/com/codename1/components/Accordion.html

Form f = new Form("Accordion", new BoxLayout(BoxLayout.Y_AXIS));
f.setScrollableY(true);
Accordion accr = new Accordion();
accr.addContent("Item1", new SpanLabel("The quick brown fox jumps over the lazy dog\n"
 + "The quick brown fox jumps over the lazy dog"));
accr.addContent("Item2", new SpanLabel("The quick brown fox jumps over the lazy dog\n"
 + "The quick brown fox jumps over the lazy dog\n "
 + "The quick brown fox jumps over the lazy dog\n "
 + "The quick brown fox jumps over the lazy dog\n "
 + ""));

accr.addContent("Item3", BoxLayout.encloseY(new Label("Label"), new TextField(), new Button("Button"), new
CheckBox("CheckBox")));

f.add(accr);
f.show();

Figure 297. The Accordion Component

6.38. Floating Hint
FloatingHint [https://www.codenameone.com/javadoc/com/codename1/components/FloatingHint.html] wraps a
text component with a special container that can animate the hint label into a title label when the
text component is edited or has content within it.

302

https://www.codenameone.com/javadoc/com/codename1/components/FloatingHint.html

Form hi = new Form("Floating Hint", BoxLayout.y());
TextField first = new TextField("", "First Field");
TextField second = new TextField("", "Second Field");
hi.add(new FloatingHint(first)).
 add(new FloatingHint(second)).
 add(new Button("Go"));
hi.show();

Figure 298. The FloatingHint component with one component that contains text and another that doesn’t

6.39. Floating Button
The material design floating action button is a powerful tool for promoting an action within your
application.

FloatingActionButton [https://www.codenameone.com/javadoc/com/codename1/components/

FloatingActionButton.html] is a round button that resides on top of the UI typically in the bottom right
hand side.
It has a drop shadow to distinguish it from the UI underneath and it can hide two or more
additional actions under the surface. E.g. we can create a simple single click button such as this:

FloatingActionButton fab = FloatingActionButton.createFAB(FontImage.MATERIAL_ADD);
fab.addActionListener(e -> ToastBar.showErrorMessage("Not implemented yet..."));
fab.bindFabToContainer(form.getContentPane());

Which will place a + sign button that will perform the action. Alternatively we can create a nested
action where a click on the button will produce a submenu for users to pick from e.g.:

FloatingActionButton fab = FloatingActionButton.createFAB(FontImage.MATERIAL_ADD);
fab.createSubFAB(FontImage.MATERIAL_PEOPLE, "");
fab.createSubFAB(FontImage.MATERIAL_IMPORT_CONTACTS, "");
fab.bindFabToContainer(form.getContentPane());

Figure 299. FloatingActionButton with submenu expanded

Those familiar with this widget know that there are many nuances to this UI that we might

303

https://www.codenameone.com/javadoc/com/codename1/components/FloatingActionButton.html

implement/expose in the future. At the moment we chose to keep the API simple and minimal for
the common use cases and refine it based on feedback.

6.39.1. Using Floating Button as a Badge

Floating buttons can also be used to badge an arbitrary component in the style popularized by
iOS/Mac OS. A badge appears at the top right corner and includes special numeric details such as
"unread count"..

The code below adds a simple badge to an icon button:

Form hi = new Form("Badge");

Button chat = new Button("");
FontImage.setMaterialIcon(chat, FontImage.MATERIAL_CHAT, 7);

FloatingActionButton badge = FloatingActionButton.createBadge("33");
hi.add(badge.bindFabToContainer(chat, Component.RIGHT, Component.TOP));

TextField changeBadgeValue = new TextField("33");
changeBadgeValue.addDataChangedListener((i, ii) -> {
 badge.setText(changeBadgeValue.getText());
 badge.getParent().revalidate();
});
hi.add(changeBadgeValue);

hi.show();

The code above results in this, notice you can type into the text field to change the badge value:

Figure 300. Badge floating button in action

6.40. SplitPane
The split pane component is a bit desktop specific but works reasonably well on devices. To get the
image below we changed SalesDemo.java in the kitchen sink by changing this:

304

private Container encloseInMaximizableGrid(Component cmp1, Component cmp2) {
 GridLayout gl = new GridLayout(2, 1);
 Container grid = new Container(gl);
 gl.setHideZeroSized(true);

 grid.add(encloseInMaximize(grid, cmp1)).
 add(encloseInMaximize(grid, cmp2));
 return grid;
}

To:

private Container encloseInMaximizableGrid(Component cmp1, Component cmp2) {
 return new SplitPane(SplitPane.VERTICAL_SPLIT, cmp1, cmp2, "25%", "50%", "75%");
}

Figure 301. Split Pane in the Kitchen Sink Demo

This is mostly self explanatory but only "mostly". We have 5 arguments the first 3 make sense:

• Split orientation

• Components to split

The last 3 arguments seem weird but they also make sense once you understand them, they are:

• The minimum position of the split - 1/4 of available space

• The default position of the split - middle of the screen

• The maximum position of the split - 3/4 of available space

The units don’t have to be percentages they can be mm (millimeters) or px (pixels).

[2] String width is the real expensive part here, the complexity of font kerning and the recursion required to reflow text is a big

305

performance hurdle

[3] Image by RegisFrey - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=10298177

[4] Fisheye is an effect where the selection stays in place as the list moves around it

[5] Image was fetched from http://awoiaf.westeros.org/index.php/Portal:Books

[6] The text below is from A Wiki of Ice & Fire: http://awoiaf.westeros.org/index.php/A_Game_of_Thrones

306

https://commons.wikimedia.org/w/index.php?curid=10298177
http://awoiaf.westeros.org/index.php/Portal:Books
http://awoiaf.westeros.org/index.php/A_Game_of_Thrones

7. Animations
There are many ways to animate and liven the data within a Codename One application, layout
animations are probably chief among them. But first we need to understand some basics such as
layout reflows.

7.1. Layout Reflow
Layout in tools such as HTML is implicit, when you add something into the UI it is automatically
placed correctly. Other tools such as Codename One use explicit layout, that means you have to
explicitly request the UI to layout itself after making changes!

Like many such rules exceptions occur. E.g. if the device is rotated or window size
changes a layout will occur automatically.

When adding a component to a UI that is already visible, the component will not show by default.

When adding a component to a form which isn’t shown on the screen, there is no
need to tell the UI to repaint or reflow. This happens implicitly.

The chief advantage of explicit layout is performance.

E.g. imagine adding 100 components to a form. If the form was laid out automatically, layout would
have happened 100 times instead of once when adding was finished. In fact layout reflows are
often considered the #1 performance issue for HTML/JavaScript applications.

Smart layout reflow logic can alleviate some of the pains of the automatic layout
reflows however since the process is implicit it’s almost impossible to optimize
complex usages across browsers/devices. A major JavaScript performance tip is to
use absolute positioning which is akin to not using layouts at all!

That is why, when you add components to a form that is already showing, you should invoke
revalidate() or animate the layout appropriately. This also enables the layout animation behavior
explained below.

7.2. Layout Animations
To understand animations you need to understand a couple of things about Codename One
components. When we add a component to a container, it’s generally just added but not positioned
anywhere. A novice might notice the setX/setY/setWidth/setHeight methods on a component and just
try to position it absolutely.

This won’t work since these methods are meant for the layout manager, which is implicitly invoked
when a form is shown (internally in Codename One). The layout manager uses these methods to
position/size the components based on the hints given to it.

If you add components to a form that is currently showing, it is your responsibility to invoke

307

revalidate/layoutContainer to arrange the newly added components (see Layout Reflows).

animateLayout() method is a fancy form of revalidate that animates the components into their laid
out position. After changing the layout & invoking this method the components move to their new
sizes/positions seamlessly.

This sort of behavior creates a special case where setting the size/position makes sense. When we
set the size/position in the demo code here we are positioning the components at the animation
start position above the frame.

Form hi = new Form("Layout Animations", new BoxLayout(BoxLayout.Y_AXIS));
Button fall = new Button("Fall"); ①
fall.addActionListener((e) -> {
 for(int iter = 0 ; iter < 10 ; iter++) {
 Label b = new Label ("Label " + iter);
 b.setWidth(fall.getWidth());
 b.setHeight(fall.getHeight());
 b.setY(-fall.getHeight());
 hi.add(b);
 }
 hi.getContentPane().animateLayout(20000); ②
});
hi.add(fall);

There are a couple of things that you should notice about this example:

① We used a button to do the animation rather than doing it on show. Since show() implicitly lays
out the components it wouldn’t have worked correctly.

② We used hi.getContentPane().animateLayout(20000); & not hi.animateLayout(20000);. You need to
animate the "actual" container and Form is a special case.

This results in:

308

309

310

7.2.1. Unlayout Animations

While layout animations are really powerful effects for adding elements into the UI and drawing
attention to them. The inverse of removing an element from the UI is often more important. E.g.
when we delete or remove an element we want to animate it out.

Layout animations don’t really do that since they will try to bring the animated item into place.
What we want is the exact opposite of a layout animation and that is the "unlayout animation".

The "unlayout animation" takes a valid laid out state and shifts the components to an invalid state
that we defined in advance. E.g. we can fix the example above to flip the "fall" button into a "rise"
button when the buttons come into place and this will allow the buttons to float back up to where
they came from in the exact reverse order.

 An unlayout animation always leaves the container in an invalidated state.

Form hi = new Form("Layout Animations", new BoxLayout(BoxLayout.Y_AXIS));
Button fall = new Button("Fall");
fall.addActionListener((e) -> {
 if(hi.getContentPane().getComponentCount() == 1) {
 fall.setText("Rise");
 for(int iter = 0 ; iter < 10 ; iter++) {
 Label b = new Label ("Label " + iter);
 b.setWidth(fall.getWidth());
 b.setHeight(fall.getHeight());
 b.setY(-fall.getHeight());
 hi.add(b);
 }
 hi.getContentPane().animateLayout(20000);
 } else {
 fall.setText("Fall");
 for(int iter = 1 ; iter < hi.getContentPane().getComponentCount() ; iter++) { ①
 Component c = hi.getContentPane().getComponentAt(iter);
 c.setY(-fall.getHeight()); ②
 }
 hi.getContentPane().animateUnlayoutAndWait(20000, 255); ③
 hi.removeAll(); ④
 hi.add(fall);
 hi.revalidate();
 }
});
hi.add(fall);

You will notice some similarities with the unlayout animation but the differences represent the
exact opposite of the layout animation:

① We loop over existing components (not newly created ones)

② We set the desired end position not the desired starting position

③ We used the AndWait variant of the animate unlayout call. We could have used the async call as

311

well.

④ After the animation completes we need to actually remove the elements since the UI is now in
an invalid position with elements outside of the screen but still physically there!

7.2.2. Hiding & Visibility

A common trick for animating Components in Codename One is to set their preferred size to 0 and
then invoke animateLayout() thus triggering an animation to hide said Component. There are several
issues with this trick but one of the biggest ones is the fact that setPreferredSize has been
deprecated for quite a while.

Instead of using that trick you can use setHidden/isHidden who effectively encapsulate this
functionality and a bit more.

One of the issues setHidden tries to solve is the fact that preferred size doesn’t include the margin in
the total and thus a component might still occupy space despite being hidden. To solve this the
margin is set to 0 when hiding and restored to its original value when showing the component
again by resetting the UIID (which resets all style modifications).

This functionality might be undesirable which is why there is a version of the setHidden method
that accepts a boolean flag indicating whether the margin/UIID should be manipulated. You can
effectively hide/show a component without deprecated code using something like this:

Button toHide = new Button("Will Be Hidden");
Button hide = new Button("Hide It");
hide.addActionListener((e) -> {
 hide.setEnabled(false);
 boolean t = !toHide.isHidden();
 toHide.setHidden(t);
 toHide.getParent().animateLayoutAndWait(200);
 toHide.setVisible(!t);
 hide.setEnabled(true);
});

Notice that the code above uses setVisible(), which shouldn’t be confused with
setHidden. setVisible() just toggles the visibility of the component it would still
occupy the same amount of space

7.2.3. Synchronicity In Animations

Most animations have two or three variants:

• Standard animation e.g. animateLayout(int)

• And wait variant e.g. animateLayoutAndWait(int)

• Callback variant e.g. animateUnlayout(int, int, Runnable)

The standard animation is invoked when we don’t care about the completion of the animation. We

312

can do this for a standard animation.

The unlayout animations don’t have a standard variant. Since they leave the UI in
an invalid state we must always do something once the animation completes so a
standard variant makes no sense

The AndWait variant blocks the calling thread until the animation completes. This is really useful for
sequencing animations one after the other e.g this code from the kitchen sink demo:

arrangeForInterlace(effects);
effects.animateUnlayoutAndWait(800, 20);
effects.animateLayoutFade(800, 20);

First the UI goes thru an "unlayout" animation, once that completes the layout itself is performed.

The AndWait calls needs to be invoked on the Event Dispatch Thread despite being
"blocking". This is a common convention in Codename One powered by a unique
capability of Codename One: invokeAndBlock.
You can learn more about invokeAndBlock in the EDT section
[https://www.codenameone.com/manual/edt.html].

The callback variant is similar to the invokeAndBlock variant but uses a more conventional callback
semantic which is more familiar to some developers. It accepts a Runnable callback that will be
invoked after the fact. E.g. we can change the unlayout call from before to use the callback
semantics as such:

hi.getContentPane().animateUnlayout(20000, 255, () -> {
 hi.removeAll();
 hi.add(fall);
 hi.revalidate();
});

Animation Fade and Hierarchy

There are several additional variations on the standard animate methods. Several methods accept a
numeric fade argument. This is useful to fade out an element in an "unlayout" operation or fade in
a regular animation.

The value for the fade argument is a number between 0 and 255 where 0 represents full
transparency and 255 represents full opacity.

Some animate layout methods are hierarchy based. They work just like the regular animateLayout
methods but recurse into the entire Container [https://www.codenameone.com/javadoc/com/codename1/ui/

Container.html] hierarchy. These methods work well when you have components in a nested
hierarchy that need to animate into place. This is demonstrated in the opening sequence of the
kitchen sink demo:

313

https://www.codenameone.com/manual/edt.html
https://www.codenameone.com/javadoc/com/codename1/ui/Container.html

for(int iter = 0 ; iter < demoComponents.size() ; iter++) {
 Component cmp = (Component)demoComponents.elementAt(iter);
 if(iter < componentsPerRow) {
 cmp.setX(-cmp.getWidth());
 } else {
 if(iter < componentsPerRow * 2) {
 cmp.setX(dw);
 } else {
 cmp.setX(-cmp.getWidth());
 }
 }
}
boxContainer.setShouldCalcPreferredSize(true);
boxContainer.animateHierarchyFade(3000, 30);

The demoComponents Vector contains components from separate containers and this code would not
work with a simple animate layout.

We normally recommend avoiding the hierarchy version. Its slower but more
importantly, it’s flaky. Since the size/position of the Container might be affected by
the layout the animation could get clipped and skip. These are very hard issues to
debug.

7.2.4. Sequencing Animations Via AnimationManager

All the animations go thru a per-form queue: the AnimationManager [https://www.codenameone.com/

javadoc/com/codename1/ui/AnimationManager.html]. This effectively prevents two animations from
mutating the UI in parallel so we won’t have collisions between two conflicting sides. Things get
more interesting when we try to do something like this:

cnt.add(myButton);
int componentCount = cnt.getComponentCount();
cnt.animateLayout(300);
cnt.removeComponent(myButton);
if(componentCount == cnt.getComponentCount()) {
 // this will happen...
}

The reason this happens is that the second remove gets postponed to the end of the animation so it
won’t break the animation. This works for remove and add operations on a Container
[https://www.codenameone.com/javadoc/com/codename1/ui/Container.html] as well as other animations.

The simple yet problematic fix would be:

314

https://www.codenameone.com/javadoc/com/codename1/ui/AnimationManager.html
https://www.codenameone.com/javadoc/com/codename1/ui/Container.html

cnt.add(myButton);
int componentCount = cnt.getComponentCount();
cnt.animateLayoutAndWait(300);
cnt.removeComponent(myButton);
if(componentCount == cnt.getComponentCount()) {
 // this probably won't happen...
}

So why that might still fail?

Events come in constantly during the run of the EDT [7], so an event might come in that might
trigger an animation in your code. Even if you are on the EDT keep in mind that you don’t actually
block it and an event might come in.

In those cases an animation might start and you might be unaware of that animation and it might
still be in action when you expect remove to work.

Animation Manager to the Rescue

AnimationManager [https://www.codenameone.com/javadoc/com/codename1/ui/AnimationManager.html] has
builtin support to fix this exact issue.

We can flush the animation queue and run synchronously after all the animations finished and
before new ones come in by using something like this:

cnt.add(myButton);
int componentCount = cnt.getComponentCount();
cnt.animateLayout(300);
cnt.getAnimationManager().flushAnimation(() -> {
 cnt.removeComponent(myButton);
 if(componentCount == cnt.getComponentCount()) {
 // this shouldn't happen...
 }
});

7.3. Low Level Animations
The Codename One event dispatch thread has a special animation “pulse” allowing an animation to
update its state and draw itself. Code can make use of this pulse to implement repetitive polling
tasks that have very little to do with drawing.

This is helpful since the callback will always occur on the event dispatch thread.

Every component in Codename One contains an animate() method that returns a boolean value,
you can also implement the Animation [https://www.codenameone.com/javadoc/com/codename1/ui/

animations/Animation.html] interface in an arbitrary component to implement your own animation. In
order to receive animation events you need to register yourself within the parent form, it is the
responsibility of the parent for to call animate().

315

https://www.codenameone.com/javadoc/com/codename1/ui/AnimationManager.html
https://www.codenameone.com/javadoc/com/codename1/ui/animations/Animation.html

If the animate method returns true then the animation will be painted (the paint method of the
Animation interface would be invoked).

It is important to deregister animations when they aren’t needed to conserve
battery life.

If you derive from a component, which has its own animation logic you might damage its
animation behavior by deregistering it, so tread gently with the low level API’s.

E.g. you can add additional animation logic using code like this:

myForm.registerAnimated(this);

private int spinValue;
public boolean animate() {
 if(userStatusPending) {
 spinValue++;
 super.animate();
 return true;
 }
 return super.animate();
}

7.3.1. Why Not Just Write Code In Paint?

Animations are comprised of two parts, the logic (deciding the position etc) and the painting. The
paint method should be dedicated to painting only, not to the actual moving of the components.

The separation of concerns allows us to avoid redundant painting e.g. if animate didn’t trigger a
change just return false to avoid the overhead related to animations.

We discuss low level animations in more details within the animation section of the clock demo
[https://www.codenameone.com/manual/graphics.html#clock-animation-section].

7.4. Transitions
Transitions allow us to replace one component with another, most typically forms or dialogs are
replaced with a transition however a transition can be applied to replace any arbitrary component.

Developers can implement their own custom transition and install it to components by deriving the
Transition [https://www.codenameone.com/javadoc/com/codename1/ui/animations/Transition.html] class,
although most commonly the built in CommonTransitions [https://www.codenameone.com/javadoc/com/

codename1/ui/animations/CommonTransitions.html] class is used for almost everything.

You can define transitions for forms/dialogs/menus globally either via the theme constants or via
the LookAndFeel [https://www.codenameone.com/javadoc/com/codename1/ui/plaf/LookAndFeel.html] class.
Alternatively you can install a transition on top-level components via setter methods.

316

https://www.codenameone.com/manual/graphics.html#clock-animation-section
https://www.codenameone.com/javadoc/com/codename1/ui/animations/Transition.html
https://www.codenameone.com/javadoc/com/codename1/ui/animations/CommonTransitions.html
https://www.codenameone.com/javadoc/com/codename1/ui/plaf/LookAndFeel.html

In/Out Transitions

When defining a transition we define the entering transition and the exiting transition. For
most cases only one of those is necessary and we default to the exiting (out transition) as a
convention.

So for almost all cases the method setFormTransitonIn should go unused. That API exists for
some elaborate custom transitions that might need to have a special effect both when
transitioning in and out of a specific form. However, most of these effects are easier to
achieve with layout animations (e.g. components dropping into place etc.).

In the case of Dialog the transition in shows its appearance and the transition out shows its
disposal. So in that case both transitions make a lot of sense.

Back/Forward Transitions

Transitions have a direction and can all be played either in incoming or outgoing direction. A
transition can be flipped (played in reverse) when we use an RTL language [8] or when we
simply traverse backwards in the form navigation hierarchy.

Normally Form.show() displays the next Form with an incoming transition based on the current
RTL mode. If we use Form.showBack() it will play the transition in reverse.

When working with high level animations you can select Slow Motion option in
the simulator to slow down animations and inspect their details

Themes define the default transitions used when showing a form, these differ based on the OS. In
most platforms the default is Slide whereas in iOS the default is SlideFade which slides the content
pane and title while fading in/out the content of the title area.

SlideFade is problematic without a title area. If you have a Form that lacks a title
area we would recommend to disable SlideFade at least for that Form.

Check out the full set of theme constants in the Theme Constants Section
[https://www.codenameone.com/manual/advanced-theming.html#theme-constants-section].

7.4.1. Replace

To apply a transition to a component we can just use the Container.replace() method as such:

317

https://www.codenameone.com/manual/advanced-theming.html#theme-constants-section

Form hi = new Form("Replace", new BoxLayout(BoxLayout.Y_AXIS));
Button replace = new Button("Replace Pending");
Label replaceDestiny = new Label("Destination Replace");
hi.add(replace);
replace.addActionListener((e) -> {
 replace.getParent().replaceAndWait(replace, replaceDestiny,
CommonTransitions.createCover(CommonTransitions.SLIDE_VERTICAL, true, 800));
 replaceDestiny.getParent().replaceAndWait(replaceDestiny, replace,
CommonTransitions.createUncover(CommonTransitions.SLIDE_VERTICAL, true, 800));
});

Replace even works when you have a layout constraint in place e.g. replacing a
component in a border layout will do the "right thing". However, some layouts
such as TableLayout might be tricky in such cases so we recommend wrapping a
potentially replaceable Component in a border layout and replacing the content.

Container.replace() can also be used with a null transition at which point it replaces instantly with
no transition.

7.4.2. Slide Transitions

The slide transitions are used to move the Form/Component in a sliding motion to the side or up/down.
There are 4 basic types of slide transitions:

1. Slide - the most commonly used transition

2. Fast Slide - historically this provided better performance for old device types. It is no longer
recommended for newer devices

3. Slide Fade - the iOS default where the title area features a fade transition

4. Cover/Uncover - a type of slide transition where only the source or destination form slides while
the other remains static in place

The code below demonstrates the usage of all the main transitions:

318

Toolbar.setGlobalToolbar(true);
Form hi = new Form("Transitions", new BoxLayout(BoxLayout.Y_AXIS));
Style bg = hi.getContentPane().getUnselectedStyle();
bg.setBgTransparency(255);
bg.setBgColor(0xff0000);
Button showTransition = new Button("Show");
Picker pick = new Picker();
pick.setStrings("Slide", "SlideFade", "Cover", "Uncover", "Fade", "Flip");
pick.setSelectedString("Slide");
TextField duration = new TextField("10000", "Duration", 6, TextArea.NUMERIC);
CheckBox horizontal = CheckBox.createToggle("Horizontal");
pick.addActionListener((e) -> {
 String s = pick.getSelectedString().toLowerCase();
 horizontal.setEnabled(s.equals("slide") || s.indexOf("cover") > -1);
});
horizontal.setSelected(true);
hi.add(showTransition).
 add(pick).
 add(duration).
 add(horizontal);

Form dest = new Form("Destination");
bg = dest.getContentPane().getUnselectedStyle();
bg.setBgTransparency(255);
bg.setBgColor(0xff);
dest.setBackCommand(
 dest.getToolbar().addCommandToLeftBar("Back", null, (e) -> hi.showBack()));

showTransition.addActionListener((e) -> {
 int h = CommonTransitions.SLIDE_HORIZONTAL;
 if(!horizontal.isSelected()) {
 h = CommonTransitions.SLIDE_VERTICAL;
 }
 switch(pick.getSelectedString()) {
 case "Slide":
 hi.setTransitionOutAnimator(CommonTransitions.createSlide(h, true, duration.getAsInt(3000)));
 dest.setTransitionOutAnimator(CommonTransitions.createSlide(h, true, duration.getAsInt(3000)));
 break;
 case "SlideFade":
 hi.setTransitionOutAnimator(CommonTransitions.createSlideFadeTitle(true, duration.getAsInt(3000)));
 dest.setTransitionOutAnimator(CommonTransitions.createSlideFadeTitle(true, duration.getAsInt(3000)));
 break;
 case "Cover":
 hi.setTransitionOutAnimator(CommonTransitions.createCover(h, true, duration.getAsInt(3000)));
 dest.setTransitionOutAnimator(CommonTransitions.createCover(h, true, duration.getAsInt(3000)));
 break;
 case "Uncover":
 hi.setTransitionOutAnimator(CommonTransitions.createUncover(h, true, duration.getAsInt(3000)));
 dest.setTransitionOutAnimator(CommonTransitions.createUncover(h, true, duration.getAsInt(3000)));
 break;
 case "Fade":
 hi.setTransitionOutAnimator(CommonTransitions.createFade(duration.getAsInt(3000)));
 dest.setTransitionOutAnimator(CommonTransitions.createFade(duration.getAsInt(3000)));
 break;
 case "Flip":
 hi.setTransitionOutAnimator(new FlipTransition(-1, duration.getAsInt(3000)));
 dest.setTransitionOutAnimator(new FlipTransition(-1, duration.getAsInt(3000)));
 break;
 }
 dest.show();
});
hi.show();

319

Figure 302. The slide transition moves both incoming and outgoing forms together

Figure 303. The slide transition can be applied vertically as well

Figure 304. Slide fade fades in the destination title while sliding the content pane it is the default on iOS

SlideFade is problematic without a title area. If you have a Form that lacks a title
area we would recommend to disable SlideFade at least for that Form.

Figure 305. With cover transitions the source form stays in place as it is covered by the destination. This
transition can be played both horizontally and vertically

Figure 306. Uncover is the inverse of cover. The destination form stays in place while the departing form
moves away

7.4.3. Fade and Flip Transitions

The fade transition is pretty trivial and only accepts a time value since it has no directional context.

320

Figure 307. Fade transition is probably the simplest one around

The FlipTransition [https://www.codenameone.com/javadoc/com/codename1/ui/animations/FlipTransition.html]
is also pretty simple but unlike the others it isn’t a part of the CommonTransitions. It has its own
FlipTransition class.

This transition looks very different on devices as it uses native perspective
transforms available only there

Figure 308. Fade transition is probably the simplest one around

7.4.4. Bubble Transition

BubbleTransiton [https://www.codenameone.com/javadoc/com/codename1/ui/animations/BubbleTransition.html]
morphs a component into another component using a circular growth motion.

The BubbleTransition accepts the component that will grow into the bubble effect as one of its
arguments. It’s generally designed for Dialog transitions although it could work for more creative
use cases:

The code below manipulates styles and look. This is done to make the code more
"self contained". Real world code should probably use the theme

321

https://www.codenameone.com/javadoc/com/codename1/ui/animations/FlipTransition.html
https://www.codenameone.com/javadoc/com/codename1/ui/animations/BubbleTransition.html

Form hi = new Form("Bubble");
Button showBubble = new Button("+");
showBubble.setName("BubbleButton");
Style buttonStyle = showBubble.getAllStyles();
buttonStyle.setBorder(Border.createEmpty());
buttonStyle.setFgColor(0xffffff);
buttonStyle.setBgPainter((g, rect) -> {
 g.setColor(0xff);
 int actualWidth = rect.getWidth();
 int actualHeight = rect.getHeight();
 int xPos, yPos;
 int size;
 if(actualWidth > actualHeight) {
 yPos = rect.getY();
 xPos = rect.getX() + (actualWidth - actualHeight) / 2;
 size = actualHeight;
 } else {
 yPos = rect.getY() + (actualHeight - actualWidth) / 2;
 xPos = rect.getX();
 size = actualWidth;
 }
 g.setAntiAliased(true);
 g.fillArc(xPos, yPos, size, size, 0, 360);
});
hi.add(showBubble);
hi.setTintColor(0);
showBubble.addActionListener((e) -> {
 Dialog dlg = new Dialog("Bubbled");
 dlg.setLayout(new BorderLayout());
 SpanLabel sl = new SpanLabel("This dialog should appear with a bubble transition from the button", "DialogBody");
 sl.getTextUnselectedStyle().setFgColor(0xffffff);
 dlg.add(BorderLayout.CENTER, sl);
 dlg.setTransitionInAnimator(new BubbleTransition(500, "BubbleButton"));
 dlg.setTransitionOutAnimator(new BubbleTransition(500, "BubbleButton"));
 dlg.setDisposeWhenPointerOutOfBounds(true);
 dlg.getTitleStyle().setFgColor(0xffffff);

 Style dlgStyle = dlg.getDialogStyle();
 dlgStyle.setBorder(Border.createEmpty());
 dlgStyle.setBgColor(0xff);
 dlgStyle.setBgTransparency(0xff);
 dlg.showPacked(BorderLayout.NORTH, true);
});

hi.show();

Figure 309. Bubble transition converting a circular button to a Dialog

322

7.4.5. Morph Transitions

Android’s material design has a morphing effect where an element from the previous form
(activity) animates into a different component on a new activity. Codename One has a morph effect
in the Container [https://www.codenameone.com/javadoc/com/codename1/ui/Container.html] class but it
doesn’t work as a transition between forms and doesn’t allow for multiple separate components to
transition at once.

Figure 310. Morph Transition

To support this behavior we have the MorphTransition [https://www.codenameone.com/javadoc/com/

codename1/ui/animations/MorphTransition.html] class that provides this same effect coupled with a fade
to the rest of the UI (see Figure 310, “Morph Transition”).

Since the transition is created before the form exists we can’t reference explicit components within
the form when creating the morph transition (in order to indicate which component becomes
which) so we need to refer to them by name. This means we need to use setName(String) on the
components in the source/destination forms so the transition will be able to find them.

Form demoForm = new Form(currentDemo.getDisplayName());
demoForm.setScrollable(false);
demoForm.setLayout(new BorderLayout());
Label demoLabel = new Label(currentDemo.getDisplayName());
demoLabel.setIcon(currentDemo.getDemoIcon());
demoLabel.setName("DemoLabel");
demoForm.addComponent(BorderLayout.NORTH, demoLabel);
demoForm.addComponent(BorderLayout.CENTER, wrapInShelves(n));
....
demoForm.setBackCommand(backCommand);
demoForm.setTransitionOutAnimator(
 MorphTransition.create(3000).morph(
 currentDemo.getDisplayName(),
 "DemoLabel"));
f.setTransitionOutAnimator(
 MorphTransition.create(3000).
 morph(currentDemo.getDisplayName(),
 "DemoLabel"));
demoForm.show();

7.4.6. SwipeBackSupport

iOS7+ allows swiping back one form to the previous form, Codenmae One has an API to enable back
swipe transition:

323

https://www.codenameone.com/javadoc/com/codename1/ui/Container.html
https://www.codenameone.com/javadoc/com/codename1/ui/animations/MorphTransition.html

SwipeBackSupport.bindBack(Form currentForm, LazyValue<Form> destination);

That one command will enable swiping back from currentForm. LazyValue
[https://www.codenameone.com/javadoc/com/codename1/util/LazyValue.html] allows us to pass a value lazily:

public interface LazyValue<T> {
 public T get(Object... args);
}

This effectively allows us to pass a form and only create it as necessary (e.g. for a GUI builder app
we don’t have the actual previous form instance), notice that the arguments aren’t used for this
case but will be used in other cases.

The code below should work for the transition sample above. Notice that this API was designed to
work with "Slide Fade" transition and might have issues with other transition types:

SwipeBackSupport.bindBack(dest, (args) -> hi);

[7] Event Dispatch Thread

[8] Right to left/bidi language such as Hebrew or Arabic

324

https://www.codenameone.com/javadoc/com/codename1/util/LazyValue.html

8. The EDT - Event Dispatch Thread

8.1. What Is The EDT
Codename One allows developers to create as many threads as they want; however in order to
interact with the Codename One user interface components a developer must use the EDT. The EDT
stands for "Event Dispatch Thread" but it handles a lot more than just "events".

The EDT is the main thread of Codename One, by using just one thread Codename One can avoid
complex synchronization code and focus on simple functionality that assumes only one thread.

This has huge advantages for your code. You can normally assume that all code
will occur on a single thread and avoid complex synchronization logic.

You can visualize the EDT as a loop such as this:

while(codenameOneRunning) {
 performEventCallbacks();
 performCallSeriallyCalls();
 drawGraphicsAndAnimations();
 sleepUntilNextEDTCycle();
}

Normally, every call you receive from Codename One will occur on the EDT. E.g. every event, calls
to paint(), lifecycle calls (start etc.) should all occur on the EDT.

This is pretty powerful, however it means that as long as your code is processing nothing else can
happen in Codename One!

If your code takes too long to execute then no painting or event processing
will occur during that time, so a call to Thread.sleep() will actually stop
everything!

The solution is pretty simple, if you need to perform something that requires intensive CPU you can
spawn a thread.

Codename One’s networking code automatically spawns its own network thread (see the
NetworkManager [https://www.codenameone.com/javadoc/com/codename1/io/NetworkManager.html]).
However, this also poses a problem…

Codename One assumes all modifications to the UI are performed on the EDT but if we spawned a
separate thread. How do we force our modifications back into the EDT?

Codename One includes 3 methods in the Display [https://www.codenameone.com/javadoc/com/codename1/

ui/Display.html] class to help in these situations: isEDT(), callSerially(Runnable) &
callSeriallyAndWait(Runnable).

325

https://www.codenameone.com/javadoc/com/codename1/io/NetworkManager.html
https://www.codenameone.com/javadoc/com/codename1/ui/Display.html

isEDT() is useful for generic code that needs to test whether the current code is executing on the
EDT.

8.2. Call Serially (And Wait)
callSerially(Runnable) should normally be called off the EDT (in a separate thread), the run
method within the submitted runnable will be invoked on the EDT.

The Runnable passed to the callSerially and callSeriallyAndWait methods is not a
Thread. We just use the Runnable interface as a convenient callback interface.

// this code is executing in a separate thread
final String res = methodThatTakesALongTime();
Display.getInstance().callSerially(new Runnable() {
 public void run() {
 // this occurs on the EDT so I can make changes to UI components
 resultLabel.setText(res);
 }
});

 You can write this code more concisely using Java 8 lambda code as such:

// this code is executing in a separate thread
String res = methodThatTakesALongTime();
Display.getInstance().callSerially(() -> resultLabel.setText(res));

This allows code to leave the EDT and then later on return to it to perform things within the EDT.

The callSeriallyAndWait(Runnable) method blocks the current thread until the method completes,
this is useful for cases such as user notification e.g.:

// this code is executing in a separate thread
methodThatTakesALongTime();
Display.getInstance().callSeriallyAndWait(() -> {
 // this occurs on the EDT so I can make changes to UI components
 globalFlag = Dialog.show("Are You Sure?", "Do you want to continue?", "Continue", "Stop");
});
// this code is executing the separate thread
// global flag was already set by the call above
if(!globalFlag) {
 return;
}
otherMethod();

If you are unsure use callSerially. The use cases for callSeriallyAndWait are very
rare.

326

8.2.1. callSerially On The EDT

One of the misunderstood topics is why would we ever want to invoke callSerially when we are
still on the EDT. This is best explained by example. Say we have a button that has quite a bit of
functionality tied to its events e.g.:

1. A user added an action listener to show a Dialog.

2. A framework the user installed added some logging to the button.

3. The button repaints a release animation as its being released.

However, this might cause a problem if the first event that we handle (the dialog) might cause an
issue to the following events. E.g. a dialog will block the EDT (using invokeAndBlock), events will keep
happening but since the event we are in "already happened" the button repaint and the framework
logging won’t occur. This might also happen if we show a form which might trigger logic that relies
on the current form still being present.

One of the solutions to this problem is to just wrap the action listeners body with a callSerially. In
this case the callSerially will postpone the event to the next cycle (loop) of the EDT and let the
other events in the chain complete. Notice that you shouldn’t use this normally since it includes an
overhead and complicates application flow, however when you run into issues in event processing
we suggest trying this to see if its the cause.

You should never invoke callSeriallyAndWait on the EDT since this would
effectively mean sleeping on the EDT. We made that method throw an exception if
its invoked from the EDT.

8.3. Debugging EDT Violations
There are two types of EDT violations:

1. Blocking the EDT thread so the UI performance is considerably slower.

2. Invoking UI code on a separate thread

Codename One provides a tool to help you detect some of these violations some caveats may apply
though…

It’s an imperfect tool. It might fire “false positives” meaning it might detect a violation for perfectly
legal code and it might miss some illegal calls. However, it is a valuable tool in the process of
detecting hard to track bugs that are sometimes only reproducible on the devices (due to race
condition behavior).

To activate this tool just select the Debug EDT menu option in the simulator and pick the level of
output you wish to receive:

327

Figure 311. Debug EDT

Full output will include stack traces to the area in the code that is suspected in the violation.

8.4. Invoke And Block
Invoke and block is the exact opposite of callSeriallyAndWait(), it blocks the EDT and opens a
separate thread for the runnable call. This functionality is inspired by the Foxtrot
[http://foxtrot.sourceforge.net/] API, which is a remarkably powerful tool most Swing developers don’t
know about.

This is best explained by an example. When we write typical code in Java we like that code is in
sequence as such:

doOperationA();
doOperationB();
doOperationC();

This works well normally but on the EDT it might be a problem, if one of the operations is slow it
might slow the whole EDT (painting, event processing etc.). Normally we can just move operations
into a separate thread e.g.:

doOperationA();
new Thread() {
 public void run() {
 doOperationB();
 }
}).start();
doOperationC();

Unfortunately, this means that operation C will happen in parallel to operation B which might be a
problem…
E.g. instead of using operation names lets use a more "real world" example:

328

http://foxtrot.sourceforge.net/

updateUIToLoadingStatus();
readAndParseFile();
updateUIWithContentOfFile();

Notice that the first and last operations must be conducted on the EDT but the middle operation
might be really slow! Since updateUIWithContentOfFile needs readAndParseFile to occur before it
starts doing the new thread won’t be enough.

A simplistic approach is to do something like this:

updateUIToLoadingStatus();
new Thread() {
 public void run() {
 readAndParseFile();
 updateUIWithContentOfFile();
 }
}).start();

But updateUIWithContentOfFile should be executed on the EDT and not on a random thread. So the
right way to do this would be something like this:

updateUIToLoadingStatus();
new Thread() {
 public void run() {
 readAndParseFile();
 Display.getInstance().callSerially(new Runnable() {
 public void run() {
 updateUIWithContentOfFile();
 }
 });
 }
}).start();

This is perfectly legal and would work reasonably well, however it gets complicated as we add
more and more features that need to be chained serially after all these are just 3 methods!

Invoke and block solves this in a unique way you can get almost the exact same behavior by using
this:

updateUIToLoadingStatus();
Display.getInstance().invokeAndBlock(new Runnable() {
 public void run() {
 readAndParseFile();
 }
});
updateUIWithContentOfFile();

329

Or this with Java 8 syntax:

updateUIToLoadingStatus();
Display.getInstance().invokeAndBlock(() -> readAndParseFile());
updateUIWithContentOfFile();

Invoke and block effectively blocks the current EDT in a legal way. It spawns a separate thread that
runs the run() method and when that run method completes it goes back to the EDT.

All events and EDT behavior still work while invokeAndBlock is running, this is because
invokeAndBlock() keeps calling the main thread loop internally.

Notice that invokeAndBlock comes at a slight performance penalty. Also notice that
nesting invokeAndBlock calls (or over using them) isn’t recommended.
However, they are very convenient when working with multiple threads/UI.

Even if you never call invokeAndBlock directly you are probably using it indirectly in API’s such as
Dialog [https://www.codenameone.com/javadoc/com/codename1/ui/Dialog.html] that show a dialog while
blocking the current thread e.g.:

public void actionPerformed(ActionEvent ev) {
 // will return true if the user clicks "OK"
 if(!Dialog.show("Question", "How Are You", "OK", "Not OK")) {
 // ask what went wrong...
 }
}

Notice that the dialog show method will block the calling thread until the user clicks OK or Not OK…

Other API’s such as NetworkManager.addToQueueAndWait() also make use of this
feature. Pretty much every "AndWait" method or blocking method uses this API
internally!

To explain how invokeAndBlock works we can return to the sample above of how the EDT works:

while(codenameOneRunning) {
 performEventCallbacks();
 performCallSeriallyCalls();
 drawGraphicsAndAnimations();
 sleepUntilNextEDTCycle();
}

invokeAndBlock() works in a similar way to this pseudo code:

330

https://www.codenameone.com/javadoc/com/codename1/ui/Dialog.html

void invokeAndBlock(Runnable r) {
 openThreadForR(r);
 while(r is still running) {
 performEventCallbacks();
 performCallSeriallyCalls();
 drawGraphicsAndAnimations();
 sleepUntilNextEDTCycle();
 }
}

So the EDT is effectively "blocked" but we "redo it" within the invokeAndBlock method…

As you can see this is a very simple approach for thread programming in UI, you don’t need to
block your flow and track the UI thread. You can just program in a way that seems sequential (top
to bottom) but really uses multi-threading correctly without blocking the EDT.

331

332

9. Monetization
Codename One tries to make the lives of software developers easier by integrating several forms of
built-in monetization solutions such as ad network support, in-app-purchase etc.

A lot of the monetization options are available as 3rd party cn1lib’s [https://www.codenameone.com/

cn1libs.html] that you can install thru the Codename One website.

9.1. Google Play Ads
The most effective network is the simplest banner ad support. To enable mobile ads just create an
ad unit [https://apps.admob.com/?pli=1#monetize/adunit:create] in Admob’s website, you should end up
with the key similar to this:

ca-app-pub-8610616152754010/3413603324

To enable this for Android just define the android.googleAdUnitId=ca-app-pub-
8610616152754010/3413603324 in the build arguments and for iOS use the same as in
ios.googleAdUnitId. The rest is seamless, the right ad will be created for you at the bottom of the
screen and the form should automatically shrink to fit the ad. This shrinking is implemented
differently between iOS and Android due to some constraints but the result should be similar and
this should work reasonably well with device rotation as well.

Figure 312. Google play ads

There’s a special ad unit id to use for test ads. If you specify ca-app-pub-
3940256099942544/6300978111, you’ll get test ads for your development phase. This is important
because you’re not allowed to click on your own ads. When it’s time to create a production release,
you should replace this with the real value you generated in adMob.

9.2. In App Purchase
In-app purchase is a helpful tool for making app development profitable. Codename One supports
in-app purchases of consumable/non-consumable products on Android & iOS. It also features
support for subscriptions. For such a seemingly simple task, in-app purchase involves a lot of
moving parts - especially when it comes to subscriptions.

9.2.1. The SKU

In-app purchase support centers around your set of SKUs that you want to sell. Each product that
you sell, whether it be a 1-month subscription, an upgrade to the "Pro" version, "10 disco credits",
will have a SKU (stock-keeping-unit). Ideally you will be able to use the same SKU across all the
stores that you sell your app in.

333

https://www.codenameone.com/cn1libs.html
https://apps.admob.com/?pli=1#monetize/adunit:create
https://apps.admob.com/?pli=1#monetize/adunit:create

9.2.2. Types of Products

There are generally 4 classifications for products:

1. Non-consumable Product - This is a product that the user purchases once to "own". They
cannot re-purchase it. One example is a product that upgrades your app to a "Pro" version.

2. Consumable Product - This is a product that the user can buy more than once. E.g. You might
have a product for "10 Credits" that allows the user to buy items in a game.

3. Non-Renewable Subscription - A subscription that you buy once, and will not be "auto-
renewed" by the app store. These are almost identical to consumable products, except that
subscriptions need to be transferable across all the user’s devices. This means that non-
renewable subscriptions require that you have a server that keeps track of the subscriptions.

4. Renewable Subscriptions - A subscription that the app store manages. The user will be
automatically billed when the subscription period ends, and the subscription will renew.

These subscription categories may not be explicitly supported by a given store, or
they may carry a different name. You can integrate each product type in a cross
platform way using Codename One. E.g. In Google Play there is no distinction
between consumable products and non-renewable subscriptions, but in iTunes
there is a distinction.

9.2.3. The "Hello World" of In-App Purchase

Let’s start with a simple example of an app that sells "Worlds". The first thing we do is pick the SKU
for our product. I’ll choose "com.codename1.world" for the SKU.

public static final String SKU_WORLD = "com.codename1.world";

While we chose to use the package name convention for an SKU you can use any
name you want e.g UA8879

Next, our app’s main class needs to implement the PurchaseCallback interface

334

public class HelloWorldIAP implements PurchaseCallback {

 @Override
 public void itemPurchased(String sku) {
 ...
 }

 @Override
 public void itemPurchaseError(String sku, String errorMessage) {
 ...
 }

 @Override
 public void itemRefunded(String sku) {
 ...
 }

 @Override
 public void subscriptionStarted(String sku) {
 ...
 }

 @Override
 public void subscriptionCanceled(String sku) {
 ...
 }

 @Override
 public void paymentFailed(String paymentCode, String failureReason) {
 ...
 }

 @Override
 public void paymentSucceeded(String paymentCode, double amount, String currency) {
 ...
 }

}

Using these callbacks, we’ll be notified whenever something changes in our purchases. For our
simple app we’re only interested in itemPurchased() and itemPurchaseError().

Now in the start method, we’ll add a button that allows the user to buy the world:

335

 public void start() {
 if(current != null){
 current.show();
 return;
 }
 Form hi = new Form("Hi World");
 Button buyWorld = new Button("Buy World");
 buyWorld.addActionListener(e->{
 if (Purchase.getInAppPurchase().wasPurchased(SKU_WORLD)) {
 Dialog.show("Can't Buy It", "You already Own It", "OK", null);
 } else {
 Purchase.getInAppPurchase().purchase(SKU_WORLD);
 }
 });

 hi.addComponent(buyWorld);
 hi.show();
 }

At this point, we already have a functional app that will track the sale of the world. To make it more
interesting, let’s add some feedback with the ToastBar to show when the purchase completes.

 @Override
 public void itemPurchased(String sku) {
 ToastBar.showMessage("Thanks. You now own the world", FontImage.MATERIAL_THUMB_UP);
 }

 @Override
 public void itemPurchaseError(String sku, String errorMessage) {
 ToastBar.showErrorMessage("Failure occurred: "+errorMessage);
 }

You can test out this code in the simulator without doing any additional setup and
it will work. If you want the code to work properly on Android and iOS, you’ll need
to set up the app and in-app purchase settings in the Google Play and iTunes stores
respectively as explained below

When the app first opens we see our button:

336

Figure 313. In-app purchase demo app

In the simulator, clicking on the "Buy World" button will bring up a prompt to ask you if you want
to approve the purchase.

Figure 314. Approving the purchase in the simulator

Now if I try to buy the product again, it pops up the dialog to let me know that I already own it.

337

Figure 315. In App purchase already owned

9.2.4. Making it Consumable

In the "Buy World" example above, the "world" product was non-consumable, since we could only
buy the world once. We could change it to a consumable product by disregarding whether it was
purchased before & keeping track of how many times it had been purchased.

We’ll use storage to keep track of the number of worlds that the user purchased. We need two
methods to manage this count. One method gets the number of worlds that we own, and another
adds a world to this count.

private static final String NUM_WORLDS_KEY = "NUM_WORLDS.dat";
public int getNumWorlds() {
 synchronized (NUM_WORLDS_KEY) {
 Storage s = Storage.getInstance();
 if (s.exists(NUM_WORLDS_KEY)) {
 return (Integer)s.readObject(NUM_WORLDS_KEY);
 } else {
 return 0;
 }
 }
}

public void addWorld() {
 synchronized (NUM_WORLDS_KEY) {
 Storage s = Storage.getInstance();
 int count = 0;
 if (s.exists(NUM_WORLDS_KEY)) {
 count = (Integer)s.readObject(NUM_WORLDS_KEY);
 }
 count++;
 s.writeObject(NUM_WORLDS_KEY, new Integer(count));
 }
}

338

Now we’ll change our purchase code as follows:

buyWorld.addActionListener(e->{
 if (Dialog.show("Confirm", "You own "+getNumWorlds()+
 " worlds. Do you want to buy another one?", "Yes", "No")) {
 Purchase.getInAppPurchase().purchase(SKU_WORLD);
 }
});

And our itemPurchased() callback will need to add a world:

@Override
public void itemPurchased(String sku) {
 addWorld();
 ToastBar.showMessage("Thanks. You now own "+getNumWorlds()+" worlds", FontImage.MATERIAL_THUMB_UP);
}

When we set up the products in the iTunes store we will need to mark the product
as a consumable product or iTunes will prevent us from purchasing it more than
once

9.2.5. Non-Renewable Subscriptions

As we discussed before, there are two types of subscriptions:

1. Non-renewable

2. Auto-renewable

Non-renewable subscriptions are the same as consumable products, except that they are shareable
across devices. Auto-renewable subscriptions will continue as long as the user doesn’t cancel the
subscription. They will be re-billed automatically by the appropriate app-store when the chosen
period expires, and the app-store handles the management details itself.

The concept of an "Non-renewable" subscription is unique to iTunes. Google Play
has no formal similar option. In order to create a non-renewable subscription SKU
that behaves the same in your iOS and Android apps you would create it as a
regular product in Google play, and a Non-renewable subscription in the iTunes
store. We’ll learn more about that in a later post when we go into the specifics of
app store setup.

The Purchase class includes both a purchase() method and a subscribe() method.
On some platforms it makes no difference which one you use, but on Android it
matters. If the product is set up as a subscription in Google Play, then you must use
subscribe() to purchase the product. If it is set up as a regular product, then you
must use purchase(). Since we enter "Non-renewable" subscriptions as regular
products in the play store, we would use the purchase() method.

339

9.2.6. The Server-Side

Since a subscription purchased on one user device needs to be available across the user’s devices
(Apple’s rules for non-renewable subscriptions), our app will need to have a server-component. In
this section, we’ll gloss over that & "mock" the server interface. We’ll go into the specifics of the
server-side below.

The Receipts API

Subscriptions, in Codename One use the "Receipts" API. It’s up to you to register a receipt store with
the In-App purchase instance, which allows Codename one to load receipts (from your server), and
submit new receipts to your server. A Receipt includes information such as:

1. Store code (since you may be dealing with receipts from itunes, google play & Microsoft)

2. SKU

3. Transaction ID (store specific)

4. Expiry Date

5. Cancellation date

6. Purchase date

7. Order Data (that you can use on the server-side to verify the receipt and load receipt details
directly from the store it originated from).

The Purchase provides a set of methods for interacting with the receipt store, such as:

1. isSubscribed([skus]) - Checks to see if the user is currently subscribed to any of the provided
skus.

2. getExpiryDate([skus]) - Checks the expiry date for a set of skus.

3. synchronizeReceipts() - Synchronizes the receipts with the receipt store. This will attempt to
submit any pending purchase receipts to the receipt store, and the reload receipts from the
receipt store.

In order for any of this to work, you must implement the ReceiptStore interface, and register it with
the Purchase instance. Your receipt store must implement two methods:

1. fetchReceipts(SuccessCallback<Receipt[]> callback) - Loads all of the receipts from your
receipt store for the current user.

2. submitReceipt(Receipt receipt, SuccessCallback<Boolean> callback) - Submits a receipt to your
receipt store. This gives you an opportunity to add details to the receipt such as an expiry date.

9.2.7. The "Hello World" of Non-Renewable Subscriptions

We’ll expand on the theme of "Buying" the world for this app, except, this time we will "Rent" the
world for a period of time. We’ll have two products:

1. A 1 month subscription

2. A 1 year subscription

340

public static final String SKU_WORLD_1_MONTH = "com.codename1.world.subscribe.1month";
public static final String SKU_WORLD_1_YEAR = "com.codename1.world.subscribe.1year";

public static final String[] PRODUCTS = {
 SKU_WORLD_1_MONTH,
 SKU_WORLD_1_YEAR
};

Notice that we create two separate SKUs for the 1 month and 1 year subscription. Each
subscription period must have its own SKU. I have created an array (PRODUCTS) that contains both
of the SKUs. This is handy, as you’ll see in the examples ahead, because the APIs for checking status
and expiry date of a subscription take the SKUs in a "subscription group" as input.

Different SKUs that sell the same service/product but for different periods form a
"subscription group". Conceptually, customers are not subscribing to a particular
SKU, they are subscribing to the subscription group of which that SKU is a
member. As an example, if a user purchases a 1 month subscription to "the world",
they are actually subscribing to "the world" subscription group.

It’s up to you to know the grouping of your SKUs. Any methods in the Purchase class that check
subscription status or expiry date of a SKU should be passed all SKUs of that subscription group.
E.g. If you want to know if the user is subscribed to the SKU_WORLD_1_MONTH subscription, it would not
be sufficient to call iap.isSubscribed(SKU_WORLD_1_MONTH), because that wouldn’t take into account if
the user had purchased a 1 year subscription. The correct way is to always call
iap.isSubscribed(SKU_WORLD_1_MONTH, SKU_WORLD_1_YEAR), or simply iap.isSubscribed(PRODUCTS) since
we have placed both SKUs into our PRODUCTS array.

Implementing the Receipt Store

The receipt store is intended to interface with a server so that the subscriptions
can be synced with multiple devices, as required by Apple’s guidelines. For this
post we’ll just store our receipts on device using internal storage. Moving the logic
to a server is a simple matter that we will cover in a future post when we cover the
server-side.

341

Figure 316. The Receipt store is a layer between your server and Codename One

A basic receipt store needs to implement just two methods:

1. fetchReceipts

2. submitReceipt

Generally we’ll register it in our app’s init() method so that it’s always available.

342

public void init(Object context) {
 ...

 Purchase.getInAppPurchase().setReceiptStore(new ReceiptStore() {

 @Override
 public void fetchReceipts(SuccessCallback<Receipt[]> callback) {
 // Fetch receipts from storage and pass them to the callback
 }

 @Override
 public void submitReceipt(Receipt receipt, SuccessCallback<Boolean> callback) {
 // Save a receipt to storage. Make sure to call callback when done.
 }
 });
}

These methods are designed to be asynchronous since real-world apps will always be connecting to
some sort of network service. Therefore, instead of returning a value, both of these methods are
passed instances of the SuccessCallback class. It’s important to make sure to call
callback.onSuccess() ALWAYS when the methods have completed, even if there is an error, or the
Purchase class will just assume that you’re taking a long time to complete the task, and will
continue to wait for you to finish.

Once implemented, our fetchReceipts() method will look like:

// static declarations used by receipt store

// Storage key where list of receipts are stored
private static final String RECEIPTS_KEY = "RECEIPTS.dat";

@Override
public void fetchReceipts(SuccessCallback<Receipt[]> callback) {
 Storage s = Storage.getInstance();
 Receipt[] found;
 synchronized(RECEIPTS_KEY) {
 if (s.exists(RECEIPTS_KEY)) {
 List<Receipt> receipts = (List<Receipt>)s.readObject(RECEIPTS_KEY);
 found = receipts.toArray(new Receipt[receipts.size()]);
 } else {
 found = new Receipt[0];
 }
 }
 // Make sure this is outside the synchronized block
 callback.onSucess(found);
}

This is fairly straight forward. We’re checking to see if we already have a list of receipts stored. If so

343

we return that list to the callback. If not we return an empty array of receipts.

Receipt implements Externalizable so you are able to write instances directly to
Storage.

The submitReceipt() method is a little more complex, as it needs to calculate the new expiry date for
our subscription.

@Override
public void submitReceipt(Receipt receipt, SuccessCallback<Boolean> callback) {
 Storage s = Storage.getInstance();
 synchronized(RECEIPTS_KEY) {
 List<Receipt> receipts;
 if (s.exists(RECEIPTS_KEY)) {
 receipts = (List<Receipt>)s.readObject(RECEIPTS_KEY);
 } else {
 receipts = new ArrayList<Receipt>();
 }
 // Check to see if this receipt already exists
 // This probably won't ever happen (that we'll be asked to submit an
 // existing receipt, but better safe than sorry
 for (Receipt r : receipts) {
 if (r.getStoreCode().equals(receipt.getStoreCode()) &&
 r.getTransactionId().equals(receipt.getTransactionId())) {
 // If we've already got this receipt, we'll just this submission.
 return;
 }
 }

 // Now try to find the current expiry date
 Date currExpiry = new Date();
 List<String> lProducts = Arrays.asList(PRODUCTS);
 for (Receipt r : receipts) {
 if (!lProducts.contains(receipt.getSku())) {
 continue;
 }
 if (r.getCancellationDate() != null) {
 continue;
 }
 if (r.getExpiryDate() == null) {
 continue;
 }
 if (r.getExpiryDate().getTime() > currExpiry.getTime()) {
 currExpiry = r.getExpiryDate();
 }
 }

 // Now set the appropriate expiry date by adding time onto
 // the end of the current expiry date
 Calendar cal = Calendar.getInstance();

344

 cal.setTime(currExpiry);
 switch (receipt.getSku()) {
 case SKU_WORLD_1_MONTH:
 cal.add(Calendar.MONTH, 1);
 break;
 case SKU_WORLD_1_YEAR:
 cal.add(Calendar.YEAR, 1);
 }
 Date newExpiry = cal.getTime();

 receipt.setExpiryDate(newExpiry);
 receipts.add(receipt);
 s.writeObject(RECEIPTS_KEY, receipts);

 }
 // Make sure this is outside the synchronized block
 callback.onSucess(Boolean.TRUE);
}

The main logic of this method involves iterating through all of the existing receipts to find the
latest current expiry date, so that when the user purchases a subscription, it’s added onto the end
of the current subscription (if one exists) rather than going from today’s date. This enables users to
safely renew their subscription before the subscription has expired.

In the real-world, we would implement this logic on the server-side.

The iTunes store and Play store have no knowledge of your subscription durations.
This is why it’s up to you to set the expiry date in the submitReceipt method. Non-
renewable subscriptions are essentially no different than regular consumable
products. It’s up to you to manage the subscription logic - and Apple, in particular,
requires you to do so using a server.

Synchronizing Receipts

In order for your app to provide you with current data about the user’s subscriptions and expiry
dates, you need to synchronize the receipts with your receipt store. Purchase provides a set of
methods for doing this. Generally I’ll call one of them inside the start() method, and I may
resynchronize at other strategic times if I suspect that the information may have changed.

The following methods can be used for synchronization:

1. synchronizeReceipts() - Asynchronously synchronizes receipts in the background. You won’t be
notified when it’s complete.

2. synchronizeReceiptsSync() - Synchronously synchronizes receipts, and blocks until it’s complete.
This is safe to use on the EDT as it employs invokeAndBlock under the covers.

3. synchronizeReceipts(final long ifOlderThanMs, final SuccessCallback<Boolean> callback) -
Asynchronously synchronizes receipts, but only if they haven’t been synchronized in the
specified time period. E.g. In your start() method you might decide that you only want to

345

synchronize receipts once per day. This also includes a callback that will be called when
synchronization is complete.

4. synchronizeReceiptsSync(long ifOlderThanMs) - A synchronous version that will only refetch if
data is older than given time.

In our hello world app we synchronize the subscriptions in a few places.

At the end of the start() method:

public void start() {

 ...

 // Now synchronize the receipts
 iap.synchronizeReceipts(0, res->{
 // Update the UI as necessary to reflect

 });
}

And we also provide a button to allow the user to manually synchronize the receipts.

Button syncReceipts = new Button("Synchronize Receipts");

syncReceipts.addActionListener(e->{

 iap.synchronizeReceipts(0, res->{
 // Update the UI
 });
});

Expiry Dates and Subscription Status

Now that we have a receipt store registered, and we have synchronized our receipts, we can query
the Purchase instance to see if a SKU or set of SKUs is currently subscribed. There are three useful
methods in this realm:

1. boolean isSubscribed(String… skus) - Checks to see if the user is currently subscribed to any of
the provided SKUs.

2. Date getExpiryDate(String… skus) - Gets the latest expiry date of a set of SKUs.

3. Receipt getFirstReceiptExpiringAfter(Date dt, String… skus) - This method will return the
earliest receipt with an expiry date after the given date. This is needed in cases where you need
to decide if the user should have access to some content based on its publication date. E.g. If you
published an issue of your e-zine on March 1, and the user purchased a subscription on March
15th, then they should get access to the March 1st issue even though it doesn’t necessarily fall in
the subscription period. Being able to easily fetch the first receipt after a given date makes it
easier to determine if a particular issue should be covered by a subscription.

346

If you need to know more information about subscriptions, you can always just call getReceipts()
to obtain a list of all of the current receipts and determine for yourself what the user should have
access to.

In the hello world app we’ll use this information in a few different places. On our main form we’ll
include a label to show the current expiry date, and we allow the user to press a button to
synchronize receipts manually if they think the value is out of date.

// ...

SpanLabel rentalStatus = new SpanLabel("Loading rental details...");
Button syncReceipts = new Button("Synchronize Receipts");

syncReceipts.addActionListener(e->{

 iap.synchronizeReceipts(0, res->{
 if (iap.isSubscribed(PRODUCTS)) {
 rentalStatus.setText("World rental expires "+iap.getExpiryDate(PRODUCTS));
 } else {
 rentalStatus.setText("You don't currently have a subscription to the world");
 }
 hi.revalidate();
 });
});

Allowing the User to Purchase the Subscription

You should now have all of the background required to implement the Hello World Subscription
app. So we’ll return to the code and see how the user purchases a subscription.

In the main form, we want two buttons to subscribe to the "World", for one month and one year
respectively. They look like:

347

Purchase iap = Purchase.getInAppPurchase();
// ...
Button rentWorld1M = new Button("Rent World 1 Month");
rentWorld1M.addActionListener(e->{
 String msg = null;
 if (iap.isSubscribed(PRODUCTS)) { ①
 msg = "You are already renting the world until "
 +iap.getExpiryDate(PRODUCTS) ②
 +". Extend it for one more month?";
 } else {
 msg = "Rent the world for 1 month?";
 }
 if (Dialog.show("Confirm", msg, "Yes", "No")) {
 Purchase.getInAppPurchase().purchase(SKU_WORLD_1_MONTH); ③
 // Note: since this is a non-renewable subscription it is just a regular
 // product in the play store - therefore we use the purchase() method.
 // If it were a "subscription" product in the play store, then we
 // would use subscribe() instead.
 }
});

Button rentWorld1Y = new Button("Rent World 1 Year");
rentWorld1Y.addActionListener(e->{
 String msg = null;
 if (iap.isSubscribed(PRODUCTS)) {
 msg = "You are already renting the world until "+
 iap.getExpiryDate(PRODUCTS)+
 ". Extend it for one more year?";
 } else {
 msg = "Rent the world for 1 year?";
 }
 if (Dialog.show("Confirm", msg, "Yes", "No")) {
 Purchase.getInAppPurchase().purchase(SKU_WORLD_1_YEAR);
 // Note: since this is a non-renewable subscription it is just a regular
 // product in the play store - therefore we use the purchase() method.
 // If it were a "subscription" product in the play store, then we
 // would use subscribe() instead.
 }
});

① In the event handler we check if the user is subscribed by calling isSubscribed(PRODUCTS). Notice
that we check it against the array of both the one month and one year subscription SKUs.

② We are able to tell the user when the current expiry date is so that they can gauge whether to
proceed.

③ Since this is a non-renewable subscription, we use the Purchase.purchase() method. See
following note about subscribe() vs purchase()

348

9.2.8. subscribe() vs purchase()

The Purchase class includes two methods for initiating a purchase:

1. purchase(sku)

2. subscribe(sku)

Which one you use depends on the type of product that is being purchased. If your product is set up
as a subscription in the Google Play store, then you should use subscribe(sku). Otherwise, you
should use purchase(sku).

Handling Purchase Callbacks

The purchase callbacks are very similar to the ones that we implemented in the regular in-app
purchase examples:

@Override
public void itemPurchased(String sku) {
 Purchase iap = Purchase.getInAppPurchase();

 // Force us to reload the receipts from the store.
 iap.synchronizeReceiptsSync(0);
 ToastBar.showMessage("Your subscription has been extended to "+iap.getExpiryDate(PRODUCTS),
FontImage.MATERIAL_THUMB_UP);
}

@Override
public void itemPurchaseError(String sku, String errorMessage) {
 ToastBar.showErrorMessage("Failure occurred: "+errorMessage);
}

Notice that, in itemPurchased() we don’t need to explicitly create any receipts or submit anything to
the receipt store. This is handled for you automatically. We do make a call to
synchronizeReceiptsSync() but this is just to ensure that our toast message has the new expiry date
loaded already.

9.2.9. Screenshots

349

Figure 317. Main form

Figure 318. Dialog shown when subscribing to a product

350

Figure 319. Simulator confirm dialog when purchasing a subscription

Figure 320. Upon successful purchase, the toastbar message is shown

9.2.10. Summary

This section demonstrated how to set up an app to use non-renewable subscriptions using in-app
purchase. Non-renewable subscriptions are the same as regular consumable products except for
the fact that they are shared by all of the user’s devices, and thus, require a server component. The
app store has no knowledge of the duration of your non-renewable subscriptions. It’s up to you to
specify the expiry date of purchased subscriptions on their receipts when they are submitted.
Google play doesn’t formally have a "non-renewable" subscription product type. To implement
them in Google play, you would just set up a regular product. It’s how you handle it internally that
makes it a subscription, and not just a regular product.

Codename One uses the Receipt class as the foundation for its subscriptions infrastructure. You, as
the developer, are responsible for implementing the ReceiptStore interface to provide the receipts.
The Purchase instance will load receipts from your ReceiptStore, and use them to determine
whether the user is currently subscribed to a subscription, and when the subscription expires.

9.2.11. Auto-Renewable Subscriptions

Auto-renewable subscriptions provide, arguably, an easier path to recurring revenue than non-
renewable subscriptions because all of the subscription stuff is handled by the app store. You defer
almost entirely to the app store (iTunes for iOS, and Play for Android) for billing and management.

If there is a down-side, it would be that you are also subject to the rules of each app store - and they

351

take their cut of the revenue.

1. For more information about Apple’s auto-renewable subscription features and rules see this
document [https://developer.apple.com/app-store/subscriptions/].

2. For more information about subscriptions in Google play, see this document
[https://developer.android.com/google/play/billing/billing_subscriptions.html].

9.2.12. Auto-Renewable vs Non-Renewable. Best Choice?

When deciding between auto-renewable and non-renewable subscriptions, as always, the answer
will depend on your needs and preferences. Auto-renewables are nice because it takes the process
completely out of your hands. You just get paid. On the other hand, there are valid reasons to want
to use non-renewables. E.g. You can’t cancel an auto-renewable subscription for a user. They have
to do that themselves. You may also want more control over the subscription and renewal process,
in which case a non-renewable might make more sense.

There are some developers that are opposed to auto-renewable subscriptions
[https://marco.org/2013/12/02/auto-renewable-subscriptions], we don’t have enough
information to make a solid recommendation on this matter

On a practical level, if you are using auto-renewable subscriptions (and therefore subscription
products in the Google play store) you must use the Purchase.subscribe(sku) method for initiating
the purchase workflow. For non-renewable subscriptions (and therefore regular products in the
Google play store), you must use the Purchase.purchase(sku) method.

9.2.13. Learning By Example

In this section we’ll describe the general workflow of subscription management on the server. We
also demonstrate how use Apple’s and Google’s web services to validate receipts and stay informed
of important events (such as when users cancel or renew their subscriptions).

9.2.14. Building the IAP Demo Project

To aid in this process, we’ve created a fully-functional in-app purchase demo project that includes
both a client app [https://gist.github.com/shannah/b61b9b6b35ea0eac923a54163f5d4deb] and a server app
[https://github.com/shannah/cn1-iap-demo-server].

Setting up the Client Project

1. Create a new Codename One project in Netbeans, and choose the "Bare-bones Hello World
Template". You should make your package name something unique so that you are able to
create real corresponding apps in both Google Play and iTunes connect.

2. Once the project is created, copy this source file [https://gist.github.com/shannah/

b61b9b6b35ea0eac923a54163f5d4deb] contents into your main class file. Then change the package
name, and class name in the file to match your project settings. E.g. change package
ca.weblite.iapdemo; to package <your.package.name.here>; and class IAPDemo implements
PurchaseCallback to class YourClassName implements PurchaseCallback.

352

https://developer.apple.com/app-store/subscriptions/
https://developer.apple.com/app-store/subscriptions/
https://developer.android.com/google/play/billing/billing_subscriptions.html
https://marco.org/2013/12/02/auto-renewable-subscriptions
https://gist.github.com/shannah/b61b9b6b35ea0eac923a54163f5d4deb
https://github.com/shannah/cn1-iap-demo-server
https://gist.github.com/shannah/b61b9b6b35ea0eac923a54163f5d4deb

3. Add the Generic Web Service Client [https://github.com/shannah/cn1-generic-webservice-client] library
to your project by going to "Codename Settings" > "Extensions", finding that library, and click
"Download". Then "Refresh CN1 libs" as it suggests.

4. Change the localHost property to point to your local machine’s network address. Using
"http://localhost" is not going to cut it here because when the app is running on a phone, it needs
to be able to connect to your web server over the network. This address will be your local
network address (e.g. 192.168.0.9, or something like that).

private static final String localHost = "http://10.0.1.32";

5. Add the ios.plistInject build hint to your project with the value
"<key>NSAppTransportSecurity</key> <dict> <key>NSAllowsArbitraryLoads</key> <true/>
</dict>". This is so that we can use http urls in iOS. Since we don’t intend to fully publish this
app, we can cut corners like this. If you were creating a real app, you would use proper secure
URLs.

Setting up the Server Project

Download the CN1-IAP-Server demo project from Github, and run its "install-deps" ANT task in
order to download and install its dependencies to your local Maven repo.

For the following commands to work, make sure you have "ant", "mvn", and "git"
in your environment PATH.

$ git clone https://github.com/shannah/cn1-iap-demo-server
$ cd cn1-iap-demo-server
$ ant install-deps

Open the project in Netbeans

Setting up the Database

1. Create a new database in your preferred DBMS. Call it anything you like.

2. Create a new table named "RECEIPTS" in this database with the following structure:

353

https://github.com/shannah/cn1-generic-webservice-client

create TABLE RECEIPTS
(
 TRANSACTION_ID VARCHAR(128) not null,
 USERNAME VARCHAR(64) not null,
 SKU VARCHAR(128) not null,
 ORDER_DATA VARCHAR(32000),
 PURCHASE_DATE BIGINT,
 EXPIRY_DATE BIGINT,
 CANCELLATION_DATE BIGINT,
 LAST_VALIDATED BIGINT,
 STORE_CODE VARCHAR(20) default '' not null,
 primary key (TRANSACTION_ID, STORE_CODE)
)

3. Open the "persistence.xml" file in the server netbeans project.

4. Change the data source to the database you just created.

If you’re not sure how to create a data source, see my previous tutorial on connecting to a MySQL
database [https://www.codenameone.com/blog/connecting-to-a-mysql-database-part-2.html].

Testing the Project

At this point we should be able to test out the project in the Codename One simulator to make sure
it’s working.

1. Build and Run the server project in Netbeans. You may need to tell it which application server
you wish to run it on. I am running it on the Glassfish 4.1 that comes bundled with Netbeans.

2. Build and run the client project in Netbeans. This should open the Codename One simulator.

When the app first opens you’ll see a screen as follows:

354

https://www.codenameone.com/blog/connecting-to-a-mysql-database-part-2.html
https://www.codenameone.com/blog/connecting-to-a-mysql-database-part-2.html

Figure 321. First screen of app

This screen is for testing consumable products, so we won’t be making use of this right now.

Open the hamburger menu and select "Subscriptions". You should see something like this:

Figure 322. Subscriptions form

Click on the "Subscribe 1 Month No Ads" button. You will be prompted to accept the purchase:

355

Figure 323. Approve purchase dialog

Upon completion, the app will submit the purchase to your server, and if all went well, it will
retrieve the updated list of receipts from your server also, and update the label on this form to say
"No Ads. Expires <some date>":

Figure 324. After successful purchase

This project is set up to use an expedited expiry date schedule for purchases from
the simulator. 1 month = 5 minutes. 3 months = 15 minutes. This helps for testing.
That is why your expiry date may be different than expected.

Just to verify that the receipt was inserted correctly, you should check the contents of your
"RECEIPTS" table in your database. In Netbeans, I can do this easily from the "Services" pane.
Expand the database connection down to the RECEIPTS table, right click "RECEIPTS" and select
"View Data". This will open a data table similar the the following:

356

Figure 325. Receipts table after insertion

Figure 326. Table view

A few things to mention here:

1. The "username" was provided by the client. It’s hard-coded to "admin", but the idea is that you
would have the user log in and you would have access to their real username.

2. All dates are stored as unix timestamps in milliseconds.

If you delete the receipt from your database, then press the "Synchronize Receipts" button in your
app, the app will again say "No subscriptions." Similarly if you wait 5 minutes and hit "Synchronize
receipts" the app will say no subscriptions found, and the "ads" will be back.

Troubleshooting

Let’s not pretend that everything worked for you on the first try. There’s a lot that could go wrong
here. If you make a purchase and nothing appears to happen, the first thing you should do is check
the Network Monitor in the simulator ("Simulate" > "Network" > "Network Monitor"). You should
see a list of network requests. Some will be GET requests and there will be at least one POST
request. Check the response of these requests to see if they succeeded.

Also check the Glassfish server log to see if there is an exception.

Common problems would be that the URL you have set in the client app for endpointURL is incorrect,
or that there is a database connection problem.

9.2.15. Looking at the Source of the App

Now that we’ve set up and built the app, let’s take a look at the source code so you can see how it all
works.

Client Side

I use the Generic Webservice Client Library [https://github.com/shannah/cn1-generic-webservice-client]

357

https://github.com/shannah/cn1-generic-webservice-client

from inside my ReceiptStore implementation to load receipts from the web service, and insert new
receipts to the database.

The source for my ReceiptStore is as follows:

private ReceiptStore createReceiptStore() {
 return new ReceiptStore() {

 RESTfulWebServiceClient client = createRESTClient(receiptsEndpoint);

 @Override
 public void fetchReceipts(SuccessCallback<Receipt[]> callback) {
 RESTfulWebServiceClient.Query query = new RESTfulWebServiceClient.Query() {

 @Override
 protected void setupConnectionRequest(RESTfulWebServiceClient client, ConnectionRequest req) {
 super.setupConnectionRequest(client, req);
 req.setUrl(receiptsEndpoint);
 }

 };
 client.find(query, rowset->{
 List<Receipt> out = new ArrayList<Receipt>();
 for (Map m : rowset) {
 Result res = Result.fromContent(m);
 Receipt r = new Receipt();
 r.setTransactionId(res.getAsString("transactionId"));
 r.setPurchaseDate(new Date(res.getAsLong("purchaseDate")));
 r.setQuantity(1);
 r.setStoreCode(m.getAsString("storeCode"));
 r.setSku(res.getAsString("sku"));

 if (m.containsKey("cancellationDate") && m.get("cancellationDate") != null) {
 r.setCancellationDate(new Date(res.getAsLong("cancellationDate")));
 }
 if (m.containsKey("expiryDate") && m.get("expiryDate") != null) {
 r.setExpiryDate(new Date(res.getAsLong("expiryDate")));
 }
 out.add(r);

 }
 callback.onSucess(out.toArray(new Receipt[out.size()]));
 });
 }

 @Override
 public void submitReceipt(Receipt r, SuccessCallback<Boolean> callback) {
 Map m = new HashMap();
 m.put("transactionId", r.getTransactionId());
 m.put("sku", r.getSku());
 m.put("purchaseDate", r.getPurchaseDate().getTime());
 m.put("orderData", r.getOrderData());
 m.put("storeCode", r.getStoreCode());
 client.create(m, callback);
 }

 };
}

358

Notice that we are not doing any calculation of expiry dates in our client app, as we did in the
previous post (on non-renewable receipts). Since we are using a server now, it makes sense to move
all of that logic over to the server.

The createRESTClient() method shown there simply creates a RESTfulWebServiceClient and
configuring it to use basic authentication with a username and password. The idea is that your user
would have logged into your app at some point, and you would have a username and password on
hand to pass back to the web service with the receipt data so that you can connect the subscription
to a user account. The source of that method is listed here:

/**
 * Creates a REST client to connect to a particular endpoint. The REST client
 * generated here will automatically add the Authorization header
 * which tells the service what platform we are on.
 * @param url The url of the endpoint.
 * @return
 */
private RESTfulWebServiceClient createRESTClient(String url) {
 return new RESTfulWebServiceClient(url) {

 @Override
 protected void setupConnectionRequest(ConnectionRequest req) {
 try {
 req.addRequestHeader("Authorization", "Basic " +
Base64.encode((getUsername()+":"+getPassword()).getBytes("UTF-8")));
 } catch (Exception ex) {}
 }

 };
}

Server-Side

On the server-side, our REST controller is a standard JAX-RS REST interface. I used Netbeans web
service wizard to generate it and then modified it to suit my purposes. The methods of the
ReceiptsFacadeREST class pertaining to the REST API are shown here:

359

@Stateless
@Path("com.codename1.demos.iapserver.receipts")
public class ReceiptsFacadeREST extends AbstractFacade<Receipts> {

 // ...

 @POST
 @Consumes({"application/xml", "application/json"})
 public void create(Receipts entity) {

 String username = credentialsWithBasicAuthentication(request).getName();
 entity.setUsername(username);

 // Save the receipt first in case something goes wrong in the validation stage
 super.create(entity);

 // Let's validate the receipt
 validateAndSaveReceipt(entity);
 // validates the receipt against appropriate web service
 // and updates database if expiry date has changed.
 }

 // ...
 @GET
 @Override
 @Produces({"application/xml", "application/json"})
 public List<Receipts> findAll() {
 String username = credentialsWithBasicAuthentication(request).getName();
 return getEntityManager()
 .createNamedQuery("Receipts.findByUsername")
 .setParameter("username", username)
 .getResultList();
 }
}

The magic happens inside that validateAndSaveReceipt() method, which I’ll cover in detail soon.

Notifications

It’s important to note that you will not be notified by apple or google when changes are made to
subscriptions. It’s up to you to periodically "poll" their web service to find if any changes have been
made. Changes we would be interested in are primarily renewals and cancellations. In order to
deal with this, set up a method to run periodically (once-per day might be enough). For testing, I
actually set it up to run once per minute as shown below:

360

private static final long ONE_DAY = 24 * 60 * 60 * 1000;
private static final long ONE_DAY_SANDBOX = 10 * 1000;
@Schedule(hour="*", minute="*")
public void validateSubscriptionsCron() {
 System.out.println("----------- DOING TIMED TASK ---------");
 List<Receipts> res = null;
 final Set<String> completedTransactionIds = new HashSet<String>();
 for (String storeCode : new String[]{Receipt.STORE_CODE_ITUNES, Receipt.STORE_CODE_PLAY}) {
 while (!(res = getEntityManager().createNamedQuery("Receipts.findNextToValidate")
 .setParameter("threshold", System.currentTimeMillis() - ONE_DAY_SANDBOX)
 .setParameter("storeCode", storeCode)
 .setMaxResults(1)
 .getResultList()).isEmpty() &&
 !completedTransactionIds.contains(res.get(0).getTransactionId())) {

 final Receipts curr = res.get(0);
 completedTransactionIds.add(curr.getTransactionId());
 Receipts[] validatedReceipts = validateAndSaveReceipt(curr);
 em.flush();
 for (Receipts r : validatedReceipts) {
 completedTransactionIds.add(r.getTransactionId());
 }

 }
 }
}

That method simply finds all of the receipts in the database that haven’t been validated in some
period of time, and validates it. Again, the magic happens inside the validateAndSaveReceipt()
method which we cover later.

In this example we only validate receipts from the iTunes and Play stores because
those are the only ones that we currently support auto-renewing subscriptions on.

9.2.16. The CN1-IAP-Validator Library

For the purpose of this tutorial, I created a library to handle receipt validation in a way that hides
as much of the complexity as possible. It supports both Google Play receipts and iTunes receipts.

The general usage is as follows:

361

IAPValidator validator = IAPValidator.getValidatorForPlatform(receipt.getStoreCode());
if (validator == null) {
 // no validators were found for this store
 // Do custom validation
} else {
 validator.setAppleSecret(APPLE_SECRET);
 validator.setGoogleClientId(GOOGLE_DEVELOPER_API_CLIENT_ID);
 validator.setGooglePrivateKey(GOOGLE_DEVELOPER_PRIVATE_KEY);
 Receipt[] result = validator.validate(receipt);
 ...
}

As you can see from this snippet, the complexity of receipt validation has been reduced to entering
three configuration strings:

1. APPLE_SECRET - This is a "secret" string that you will get from iTunes connect when you set up
your in-app products.

2. GOOGLE_DEVELOPER_API_CLIENT_ID - A client ID that you’ll get from the google developer API
console when you set up your API service credentials.

3. GOOGLE_DEVELOPER_PRIVATE_KEY - A PKCS8 encoded string with an RSA private key that you’ll
receive at the same time as the GOOGLE_DEVELOPER_API_CLIENT_ID.

I will go through the steps to obtain these values soon.

9.2.17. The validateAndSaveReceipt() Method

You are now ready to see the full magic of the validateAndSaveReceipt() method in all its glory:

/**
 * Validates a given receipt, updating the expiry date,
 * @param receipt The receipt to be validated
 * @param forInsert If true, then an expiry date will be calculated even if there is no validator.
 */
private Receipts[] validateAndSaveReceipt(Receipts receipt) {
 EntityManager em = getEntityManager();
 Receipts managedReceipt = getManagedReceipt(receipt);
 // managedReceipt == receipt if receipt is in database or null otherwise

 if (Receipt.STORE_CODE_SIMULATOR.equals(receipt.getStoreCode())) { ①
 if (receipt.getExpiryDate() == null && managedReceipt == null) {
 //Not inserted yet and no expiry date set yet
 Date dt = calculateExpiryDate(receipt.getSku(), true);
 if (dt != null) {
 receipt.setExpiryDate(dt.getTime());
 }
 }
 if (managedReceipt == null) {
 // Receipt is not in the database yet. Add it
 em.persist(receipt);
 return new Receipts[]{receipt};

362

 } else {
 // The receipt is already in the database. Update it.
 em.merge(managedReceipt);
 return new Receipts[]{managedReceipt};
 }
 } else {
 // It's not a simulator receipt
 IAPValidator validator = IAPValidator.getValidatorForPlatform(receipt.getStoreCode());
 if (validator == null) {
 // Receipt must have come from a platform other than iTunes or Play
 // Because there is no validator

 if (receipt.getExpiryDate() == null && managedReceipt == null) {
 // No expiry date.
 // Generate one.
 Date dt = calculateExpiryDate(receipt.getSku(), false);
 if (dt != null) {
 receipt.setExpiryDate(dt.getTime());
 }

 }
 if (managedReceipt == null) {
 em.persist(receipt);
 return new Receipts[]{receipt};
 } else {
 em.merge(managedReceipt);
 return new Receipts[]{managedReceipt};
 }

 }

 // Set credentials for the validator
 validator.setAppleSecret(APPLE_SECRET);
 validator.setGoogleClientId(GOOGLE_DEVELOPER_API_CLIENT_ID);
 validator.setGooglePrivateKey(GOOGLE_DEVELOPER_PRIVATE_KEY);

 // Create a dummy receipt with only transaction ID and order data to pass
 // to the validator. Really all it needs is order data to be able to validate
 Receipt r2 = Receipt();
 r2.setTransactionId(receipt.getTransactionId());
 r2.setOrderData(receipt.getOrderData());
 try {
 Receipt[] result = validator.validate(r2);
 // Depending on the platform, result may contain many receipts or a single receipt
 // matching our receipt. In the case of iTunes, none of the receipt transaction IDs
 // might match the original receipt's transactionId because the validator
 // will set the transaction ID to the *original* receipt's transaction ID.
 // If none match, then we should remove our receipt, and update each of the returned
 // receipts in the database.
 Receipt matchingValidatedReceipt = null;
 for (Receipt r3 : result) {
 if (r3.getTransactionId().equals(receipt.getTransactionId())) {
 matchingValidatedReceipt = r3;
 break;
 }
 }

363

 if (matchingValidatedReceipt == null) {
 // Since the validator didn't find our receipt,
 // we should remove the receipt. The equivalent
 // is stored under the original receipt's transaction ID
 if (managedReceipt != null) {
 em.remove(managedReceipt);
 managedReceipt = null;
 }
 }
 List<Receipts> out = new ArrayList<Receipts>();
 // Now go through and
 for (Receipt r3 : result) {
 if (r3.getOrderData() == null) {
 // No order data found in receipt. Setting it to the original order data
 r3.setOrderData(receipt.getOrderData());
 }
 Receipts eReceipt = new Receipts();
 eReceipt.setTransactionId(r3.getTransactionId());
 eReceipt.setStoreCode(receipt.getStoreCode());
 Receipts eManagedReceipt = getManagedReceipt(eReceipt);
 if (eManagedReceipt == null) {
 copy(eReceipt, r3);
 eReceipt.setUsername(receipt.getUsername());
 eReceipt.setLastValidated(System.currentTimeMillis());
 em.persist(eReceipt);
 out.add(eReceipt);
 } else {

 copy(eManagedReceipt, r3);
 eManagedReceipt.setUsername(receipt.getUsername());
 eManagedReceipt.setLastValidated(System.currentTimeMillis());
 em.merge(eManagedReceipt);
 out.add(eManagedReceipt);
 }
 }

 return out.toArray(new Receipts[out.size()]);

 } catch (Exception ex) {
 // We should probably store some info about the failure in the
 // database to make it easier to find receipts that aren't validating,
 // but for now we'll just log it.
 Log.p("Failed to validate receipt "+r2);
 Log.p("Reason: "+ex.getMessage());
 Log.e(ex);
 return new Receipts[]{receipt};

 }
 }
}

① We need to handle the case where the app is being used in the CN1 simulator. We’ll treat this as
a non-renewable receipt, and we’ll calculate the expiry date using an "accelerated" clock to
assist in testing.

364

In many of the code snippets for the Server-side code, you’ll see references to both
a Receipts class and a Receipt class. I know this is slightly confusing. The Receipts
class is a JPA entity the encapsulates a row from the "receipts" table of our SQL
database. The Receipt class is com.codename1.payment.Receipt. It’s used to interface
with the IAP validation library.

9.2.18. Google Play Setup

Creating the App in Google Play

In order to test out in-app purchase on an Android device, you’ll need to create an app the Google
Play Developer Console [https://play.google.com/apps/publish/]. I won’t describe the process in this
section, but there is plenty of information around the internet on how to do this. Some useful
references for this include:

1. Getting Started With Publishing [https://developer.android.com/distribute/googleplay/start.html] - If you
don’t already have an account with Google to publish your apps.

2. Launch Checklist [https://developer.android.com/distribute/tools/launch-checklist.html]

Graphics, Icons, etc..

You are required to upload some screenshots and feature graphics. Don’t waste time making these
perfect. For the screenshots, you can just use the "Screenshot" option in the simulator. (Use the
Nexus 5 skin). For the feature graphics, I used this site [https://www.norio.be/android-feature-graphic-

generator/] that will generate the graphics in the correct dimensions for Google Play. You can also just
leave the icon as the default Codename One icon.

Creating Test Accounts

You cannot purchase in-app products from your app using your publisher account.
You need to set up at least one test account for the purpose of testing the app.

In order to test your app, you need to set up a test account. A test account must be associated with a
real gmail email address. If you have a domain that is managed by Google apps, then you can also
use an address from that domain.

The full process for testing in-app billing can be found in this google document
[https://developer.android.com/google/play/billing/billing_testing.html]. However, I personally found this
documentation difficult to follow.

For your purposes, you’ll need to set up a tester list in Google Play. Choose "Settings" > "Tester Lists".
Then create a list with all of the email address that you want to have treated as test accounts. Any
purchases made by these email addresses will be treated as "Sandbox" purchases, and won’t
require real money to change hands.

Alpha Channel Distribution

In order to test in-app purchase on Android, you must first publish your app. You can’t just build
and install your app manually. The app needs to be published on the Play store, and it must be

365

https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://developer.android.com/distribute/googleplay/start.html
https://developer.android.com/distribute/tools/launch-checklist.html
https://www.norio.be/android-feature-graphic-generator/
https://developer.android.com/google/play/billing/billing_testing.html

installed through the play store for in-app purchase to work. Luckily you can publish to an Alpha
channel so that your app won’t be publicly available.

For more information about setting up alpha testing on Google play see this Google support
document on the subject [https://support.google.com/googleplay/android-developer/answer/3131213?hl=en].

Once you have set your app up for alpha testing, you can send an invite link to your test accounts.
You can find the link in the Google Play console under the APK section, under the "Alpha" tab (and
assuming you’ve enabled alpha testing.

Figure 327. Alpha testing tab in google play

The format of the link is https://play.google.com/apps/testing/your-app-id in case you can’t find it.
You can email this to your alpha testers. Make sure that you have added all testers to your tester
lists so that their purchases will be made in the sandbox environment.

Also, before proceeding with testing in-app purchases, you need to add the in-app products in
Google Play.

Adding In-App Products

After you have published your APK to the alpha channel, you can create the products. For the
purposes of this tutorial, we’ll just add two products:

1. iapdemo.noads.month.auto - The 1 month subscription.

2. iapdemo.noads.3month.auto - The 3 month subscription.

Since we will be adding products as "Subscriptions" in the pay store, your app
must use the Purchase.subscribe(sku) method for initiating a purchase on these
products, and not the Purchase.purchase(sku) method. If you accidentally use
purchase() to purchase a subscription on Android, the payment will go through,
but your purchase callback will receive an error.

Adding 1 month Subscription

1. Open Google Play Developer Console, and navigate to your app.

2. Click on "In-app Products" in the menu. Then click the "Add New Product" button.

3. Select "Subscription", and enter "iapdemo.noads.month.auto" for the Product ID. Then click
"Continue"

366

https://support.google.com/googleplay/android-developer/answer/3131213?hl=en
https://support.google.com/googleplay/android-developer/answer/3131213?hl=en
https://play.google.com/apps/testing/your-app-id

Figure 328. Add new product dialog

Now fill in the form. You can choose your own price and name for the product. The following is a
screenshot of the options I chose.

Figure 329. Add product to google

Adding 3 month Subscription

Follow the same process as for the 1 month subscription except use "iapdemo.noads.3month.auto"
for the product ID, and select "3 months" for the billing period instead of "Monthly".

Testing The App

At this point we should be ready to test our app. Assuming you’ve installed the app using the invite
link you sent yourself from Google play, as a test account that is listed on your testers list, you
should be good to go.

Open the app, click on "Subscriptions", and try to purchase a 1-month subscription. If all goes well,
it should insert the subscription into your database. But with no expiry date, since we haven’t yet
implemented receipt validation yet. We’ll do that next.

Creating Google Play Receipt Validation Credentials

Google play receipt validation is accomplished via the android-publisher Purchases: get API
[https://developers.google.com/android-publisher/api-ref/purchases/subscriptions/get]. The CN1-IAP-Validation
library shields you from most of the complexities of using this API, but you still need to obtain a

367

https://developers.google.com/android-publisher/api-ref/purchases/subscriptions/get

"private key" and a "client id" to access this API. Both of these are provided when you set up an
OAuth2 Service Account [https://developers.google.com/identity/protocols/OAuth2ServiceAccount] for your
app.

The following steps assume that you have already created your app in Google play
and have published it to at least the alpha channel. See my previous post on this
topic here (Link to be provided).

Steps:

1. Open the Google API Developer Console [https://console.developers.google.com/apis], and select your
App from the the menu.

2. Click on the "Library" menu item in the left menu, and then click the "Google Play Developer
API" link.

Figure 330. Google Play Developer API Link

3. Click on the button that says "Enable". (If you already have it enabled, then just proceed to the
next step).

Figure 331. Enable API button

4. Click on the "Credentials" menu item in the left menu.

5. In the "Credentials" drop-down menu, select the "Service Account Key" option.

Figure 332. Credentials dropdown

6. You will be presented with a new form. In the "Service Account" drop-down, select "New Service
Account". This will give you some additional options.

Figure 333. Create service account key

7. Enter anything you like for the "Service account name". For the role, we’ll select "Project" >

368

https://developers.google.com/identity/protocols/OAuth2ServiceAccount
https://console.developers.google.com/apis

"Owner" for now just so we don’t run into permissions issues. You’ll probably want to
investigate further to fine a more limited role that only allows receipt verification, but for now, I
don’t want any unnecessary road blocks for getting this to work. We’re probably going to run
into "permission denied" errors at first anyways, so the fewer reasons for this, the better.

8. It will auto-generate an account ID for you.

9. Finally, for the "Key type", select "JSON". Then click the "Create" button.

This should prompt the download of a JSON file that will have contents similar to the following:

{
 "type": "service_account",
 "project_id": "iapdemo-152500",
 "private_key_id": "1b1d39f2bc083026b164b10a444ff7d839826b8a",
 "private_key": "-----BEGIN PRIVATE KEY----- ... some private key string -----END PRIVATE KEY-----\n",
 "client_email": "iapdemo@iapdemo-152500.iam.gserviceaccount.com",
 "client_id": "117601572633333082772",
 "auth_uri": "https://accounts.google.com/o/oauth2/auth",
 "token_uri": "https://accounts.google.com/o/oauth2/token",
 "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
 "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/iapdemo%40iapdemo-
152500.iam.gserviceaccount.com"
}

This is where we get the information we’re looking for. The "client_email" is what we’ll use for your
googleClientId, and the "private_key" is what we’ll use for the googlePrivateKey.

Use the "client_email" value as our client ID, not the "client_id" value as you might
be tempted to do.

We’ll set these in our constants:

public static final String GOOGLE_DEVELOPER_API_CLIENT_ID="iapdemo@iapdemo-152500.iam.gserviceaccount.com";
public static final String GOOGLE_DEVELOPER_PRIVATE_KEY="-----BEGIN PRIVATE KEY----- ... -----END PRIVATE KEY-----\n";

...

validator.setGoogleClientId(GOOGLE_DEVELOPER_API_CLIENT_ID);
validator.setGooglePrivateKey(GOOGLE_DEVELOPER_PRIVATE_KEY);

NOT DONE YET

Before we can use these credentials to verify receipts for our app, we need to link our app to this
new service account from within Google Play.

Steps:

1. Open the Google Play Developer Console [https://play.google.com/apps/publish/], then click on
"Settings" > "API Access".

2. You should see your app listed on this page. Click the "Link" button next to your app.

369

https://play.google.com/apps/publish/

Figure 334. Link to API

3. This should reveal some more options on the page. You should see a "Service Accounts" section
with a list of all of the service accounts that you have created. Find the one we just created, and
click the "Grant Access" button in its row.

Figure 335. Grant access

4. This will open a dialog titled "Add New User". Leave everything default, except change the
"Role" to "Administrator". This provides "ALL" permissions to this account, which probably isn’t
a good idea for production. Later on, after everything is working, you can circle back and try to
refine permissions. For the purpose of this tutorial, I just want to pull out all of the potential
road blocks.

Figure 336. New User

5. Press the "Add User" button.

At this point, the service account should be active so we can try to validate receipts.

Testing Receipt Validation

The ReceiptsFacadeREST class includes a flag to enable/disable play store validation. By default it’s
disabled. Let’s enable it:

public static final boolean DISABLE_PLAY_STORE_VALIDATION=true;

Change this to false.

Then build and run the server app. The validateSubscriptionsCron() method is set to run once per
minute, so we just need to wait for the timer to come up and it should try to validate all of the play
store receipts.

I’m assuming you’ve already added a receipt in the previous test that we did. If
necessary, you should purchase the subscription again in your app.

After a minute or so, you should see "----------- VALIDATING RECEIPTS ---------" written in the Glassfish

370

log, and it will validate your receipts. If it works, your receipt’s expiry date will get populated in the
database, and you can press "Synchronize Receipts" in your app to see this reflected. If it fails, there
will like be a big ugly stack trace and exception readout with some clues about what went wrong.

Realistically, your first attempt will fail for some reason. Use the error codes and stack traces to
help lead you to the problem. And feel free to post questions here.

9.2.19. iTunes Connect Setup

The process for setting up and testing your app on iOS is much simpler than on Android (IMHO). It
took me a couple hours to get the iTunes version working, vs a couple days on the Google Play side
of things. One notable difference that makes things simpler is that you don’t need to actually upload
your app to the store to test in-app purchase. You can just use your debug build on your device. It’s
also much easier to roll a bunch of test accounts than on Google Play. You don’t need to set up an
alpha program, you just create a few "test accounts" (and this is easy to do) in your iTunes connect
account, and then make sure to use one of these accounts when making a purchase. You can easily
switch accounts on your device from the "Settings" app, where you can just log out of the iTunes
store - which will cause you to be prompted in your app the next time you make a purchase.

Setting up In-App Products

The process to add products in iTunes connect is outlined in this apple developer document
[https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/
iTunesConnectInAppPurchase_Guide/Chapters/CreatingInAppPurchaseProducts.html#//apple_ref/doc/uid/

TP40013727-CH3-SW1]. We’ll add our two SKUs:

1. iapdemo.noads.month.auto - The 1 month subscription.

2. iapdemo.noads.3month.auto - The 3 month subscription.

Just make sure you add them as auto-renewable subscriptions, and that you specify the appropriate
renewal periods. Use the SKU as the product ID. Both of these products will be added to the same
subscription group. Call the group whatever you like.

Creating Test Accounts

In order to test purchases, you need to create some test accounts. See this apple document
[https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/

Chapters/SettingUpUserAccounts.html#//apple_ref/doc/uid/TP40011225-CH25-SW10] for details on how to create
these test accounts. Don’t worry, the process is much simpler than for Android. It should take you
under 5 minutes.

Once you have the test accounts created, you should be set to test the app.

1. Make sure your server is running.

2. Log out from the app store. The process is described here [https://support.apple.com/en-ca/HT203983].

3. Open your app.

4. Try to purchase a 1-month subscription

371

https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/CreatingInAppPurchaseProducts.html#//apple_ref/doc/uid/TP40013727-CH3-SW1
https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/SettingUpUserAccounts.html#//apple_ref/doc/uid/TP40011225-CH25-SW10
https://support.apple.com/en-ca/HT203983

If all went well, you should see the receipt listed in the RECEIPTS table of your database. But the
expiry date will be null. We need to set up receipt verification in order for this to work.

Setting up Receipt Verification

In order for receipt verification to work we simply need to generate a shared secret in iTunes
connect. The process is described here [https://developer.apple.com/library/content/documentation/
LanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/

CreatingInAppPurchaseProducts.html].

Once you have a shared secret, update the ReceiptsFacadeREST class with the value:

public static final String APPLE_SECRET = "your-shared-secret-here";

And enable iTunes store validation:

public static final boolean DISABLE_ITUNES_STORE_VALIDATION=true;

Change this to false.

If you rebuild and run the server project, and wait for the validateSubscriptionsCron() method to
run, it should validate the receipt. After about a minute (or less), you’ll see the text "-----------
VALIDATING RECEIPTS ---------" written to the Glassfish log file, followed by some output from
connecting to the iTunes validation service. If all went well, you should see your receipt expiration
date updated in the database. If not, you’ll likely see some exception stack traces in the Glassfish
log.

Sandbox receipts in the iTunes store are set to run on an accelerated schedule. A 1
month subscription is actually 5 minutes, 3 months is 15 minutes etc… Also
sandbox subscriptions don’t seem to persist in perpetuity until the user has
cancelled it. I have found that they usually renew only 4 or 5 times before they are
allowed to lapse by Apple.

372

https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/CreatingInAppPurchaseProducts.html

10. Graphics, Drawing, Images & Fonts

Drawing is considered a low level API that might introduce some platform
fragmentation.

10.1. Basics - Where & How Do I Draw Manually?
The Graphics [https://www.codenameone.com/javadoc/com/codename1/ui/Graphics.html] class is responsible
for drawing basics, shapes, images and text, it is never instantiated by the developer and is always
passed on by the Codename One API.

You can gain access to a Graphics using one of the following methods:

• Derive Component [https://www.codenameone.com/javadoc/com/codename1/ui/Component.html] or a
subclass of Component - within Component there are several methods that allow developers to
modify the drawing behavior. These can be overridden to change the way the component is
drawn:

◦ paint(Graphics) - invoked to draw the component, this can be overridden to draw the
component from scratch.

◦ paintBackground(Graphics) / paintBackgrounds(Graphics) - these allow overriding the way the
component background is painted although you would probably be better off implementing
a painter (see below).

◦ paintBorder(Graphics) - allows overriding the process of drawing a border, notice that
border drawing might differ based on the style of the component.

◦ paintComponent(Graphics) - allows painting only the components contents while leaving the
default paint behavior to the style.

◦ paintScrollbars(Graphics), paintScrollbarX(Graphics), paintScrollbarY(Graphics) allows
overriding the behavior of scrollbar painting.

• Implement the painter interface, this interface can be used as a GlassPane or a background
painter.

The painter interface is a simple interface that includes 1 paint method, this is a useful way to
allow developers to perform custom painting without subclassing Component. Painters can be
chained together to create elaborate paint behavior by using the PainterChain
[https://www.codenameone.com/javadoc/com/codename1/ui/painter/PainterChain.html] class.

◦ Glass pane - a glass pane allows developers to paint on top of the form painting. This allows
an overlay effect on top of a form.

For a novice it might seem that a glass pane is similar to overriding the Form’s paint method
and drawing after super.paint(g) completed. This isn’t the case. When a component repaints
(by invoking the repaint() method) only that component is drawn and Form
[https://www.codenameone.com/javadoc/com/codename1/ui/Form.html]’s paint() method wouldn’t be
invoked. However, the glass pane painter is invoked for such cases and would work exactly
as expected.

373

https://www.codenameone.com/javadoc/com/codename1/ui/Graphics.html
https://www.codenameone.com/javadoc/com/codename1/ui/Component.html
https://www.codenameone.com/javadoc/com/codename1/ui/painter/PainterChain.html
https://www.codenameone.com/javadoc/com/codename1/ui/Form.html

Container [https://www.codenameone.com/javadoc/com/codename1/ui/Container.html] has a glass pane
method called paintGlass(Graphics), which can be overridden to provide a similar effect on
a Container level. This is especially useful for complex containers such as Table
[https://www.codenameone.com/javadoc/com/codename1/ui/table/Table.html] which draws its lines
using such a methodology.

◦ Background painter - the background painter is installed via the style, by default
Codename installs a custom background painter of its own. Installing a custom painter
allows a developer to completely define how the background of the component is drawn.
Notice that a lot of the background style behaviors can be achieved using styles alone.

A common mistake developers make is overriding the paint(Graphics) method of
Form. The problem with that is that form has child components which might
request a repaint. To prevent that either place a paintable component in the center
of the Form, override the glasspane or the background painter.

A paint method can be implemented as such:

// hide the title
Form hi = new Form("", new BorderLayout());
hi.add(BorderLayout.CENTER, new Component() {
 @Override
 public void paint(Graphics g) {
 // red color
 g.setColor(0xff0000);

 // paint the screen in red
 g.fillRect(getX(), getY(), getWidth(), getHeight());

 // draw hi world in white text at the top left corner of the screen
 g.setColor(0xffffff);
 g.drawString("Hi World", getX(), getY());
 }
});
hi.show();

Figure 337. Hi world demo code, notice that the blue bar on top is the iOS7+ status bar

374

https://www.codenameone.com/javadoc/com/codename1/ui/Container.html
https://www.codenameone.com/javadoc/com/codename1/ui/table/Table.html

10.2. Glass Pane
The GlassPane `in Codename One is inspired by the Swing `GlassPane & LayeredPane with quite a
few twists. We tried to imagine how Swing developers would have implemented the glass pane
knowing what they do now about painters and Swings learning curve. But first: what is the glass
pane?

A typical Codename One application is essentially composed of 3 layers (this is a gross
simplification though), the background painters are responsible for drawing the background of all
components including the main form. The component draws its own content (which might overrule
the painter) and the glass pane paints last…

Figure 338. Form layout graphic

Essentially the glass pane is a painter that allows us to draw an overlay on top of the Codename One
application.

Overriding the paint method of a form isn’t a substitute for glasspane as it would appear to work
initially, when you enter a Form. However, when modifying an element within the form only that
element gets repainted not the entire Form!

So if we have a form with a Button [https://www.codenameone.com/javadoc/com/codename1/ui/Button.html]
and text drawn on top using the Form’s paint method it would get erased whenever the button gets
focus.

The glass pane is called whenever a component gets painted, it only paints within the clipping
region of the component hence it won’t break the rest of the components on the Form which weren’t
modified.

You can set a painter on a form using code like this:

hi.setGlassPane(new Painter() {
 @Override
 public void paint(Graphics g, Rectangle rect) {
 }
});

Or you can use Java 8 lambdas to tighten the code a bit:

hi.setGlassPane((g, rect) -> {
});

PainterChain [https://www.codenameone.com/javadoc/com/codename1/ui/painter/PainterChain.html] allows us

375

https://www.codenameone.com/javadoc/com/codename1/ui/Button.html
https://www.codenameone.com/javadoc/com/codename1/ui/painter/PainterChain.html

to chain several painters together to perform different logical tasks such as a validation painter
coupled with a fade out painter. The sample below shows a crude validation panel that allows us to
draw error icons next to components while exceeding their physical bounds as is common in many
user interfaces

Form hi = new Form("Glass Pane", new BoxLayout(BoxLayout.Y_AXIS));
Style s = UIManager.getInstance().getComponentStyle("Label");
s.setFgColor(0xff0000);
s.setBgTransparency(0);
Image warningImage = FontImage.createMaterial(FontImage.MATERIAL_WARNING, s).toImage();
TextField tf1 = new TextField("My Field");
tf1.getAllStyles().setMarginUnit(Style.UNIT_TYPE_DIPS);
tf1.getAllStyles().setMargin(5, 5, 5, 5);
hi.add(tf1);
hi.setGlassPane((g, rect) -> {
 int x = tf1.getAbsoluteX() + tf1.getWidth();
 int y = tf1.getAbsoluteY();
 x -= warningImage.getWidth() / 2;
 y += (tf1.getHeight() / 2 - warningImage.getHeight() / 2);
 g.drawImage(warningImage, x, y);
});
hi.show();

Figure 339. The glass pane draws the warning sign on the border of the component partially peeking out

10.3. Shapes & Transforms
The graphics API provides a high performance shape API that allows drawing arbitrary shapes by
defining paths and curves and caching the shape drawn in the GPU.

10.4. Device Support
Shapes and transforms are available on most smartphone platforms with some caveats for the
current Windows Phone port.

Notice that perspective transform is missing from the desktop/simulator port. Unfortunately there
is no real equivalent to perspective transform in JavaSE that we could use.

10.5. A 2D Drawing App
We can demonstrate shape drawing with a simple example of a drawing app, that allows the user to
tap the screen to draw a contour picture.

The app works by simply keeping a GeneralPath [https://www.codenameone.com/javadoc/com/codename1/

376

https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html

ui/geom/GeneralPath.html] in memory, and continually adding points as bezier curves. Whenever a
point is added, the path is redrawn to the screen.

The center of the app is the DrawingCanvas class, which extends Component
[https://www.codenameone.com/javadoc/com/codename1/ui/Component.html].

public class DrawingCanvas extends Component {
 GeneralPath p = new GeneralPath();
 int strokeColor = 0x0000ff;
 int strokeWidth = 10;

 public void addPoint(float x, float y){
 // To be written
 }

 @Override
 protected void paintBackground(Graphics g) {
 super.paintBackground(g);
 Stroke stroke = new Stroke(
 strokeWidth,
 Stroke.CAP_BUTT,
 Stroke.JOIN_ROUND, 1f
);
 g.setColor(strokeColor);

 // Draw the shape
 g.drawShape(p, stroke);

 }

 @Override
 public void pointerPressed(int x, int y) {
 addPoint(x-getParent().getAbsoluteX(), y-getParent().getAbsoluteY());
 }
}

Conceptually this is very basic component. We will be overriding the paintBackground()
[https://www.codenameone.com/javadoc/com/codename1/ui/Component.html#

paintBackground(com.codename1.ui.Graphics)] method to draw the path. We keep a reference to a
GeneralPath [https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html] object (which
is the concrete implementation of the Shape [https://www.codenameone.com/javadoc/com/codename1/ui/

geom/Shape.html] interface in Codename One) to store each successive point in the drawing. We also
parametrize the stroke width and color.

The implementation of the paintBackground() method (shown above) should be fairly straight
forward. It creates a stroke of the appropriate width, and sets the color on the graphics context.
Then it calls drawShape() to render the path of points.

377

https://www.codenameone.com/javadoc/com/codename1/ui/Component.html
https://www.codenameone.com/javadoc/com/codename1/ui/Component.html#paintBackground(com.codename1.ui.Graphics)
https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html
https://www.codenameone.com/javadoc/com/codename1/ui/geom/Shape.html

10.5.1. Implementing addPoint()

The addPoint method is designed to allow us to add points to the drawing. A simple implementation
that uses straight lines rather than curves might look like this:

private float lastX = -1;
private float lastY = -1;

public void addPoint(float x, float y) {
 if (lastX == -1) {
 // this is the first point... don't draw a line yet
 p.moveTo(x, y);
 } else {
 p.lineTo(x, y);
 }
 lastX = x;
 lastY = y;

 repaint();
}

We introduced a couple house-keeping member vars (lastX and lastY) to store the last point that
was added so that we know whether this is the first tap or a subsequent tap. The first tap triggers a
moveTo() call, whereas subsequent taps trigger lineTo() calls, which draw lines from the last point
to the current point.

A drawing might look like this:

Figure 340. lineTo example

10.5.2. Using Bezier Curves

Our previous implementation of addPoint() used lines for each segment of the drawing. Let’s make
an adjustment to allow for smoother edges by using quadratic curves instead of lines.

Codename One’s GeneralPath class includes two methods for drawing curves:

378

1. quadTo() [https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html#

quadTo(float,%20float,%20float,%20float)] : Appends a quadratic bezier curve. It takes 2 points: a
control point, and an end point.

2. curveTo() [https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html#

curveTo(float,%20float,%20float,%20float,%20float,%20float)] : Appends a cubic bezier curve, taking 3
points: 2 control points, and an end point.

See the General Path javadocs [https://www.codenameone.com/javadoc/com/codename1/ui/geom/

GeneralPath.html] for the full API.

We will make use of the quadTo() [https://www.codenameone.com/javadoc/com/codename1/ui/geom/

GeneralPath.html#quadTo(float,%20float,%20float,%20float)] method to append curves to the drawing as
follows:

private boolean odd=true;
public void addPoint(float x, float y){
 if (lastX == -1){
 p.moveTo(x, y);

 } else {
 float controlX = odd ? lastX : x;
 float controlY = odd ? y : lastY;
 p.quadTo(controlX, controlY, x, y);
 }
 odd = !odd;
 lastX = x;
 lastY = y;
 repaint();
}

This change should be fairly straight forward except, perhaps, the business with the odd variable.
Since quadratic curves require two points (in addition to the implied starting point), we can’t
simply take the last tap point and the current tap point. We need a point between them to act as a
control point. This is where we get the curve from. The control point works by exerting a sort of
"gravity" on the line segment, to pull the line towards it. This results in the line being curved. I use
the odd marker to alternate the control point between positions above the line and below the line.

A drawing from the resulting app looks like:

379

https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html#quadTo(float,%20float,%20float,%20float)
https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html#curveTo(float,%20float,%20float,%20float,%20float,%20float)
https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html
https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html#quadTo(float,%20float,%20float,%20float)

Figure 341. Result of quadTo example

10.5.3. Detecting Platform Support

The DrawingCanvas example is a bit naive in that it assumes that the device supports the shape API. If
I were to run this code on a device that doesn’t support the Shape [https://www.codenameone.com/

javadoc/com/codename1/ui/geom/Shape.html] API, it would just draw a blank canvas where I expected my
shape to be drawn. You can fall back gracefully if you make use of the Graphics.isShapeSupported()
[https://www.codenameone.com/javadoc/com/codename1/ui/Graphics.html#isShapeSupported()] method. E.g.

@Override
protected void paintBackground(Graphics g) {
 super.paintBackground(g);
 if (g.isShapeSupported()){
 // do my shape drawing code here
 } else {
 // draw an alternate representation for device
 // that doesn't support shapes.
 // E.g. you could defer to the Pisces
 // library in this case
 }

}

10.6. Transforms
The Graphics [https://www.codenameone.com/javadoc/com/codename1/ui/Graphics.html] class has included
limited support for 2D transformations for some time now including scaling, rotation, and
translation:

• scale(x,y) : Scales drawing operations by a factor in each direction.

• translate(x,y) : Translates drawing operations by an offset in each direction.

• rotate(angle) : Rotates about the origin.

• rotate(angle, px, py) : Rotates about a pivot point.

380

https://www.codenameone.com/javadoc/com/codename1/ui/geom/Shape.html
https://www.codenameone.com/javadoc/com/codename1/ui/Graphics.html#isShapeSupported()
https://www.codenameone.com/javadoc/com/codename1/ui/Graphics.html

scale() and rotate() methods are only available on platforms that support Affine
transforms. See table X for a compatibility list.

10.6.1. Device Support

As of this writing, not all devices support transforms (i.e. scale() and rotate()). The following is a
list of platforms and their respective levels of support.

Table 7. Transforms Device Support

Platform Affine Supported

Simulator Yes

iOS Yes

Android Yes

JavaScript Yes

J2ME No

BlackBerry (4.2 & 5) No

Windows Phone No (pending)

You can check if a particular Graphics [https://www.codenameone.com/javadoc/com/codename1/ui/

Graphics.html] context supports rotation and scaling using the isAffineSupported() method.

e.g.

public void paint(Graphics g){
 if (g.isAffineSupported()){
 // Do something that requires rotation and scaling

 } else {
 // Fallback behavior here
 }
}

10.7. Example: Drawing an Analog Clock
In the following sections, I will implement an analog clock component. This will demonstrate three
key concepts in Codename One’s graphics:

1. Using the GeneralPath class for drawing arbitrary shapes.

2. Using Graphics.translate() to translate our drawing position by an offset.

3. Using Graphics.rotate() to rotate our drawing position.

There are three separate things that need to be drawn in a clock:

1. The tick marks. E.g. most clocks will have a tick mark for each second, larger tick marks for

381

https://www.codenameone.com/javadoc/com/codename1/ui/Graphics.html

each hour, and sometimes even larger tick marks for each quarter hour.

2. The numbers. We will draw the clock numbers (1 through 12) in the appropriate positions.

3. The hands. We will draw the clock hands to point at the appropriate points to display the
current time.

10.7.1. The AnalogClock Component

Our clock will extend the Component [https://www.codenameone.com/javadoc/com/codename1/ui/

Component.html] class, and override the paintBackground() method to draw the clock as follows:

public class AnalogClock extends Component {
 Date currentTime = new Date();

 @Override
 public void paintBackground(Graphics g) {
 // Draw the clock in this method
 }
}

10.7.2. Setting up the Parameters

Before we actually draw anything, let’s take a moment to figure out what values we need to know
in order to draw an effective clock. Minimally, we need two values:

1. The center point of the clock.

2. The radius of the clock.

In addition, I am adding the following parameters to to help customize how the clock is rendered:

1. The padding (i.e. the space between the edge of the component and the edge of the clock circle.

2. The tick lengths. I will be using 3 different lengths of tick marks on this clock. The longest ticks
will be displayed at quarter points (i.e. 12, 3, 6, and 9). Slightly shorter ticks will be displayed at
the five-minute marks (i.e. where the numbers appear), and the remaining marks
(corresponding with seconds) will be quite short.

382

https://www.codenameone.com/javadoc/com/codename1/ui/Component.html

// Hard code the padding at 10 pixels for now
double padding = 10;

// Clock radius
double r = Math.min(getWidth(), getHeight())/2-padding;

// Center point.
double cX = getX()+getWidth()/2;
double cY = getY()+getHeight()/2;

//Tick Styles
int tickLen = 10; // short tick
int medTickLen = 30; // at 5-minute intervals
int longTickLen = 50; // at the quarters
int tickColor = 0xCCCCCC;
Stroke tickStroke = new Stroke(2f, Stroke.CAP_BUTT, Stroke.JOIN_ROUND, 1f);

10.7.3. Drawing the Tick Marks

For the tick marks, we will use a single GeneralPath [https://www.codenameone.com/javadoc/com/

codename1/ui/geom/GeneralPath.html] object, making use of the moveTo() and lineTo() methods to draw
each individual tick.

383

https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html

// Draw a tick for each "second" (1 through 60)
for (int i=1; i<= 60; i++){
 // default tick length is short
 int len = tickLen;
 if (i % 15 == 0){
 // Longest tick on quarters (every 15 ticks)
 len = longTickLen;
 } else if (i % 5 == 0){
 // Medium ticks on the '5's (every 5 ticks)
 len = medTickLen;
 }

 double di = (double)i; // tick num as double for easier math

 // Get the angle from 12 O'Clock to this tick (radians)
 double angleFrom12 = di/60.0*2.0*Math.PI;

 // Get the angle from 3 O'Clock to this tick
 // Note: 3 O'Clock corresponds with zero angle in unit circle
 // Makes it easier to do the math.
 double angleFrom3 = Math.PI/2.0-angleFrom12;

 // Move to the outer edge of the circle at correct position
 // for this tick.
 ticksPath.moveTo(
 (float)(cX+Math.cos(angleFrom3)*r),
 (float)(cY-Math.sin(angleFrom3)*r)
);

 // Draw line inward along radius for length of tick mark
 ticksPath.lineTo(
 (float)(cX+Math.cos(angleFrom3)*(r-len)),
 (float)(cY-Math.sin(angleFrom3)*(r-len))
);
}

// Draw the full shape onto the graphics context.
g.setColor(tickColor);
g.drawShape(ticksPath, tickStroke);

This example uses a little bit of trigonometry to calculate the (x,y) coordinates of
the tick marks based on the angle and the radius. If math isn’t your thing, don’t
worry. This example just makes use of the identities: x=r*cosθ and y=r*sinθ.

At this point our clock should include a series of tick marks orbiting a blank center as shown below:

384

Figure 342. Drawing tick marks on the watch face

10.7.4. Drawing the Numbers

The Graphics.drawString(str, x, y) method allows you to draw text at any point of a component.
The tricky part here is calculating the correct x and y values for each string so that the number
appears in the correct location.

For the purposes of this tutorial, we will use the following strategy. For each number (1 through 12):

1. Use the Graphics.translate(x,y) method to apply a translation from the clock’s center point to
the point where the number should appear.

2. Draw number (using drawString()) at the clock’s center. It should be rendered at the correct
point due to our translation.

3. Invert the translation performed in step 1.

385

for (int i=1; i<=12; i++){
 // Calculate the string width and height so we can center it properly
 String numStr = ""+i;
 int charWidth = g.getFont().stringWidth(numStr);
 int charHeight = g.getFont().getHeight();

 double di = (double)i; // number as double for easier math

 // Calculate the position along the edge of the clock where the number should
 // be drawn
 // Get the angle from 12 O'Clock to this tick (radians)
 double angleFrom12 = di/12.0*2.0*Math.PI;

 // Get the angle from 3 O'Clock to this tick
 // Note: 3 O'Clock corresponds with zero angle in unit circle
 // Makes it easier to do the math.
 double angleFrom3 = Math.PI/2.0-angleFrom12;

 // Get diff between number position and clock center
 int tx = (int)(Math.cos(angleFrom3)*(r-longTickLen));
 int ty = (int)(-Math.sin(angleFrom3)*(r-longTickLen));

 // For 6 and 12 we will shift number slightly so they are more even
 if (i == 6){
 ty -= charHeight/2;
 } else if (i == 12){
 ty += charHeight/2;
 }

 // Translate the graphics context by delta between clock center and
 // number position
 g.translate(
 tx,
 ty
);

 // Draw number at clock center.
 g.drawString(numStr, (int)cX-charWidth/2, (int)cY-charHeight/2);

 // Undo translation
 g.translate(-tx, -ty);

}

This example is, admittedly, a little contrived to allow for a demonstration of the
Graphics.translate() method. We could have just as easily passed the exact
location of the number to drawString() rather than draw at the clock center and
translate to the correct location.

386

Now, we should have a clock with tick marks and numbers as shown below:

Figure 343. Drawing the numbers on the watch face

10.7.5. Drawing the Hands

The clock will include three hands: Hour, Minute, and Second. We will use a separate GeneralPath
[https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html] object for each hand. For
the positioning/angle of each, I will employ the following strategy:

1. Draw the hand at the clock center pointing toward 12 (straight up).

2. Translate the hand slightly down so that it overlaps the center.

3. Rotate the hand at the appropriate angle for the current time, using the clock center as a pivot
point.

Drawing the Second Hand:

For the "second" hand, we will just use a simple line from the clock center to the inside edge of the
medium tick mark at the 12 o’clock position.

GeneralPath secondHand = new GeneralPath();
secondHand.moveTo((float)cX, (float)cY);
secondHand.lineTo((float)cX, (float)(cY-(r-medTickLen)));

And we will translate it down slightly so that it overlaps the center. This translation will be
performed on the GeneralPath object directly rather than through the Graphics context:

Shape translatedSecondHand = secondHand.createTransformedShape(
 Transform.makeTranslation(0f, 5)
);

Rotating the Second Hand::

The rotation of the second hand will be performed in the Graphics context via the rotate(angle, px,
py) method. This requires us to calculate the angle. The px and py arguments constitute the pivot

387

https://www.codenameone.com/javadoc/com/codename1/ui/geom/GeneralPath.html

point of the rotation, which, in our case will be the clock center.

The rotation pivot point is expected to be in absolute screen coordinates rather
than relative coordinates of the component. Therefore we need to get the absolute
clock center position in order to perform the rotation.

// Calculate the angle of the second hand
Calendar calendar = Calendar.getInstance(TimeZone.getDefault());
double second = (double)(calendar.get(Calendar.SECOND));
double secondAngle = second/60.0*2.0*Math.PI;

// Get absolute center position of the clock
double absCX = getAbsoluteX()+cX-getX();
double absCY = getAbsoluteY()+cY-getY();

g.rotate((float)secondAngle, (int)absCX, (int)absCY);
g.setColor(0xff0000);
g.drawShape(
 translatedSecondHand,
 new Stroke(2f, Stroke.CAP_BUTT, Stroke.JOIN_BEVEL, 1f)
);
g.resetAffine();

Remember to call resetAffine() after you’re done with the rotation, or you will see
some unexpected results on your form.

Drawing the Minute And Hour Hands:

The mechanism for drawing the hour and minute hands is largely the same as for the minute hand.
There are a couple of added complexities though:

1. We’ll make these hands trapezoidal, and almost triangular rather than just using a simple line.
Therefore the GeneralPath construction will be slightly more complex.

2. Calculation of the angles will be slightly more complex because they need to take into account
multiple parameters. E.g. The hour hand angle is informed by both the hour of the day and the
minute of the hour.

The remaining drawing code is as follows:

388

// Draw the minute hand
GeneralPath minuteHand = new GeneralPath();
minuteHand.moveTo((float)cX, (float)cY);
minuteHand.lineTo((float)cX+6, (float)cY);
minuteHand.lineTo((float)cX+2, (float)(cY-(r-tickLen)));
minuteHand.lineTo((float)cX-2, (float)(cY-(r-tickLen)));
minuteHand.lineTo((float)cX-6, (float)cY);
minuteHand.closePath();

// Translate the minute hand slightly down so it overlaps the center
Shape translatedMinuteHand = minuteHand.createTransformedShape(
 Transform.makeTranslation(0f, 5)
);

double minute = (double)(calendar.get(Calendar.MINUTE)) +
 (double)(calendar.get(Calendar.SECOND))/60.0;

double minuteAngle = minute/60.0*2.0*Math.PI;

// Rotate and draw the minute hand
g.rotate((float)minuteAngle, (int)absCX, (int)absCY);
g.setColor(0x000000);
g.fillShape(translatedMinuteHand);
g.resetAffine();

// Draw the hour hand
GeneralPath hourHand = new GeneralPath();
hourHand.moveTo((float)cX, (float)cY);
hourHand.lineTo((float)cX+4, (float)cY);
hourHand.lineTo((float)cX+1, (float)(cY-(r-longTickLen)*0.75));
hourHand.lineTo((float)cX-1, (float)(cY-(r-longTickLen)*0.75));
hourHand.lineTo((float)cX-4, (float)cY);
hourHand.closePath();

Shape translatedHourHand = hourHand.createTransformedShape(
 Transform.makeTranslation(0f, 5)
);

//Calendar cal = Calendar.getInstance().get
double hour = (double)(calendar.get(Calendar.HOUR_OF_DAY)%12) +
 (double)(calendar.get(Calendar.MINUTE))/60.0;

double angle = hour/12.0*2.0*Math.PI;
g.rotate((float)angle, (int)absCX, (int)absCY);
g.setColor(0x000000);
g.fillShape(translatedHourHand);
g.resetAffine();

389

10.7.6. The Final Result

At this point, we have a complete clock as shown below:

Figure 344. The final result - fully rendered watch face

10.7.7. Animating the Clock

The current clock component is cool, but it is static. It just displays the time at the point the clock
was created. We discussed low level animations in the animation section of the guide, here we will
show a somewhat more elaborate example.

In order to animate our clock so that it updates once per second, we only need to do two things:

1. Implement the animate() method to indicate when the clock needs to be updated/re-drawn.

2. Register the component with the form so that it will receive animation "pulses".

The animate() method in the AnalogClock class:

Date currentTime = new Date();
long lastRenderedTime = 0;

@Override
public boolean animate() {
 if (System.currentTimeMillis()/1000 != lastRenderedTime/1000){
 currentTime.setTime(System.currentTimeMillis());
 return true;
 }
 return false;
}

This method will be invoked on each "pulse" of the EDT. It checks the last time the clock was
rendered and returns true only if the clock hasn’t been rendered in the current "time second"
interval. Otherwise it returns false. This ensures that the clock will only be redrawn when the time
changes.

390

10.8. Starting and Stopping the Animation
Animations can be started and stopped via the Form.registerAnimated(component) and
Form.deregisterAnimated(component) methods. We chose to encapsulate these calls in start() and
stop() methods in the component as follows:

public void start(){
 getComponentForm().registerAnimated(this);
}

public void stop(){
 getComponentForm().deregisterAnimated(this);
}

So the code to instantiate the clock, and start the animation would be something like:

AnalogClock clock = new AnalogClock();
parent.addComponent(clock);
clock.start();

10.9. Shape Clipping
Clipping is one of the core tenants of graphics programming, you define the boundaries for drawing
and when you exceed said boundaries things aren’t drawn. Shape clipping allows us to clip based
on any arbitrary Shape and not just a rectangle, this allows some unique effects generated in
runtime.

E.g. this code allows us to draw a rather complex image of duke:

391

Image duke = null;
try {
 // duke.png is just the default Codename One icon copied into place
 duke = Image.createImage("/duke.png");
} catch(IOException err) {
 Log.e(err);
}
final Image finalDuke = duke;

Form hi = new Form("Shape Clip");

// We create a 50 x 100 shape, this is arbitrary since we can scale it easily
GeneralPath path = new GeneralPath();
path.moveTo(20,0);
path.lineTo(30, 0);
path.lineTo(30, 100);
path.lineTo(20, 100);
path.lineTo(20, 15);
path.lineTo(5, 40);
path.lineTo(5, 25);
path.lineTo(20,0);

Stroke stroke = new Stroke(0.5f, Stroke.CAP_ROUND, Stroke.JOIN_ROUND, 4);
hi.getContentPane().getUnselectedStyle().setBgPainter((Graphics g, Rectangle rect) -> {
 g.setColor(0xff);
 float widthRatio = ((float)rect.getWidth()) / 50f;
 float heightRatio = ((float)rect.getHeight()) / 100f;
 g.scale(widthRatio, heightRatio);
 g.translate((int)(((float)rect.getX()) / widthRatio), (int)(((float)rect.getY()) / heightRatio));
 g.setClip(path);
 g.setAntiAliased(true);
 g.drawImage(finalDuke, 0, 0, 50, 100);
 g.setClip(path.getBounds());
 g.drawShape(path, stroke);
 g.translate(-(int)(((float)rect.getX()) / widthRatio), -(int)(((float)rect.getY()) / heightRatio));
 g.resetAffine();
});

hi.show();

Figure 345. Shape Clipping used to clip the image of duke within the given shape

Notice that this functionality isn’t available on all platforms so you normally need
to test if shaped clipping is supported using isShapeClipSupported()
[https://www.codenameone.com/javadoc/com/codename1/ui/Graphics.html#

isShapeClipSupported--].

392

https://www.codenameone.com/javadoc/com/codename1/ui/Graphics.html#isShapeClipSupported--

10.10. The Coordinate System
The Codename One coordinate system follows the example of Swing (and many other - but not all-
graphics libraries) and places the origin in the upper left corner of the screen. X-values grow to the
right, and Y-values grow downward as illustrated below:

Figure 346. The Codename One graphics coordinate space

Therefore the screen origin is at the top left corner of the screen. Given this information, consider
the method call on the Graphics [https://www.codenameone.com/javadoc/com/codename1/ui/Graphics.html]
context g:

g.drawRect(10,10, 100, 100);

Where would this rectangle be drawn on the screen?

If you answered something something like "10 pixels from the top, and 10 pixels from the left of the
screen", you might be right. It depends on whether the graphics has a translation or transform
applied to it. If there is currently a translation of (20,20) (i.e. 20 pixels to the right, and 20 pixels
down), then the rectangle would be rendered at (30, 30).

You can always find out the current translation of the graphics context using the
Graphics.getTranslateX() and Graphics.getTranslateY() methods:

// Find out the current translation
int currX = g.getTranslateX();
int currY = g.getTranslateY();

// Reset the translation to zeroes
g.translate(-currX, -currY);

// Now we are working in absolute screen coordinates
g.drawRect(10, 10, 100, 100);

// This rectangle should now be drawn at the exact screen
// coordinates (10,10).

//Restore the translation
g.translate(currX, currY);

393

https://www.codenameone.com/javadoc/com/codename1/ui/Graphics.html

This example glosses over issues such as clipping and transforms which may cause
it to not work as you expect. E.g. When painting a component inside its paint()
method, there is a clip applied to the context so that only the content you draw
within the bounds of the component will be seen.

If, in addition, there is a transform applied that rotates the context 45 degrees clockwise, then the
rectangle will be drawn at a 45 degree angle with its top left corner somewhere on the left edge of
the screen.

Luckily you usually don’t have to worry about the exact screen coordinates for the things you paint.
Most of the time, you will only be concerned with relative coordinates.

10.10.1. Relative Coordinates

Usually, when you are drawing onto a Graphics context, you are doing so within the context of a
Component’s paint() method (or one of its variants). In this case, you generally don’t care what the
exact screen coordinates are of your drawing. You are only concerned with their relative location
within the coordinate. You can leave the positioning (and even sizing) of the coordinate up to
Codename One. Thank you for reading.

To demonstrate this, let’s create a simple component called Rectangle [https://www.codenameone.com/

javadoc/com/codename1/ui/geom/Rectangle.html] component, that simply draws a rectangle on the screen.
We will use the component’s position and size to dictate the size of the rectangle to be drawn. And
we will keep a 5 pixel padding between the edge of the component and the edge of our rectangle.

class RectangleComponent extends Component {
 public void paint(Graphics g){
 g.setColor(0x0000ff);
 g.drawRect(getX()+5, getY()+5, getWidth()-10, getHeight()-10);
 }
}

The result is as follows:

Figure 347. The rectangle component

The x and y coordinates that are passed to the drawRect(x,y,w,h) method are
relative to the component’s parent’s origin — not the component itself .. its
parent. This is why we the x position is getX()+5 and not just 5.

394

https://www.codenameone.com/javadoc/com/codename1/ui/geom/Rectangle.html

10.10.2. Transforms and Rotations

Unlike the Graphics drawXXX primitives, methods for setting transformations, including scale(x,y)
and rotate(angle), are always applied in terms of screen coordinates. This can be confusing at first,
because you may be unsure whether to provide a relative coordinate or an absolute coordinate for
a given method.

The general rule is:

1. All coordinates passed to the drawXXX() and fillXXX() methods will be subject to the
graphics context’s transform and translation settings.

2. All coordinates passed to the context’s transformation settings are considered to be
screen coordinates, and are not subject to current transform and translation settings.

Let’s take our RectangleComponent as an example. Suppose we want to rotate the rectangle by 45
degrees, our first attempt might look something like:

 class RectangleComponent extends Component {

 @Override
 protected Dimension calcPreferredSize() {
 return new Dimension(250,250);
 }

 public void paint(Graphics g) {
 g.setColor(0x0000ff);
 g.rotate((float) (Math.PI / 4.0));
 g.drawRect(getX() + 5, getY() + 5, getWidth() - 10, getHeight() - 10);
 g.rotate(-(float) (Math.PI / 4.0));
 }
 }

When performing rotations and transformations inside a paint() method, always
remember to revert your transformations at the end of the method so that it
doesn’t pollute the rendering pipeline for subsequent components.

The behavior of this rotation will vary based on where the component is rendered on the screen. To
demonstrate this, let’s try to place five of these components on a form inside a BorderLayout
[https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BorderLayout.html] and see how it looks:

395

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/BorderLayout.html

 class MyForm extends Form {

 public MyForm() {
 super("Rectangle Rotations");
 for (int i=0; i< 10; i++){
 this.addComponent(new RectangleComponent());
 }
 }
 }

The result is as follows:

Figure 348. Rotating the rectangle

This may not be an intuitive outcome since we drew 10 rectangle components, be we only see a
portion of one rectangle. The reason is that the rotate(angle) method uses the screen origin as the
pivot point for the rotation. Components nearer to this pivot point will experience a less dramatic
effect than components farther from it. In our case, the rotation has caused all rectangles except the
first one to be rotated outside the bounds of their containing component - so they are being clipped.
A more sensible solution for our component would be to place the rotation pivot point somewhere
inside the component. That way all of the components would look the same. Some possibilities
would be:

Top Left Corner:

 public void paint(Graphics g) {
 g.setColor(0x0000ff);
 g.rotate((float)(Math.PI/4.0), getAbsoluteX(), getAbsoluteY());
 g.drawRect(getX() + 5, getY() + 5, getWidth() - 10, getHeight() - 10);
 g.rotate(-(float) (Math.PI / 4.0), getAbsoluteX(), getAbsoluteY());
 }

396

Figure 349. Rotating the rectangle with wrong pivot point

Center:

public void paint(Graphics g) {
 g.setColor(0x0000ff);
 g.rotate(
 (float)(Math.PI/4.0),
 getAbsoluteX()+getWidth()/2,
 getAbsoluteY()+getHeight()/2
);
 g.drawRect(getX() + 5, getY() + 5, getWidth() - 10, getHeight() - 10);
 g.rotate(
 -(float)(Math.PI/4.0),
 getAbsoluteX()+getWidth()/2,
 getAbsoluteY()+getHeight()/2
);
}

Figure 350. Rotating the rectangle with the center pivot point

You could also use the Graphics.setTransform() class to apply rotations and other complex
transformations (including 3D perspective transforms), but I’ll leave that for its own topic as it is a

397

little bit more complex.

10.10.3. Event Coordinates

The coordinate system and event handling are closely tied. You can listen for touch events on a
component by overriding the pointerPressed(x,y) method. The coordinates received in this method
will be absolute screen coordinates, so you may need to do some conversions on these
coordinates before using them in your drawXXX() methods.

E.g. a pointerPressed() callback method can look like this:

public void pointerPressed(int x, int y) {
 addPoint(x-getParent().getAbsoluteX(), y-getParent().getAbsoluteY());
}

In this case we translated these points so that they would be relative to the origin of the parent
component. This is because the drawXXX() methods for this component take coordinates relative to
the parent component.

10.11. Images
Codename One has quite a few image types: loaded, RGB (builtin), RGB (Codename One), Mutable,
EncodedImage, SVG, MultiImage, FontImage & Timeline. There are also URLImage,
FileEncodedImage, FileEncodedImageAsync, StorageEncodedImage/Async that will be covered in the
IO section.

All image types are mostly seamless to use and will just work with drawImage and various image
related image API’s for the most part with caveats on performance etc.

For animation images the code must invoke the animate() method on the image
(this is done automatically by Codename One when placing the image as a
background or as an icon!
You only need to do it if you invoke drawImage in code rather than use a builtin
component).

Performance and memory wise you should read the section below carefully and be aware of the
image types you use. The Codename One designer tries to conserve memory and be "clever" by
using only EncodedImage. While these are great for low memory you need to understand the
complexities of image locking and be aware that you might pay a penalty if you don’t.

Here are the pros/cons and logic behind every image type. This covers the logic of how it’s created:

10.11.1. Loaded Image

This is the basic image you get when loading an image from the jar or network using
Image.createImage(String) [https://www.codenameone.com/javadoc/com/codename1/ui/Image.html#

createImage-java.lang.String-], Image.createImage(InputStream) [https://www.codenameone.com/javadoc/com/

codename1/ui/Image.html#createImage-java.io.InputStream-] & Image.createImage(byte array,int,int)

398

https://www.codenameone.com/javadoc/com/codename1/ui/Image.html#createImage-java.lang.String-
https://www.codenameone.com/javadoc/com/codename1/ui/Image.html#createImage-java.io.InputStream-
https://www.codenameone.com/javadoc/com/codename1/ui/Image.html#createImage-byte:A-int-int-

[https://www.codenameone.com/javadoc/com/codename1/ui/Image.html#createImage-byte:A-int-int-], …

 Some other API’s might return this image type but those API’s do so explicitly!

In some platforms calling getGraphics() on an image like this will throw an exception as it’s
immutable). This is true for almost all other images as well.

This restriction might not apply for all platforms.

The image is stored in RAM based on device logic and should be reasonably efficient in terms of
drawing speed. However, it usually takes up a lot of RAM.

To calculate the amount of RAM taken by a loaded image we use the following formula:

Image Width * Image Height * 4 = Size In RAM in Bytes

E.g. a 50x100 image will take up 20,000 bytes of RAM.

The logic behind this is simple, every pixel contains 3 color channels and an alpha component
hence 3 bytes for color and one for alpha.

This isn’t the case for all images but it’s very common and we prefer calculating
for the worst case scenario. Even with JPEG’s that don’t include an alpha channel
some OS’s might reuire that additional byte.

10.11.2. The RGB Image’s

There are two types of RGB constructed images that are very different from one another but since
they are both technically "RGB image’s" we are bundling them under the same subsection.

Internal

This is a close cousin of the loaded image. This image is created using the method
Image.createImage(int array, int, int) [https://www.codenameone.com/javadoc/com/codename1/ui/Image.html#

createImage-int:A-int-int-] and receives the AARRGGBB data to form the image. It’s more efficient than
the Codename One RGB image but can’t be modified, at least not on the pixel level.

The goal of this image type is to provide an easy way to render RGB data that isn’t modified
efficiently at platform native speeds. It’s technically a standard "Loaded Image" internally.

RGBImage class

RGBImage [https://www.codenameone.com/javadoc/com/codename1/ui/RGBImage.html] is effectively an
AARRGGBB array that can be drawn by Codename One.

On most platforms this is quite inefficient but for some pixel level manipulations there is just no
other way.

An RGBImage is constructed with an int array (int[]) that includes width*height elements. You can

399

https://www.codenameone.com/javadoc/com/codename1/ui/Image.html#createImage-int:A-int-int-
https://www.codenameone.com/javadoc/com/codename1/ui/RGBImage.html

then modify the colors and alpha channel directly within the array and draw the image to any
source using standard image drawing API’s.

This is very inefficient in terms of rendering speed and memory overhead. Only
use this technique if there is absolutely no other way!

10.11.3. EncodedImage

EncodedImage [https://www.codenameone.com/javadoc/com/codename1/ui/EncodedImage.html] is the
workhorse of Codename One. Images returned from resource files are EncodedImage and many API’s
expect it.

The EncodedImage is effectively a loaded image that is "hidden" and extracted as needed to remove
the memory overhead associated with loaded image. When creating an EncodedImage only the PNG
(or JPEG etc.) is loaded to an array in RAM. Normally such images are very small (relatively) so they
can be kept in memory without much overhead.

When image information is needed (pixels) the image is decoded into RAM and kept in a weak/sort
reference. This allows the image to be cached for performance and allows the garbage collector to
reclaim it when the memory becomes scarce.

Since the fully decoded image can be pretty big (width X height X 4) the ability to store just the
encoded image can be pretty stark. E.g. taking our example above a 50x100 image will take up
20,000 bytes of RAM for a loaded image but an EncodedImage can reduce that to 1kb-2kb of RAM.

An EncodedImage might be more expensive than a loaded image as it will take up
both the encoded size and the loaded size. So the cost might be slightly bigger in
some cases. It’s main value is its ability to shrink.

When drawing an EncodedImage it checks the weak reference cache and if the image is cached then
it is shown otherwise the image is loaded the encoded image cache it then drawn.

EncodedImage is not final and can be derived to produce complex image fetching strategies e.g. the
URLImage [https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.html] class that can
dynamically download its content from the web.

EncodedImage can be instantiated via the create methods in the EncodedImage class. Pretty much any
image can be converted into an EncodedImage via the createFromImage(Image, boolean)
[https://www.codenameone.com/javadoc/com/codename1/ui/EncodedImage.html#createFromImage-

com.codename1.ui.Image-boolean-] method.

400

https://www.codenameone.com/javadoc/com/codename1/ui/EncodedImage.html
https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.html
https://www.codenameone.com/javadoc/com/codename1/ui/EncodedImage.html#createFromImage-com.codename1.ui.Image-boolean-

EncodedImage Locking

Naturally loading the image is more expensive so we want the images that are on the current
form to remain in cache (otherwise GC will thrash a lot). That’s where lock() kicks in, when
lock() is active we keep a hard reference to the actual native image so it won’t get GC’d. This
significantly improves performance!

Internally this is invoked automatically for background images, icons etc. which results in a
huge performance boost. This makes sense since these images are currently showing and
they will be in RAM anyway. However, if you use a complex renderer or custom drawing UI
you should lock() your images where possible!

To verify that locking might be a problem you can launch the performance monitor tool
(accessible from the simulator menu), if you get log messages that indicate that an unlocked
image was drawn you might have a problem.

10.11.4. MultiImage

Multi images don’t physically exist as a concept within the Codename One API so there is no way to
actually create them and they are in no way distinguishable from EnclodedImage.

The only builtin support for multi images is in the resource file loading logic where a MultiImage is
decoded and only the version that matches the current DPI is physically loaded. From that point on
user code can treat it like any other EnclodedImage.

9-image borders use multi images by default to keep their appearance more refined on the different
DPI’s.

10.11.5. FontImage & Material Design Icons

FontImage [https://www.codenameone.com/javadoc/com/codename1/ui/FontImage.html] allows using an icon
font as if it was an image. You can specify the character, color and size and then treat the FontImage
as if its a regular image. The huge benefits are that the font image can adapt to platform
conventions in terms of color and easily scale to adapt to DPI.

You can generate icon fonts using free tools on the internet such as this [http://fontello.com/]. Icon
fonts are a remarkably simple and powerful technique to create a small, modern applications.

Icon fonts can be created in 2 basic ways the first is explicitly by defining all of the elements within
the font.

Form hi = new Form("Icon Font");
Font materialFont = FontImage.getMaterialDesignFont();
int w = Display.getInstance().getDisplayWidth();
FontImage fntImage = FontImage.createFixed("\uE161", materialFont, 0xff0000, w, w);
hi.add(fntImage);
hi.show();

401

https://www.codenameone.com/javadoc/com/codename1/ui/FontImage.html
http://fontello.com/

Figure 351. Icon font from material design icons created with the fixed size of display width

The samples use the builtin material design icon font. This is for convenience so
the sample will work out of the box, for everyone. However you should be able to
do this with any arbitrary icon font off the internet as long as its a valid TTF file.

A more common and arguably "correct" way to construct such an icon would be thru the Style
[https://www.codenameone.com/javadoc/com/codename1/ui/plaf/Style.html] object. The Style object can
provide the color, size and background information needed by FontImage.

There are two versions of this method, the first one expects the Style object to have the correct icon
font set to its font attribute. The second accepts a Font object as an argument. The latter is useful for
a case where you want to reuse the same Style object that you defined for a general UI element e.g.
we can set an icon for a Button like this and it will take up the style of the Button:

Form hi = new Form("Icon Font");
Font materialFont = FontImage.getMaterialDesignFont();
int size = Display.getInstance().convertToPixels(6, true);
materialFont = materialFont.derive(size, Font.STYLE_PLAIN);
Button myButton = new Button("Save");
myButton.setIcon(FontImage.create("\uE161", myButton.getUnselectedStyle(), materialFont));
hi.add(myButton);
hi.show();

Figure 352. An image created from the Style object

Notice that for this specific version of the method the size of the font is used to
determine the icon size. In the other methods for FontImage creation the size of the
font is ignored!

Material Design Icons

There are many icon fonts in the web, the field is rather volatile and constantly changing. However,
we wanted to have builtin icons that would allow us to create better looking demos and builtin
components.

402

https://www.codenameone.com/javadoc/com/codename1/ui/plaf/Style.html

That’s why we picked the material design icon font for inclusion in the Codename One distribution.
It features a relatively stable core set of icons, that aren’t IP encumbered.

You can use the builtin font directly as demonstrated above but there are far better ways to create a
material design icon. To find the icon you want you can check out the material design icon gallery
[https://design.google.com/icons/]. E.g. we used the save icon in the samples above.

To recreate the save icon from above we can do something like:

Form hi = new Form("Icon Font");
Button myButton = new Button("Save");
myButton.setIcon(FontImage.createMaterial(FontImage.MATERIAL_SAVE, myButton.getUnselectedStyle()));
hi.add(myButton);

Figure 353. Material save icon

Notice that the icon is smaller now as it’s calculated based on the font size of the
Button UIID.

We can even write the code in a more terse style using:

Form hi = new Form("Icon Font");
Button myButton = new Button("Save");
FontImage.setMaterialIcon(myButton, FontImage.MATERIAL_SAVE);
hi.add(myButton);

This will produce the same result for slightly shorter syntax.

FontImage can conflict with some complex API’s that expect a "real" image
underneath. Some odd issues can often be resolved by using the toImage() or
toEncodedImage() methods to convert the scaled FontImage to a loaded image.

10.11.6. Timeline

Timeline’s allow rudimentary animation and enable GIF importing using the Codename One
Designer. Effectively a timeline is a set of images that can be moved rotated, scaled & blended to
provide interesting animation effects. It can be created manually using the Timeline
[https://www.codenameone.com/javadoc/com/codename1/ui/animations/Timeline.html] class.

10.11.7. Image Masking

Image masking allows us to manipulate images by changing the opacity of an image according to a
mask image. The mask image can be hardcoded or generated dynamically, it is then converted to a
Mask object that can be applied to any image. Notice that the masking process is computationally
intensive, it should be done once and cached/saved.

403

https://design.google.com/icons/
https://www.codenameone.com/javadoc/com/codename1/ui/animations/Timeline.html

The code below can convert an image to a rounded image:

Toolbar.setGlobalToolbar(true);
Form hi = new Form("Rounder", new BorderLayout());
Label picture = new Label("", "Container");
hi.add(BorderLayout.CENTER, picture);
hi.getUnselectedStyle().setBgColor(0xff0000);
hi.getUnselectedStyle().setBgTransparency(255);
Style s = UIManager.getInstance().getComponentStyle("TitleCommand");
Image camera = FontImage.createMaterial(FontImage.MATERIAL_CAMERA, s);
hi.getToolbar().addCommandToRightBar("", camera, (ev) -> {
 try {
 int width = Display.getInstance().getDisplayWidth();
 Image capturedImage = Image.createImage(Capture.capturePhoto(width, -1));
 Image roundMask = Image.createImage(width, capturedImage.getHeight(), 0xff000000);
 Graphics gr = roundMask.getGraphics();
 gr.setColor(0xffffff);
 gr.fillArc(0, 0, width, width, 0, 360);
 Object mask = roundMask.createMask();
 capturedImage = capturedImage.applyMask(mask);
 picture.setIcon(capturedImage);
 hi.revalidate();
 } catch(IOException err) {
 Log.e(err);
 }
});

Figure 354. Picture after the capture was complete and the resulted image was rounded. The background
was set to red so the rounding effect will be more noticeable

Notice that this example is simplistic in order to be self contained. We often recommend that
developers ship "ready made" mask images with their application which can allow very complex
effects on the images.

10.11.8. URLImage

URLImage [https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.html] is an image created
with a URL, it implicitly downloads and adapts the image in the given URL while caching it locally.
The typical adapt process scales the image or crops it to fit into the same size which is a hard
restriction because of the way URLImage is implemented.

404

https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.html

How Does URLImage Work?

The reason for the size restriction lies in the implementation of URLImage. URLImage is
physically an animated image and so the UI thread tries to invoke its animate() method to
refresh. The URLImage uses that call to check if the image was fetched and if not fetches it
asynchronously.

Once the image was fetched the animate() method returns true to refresh the UI. During the
loading process the placeholder is shown, the reason for the restriction in size is that image
animations can’t "grow" the image. They are assumed to be fixed so the placeholder must
match the dimensions of the resulting image.

The simple use case is pretty trivial:

Image i = URLImage.createToStorage(placeholder, "fileNameInStorage", "http://xxx/myurl.jpg", URLImage.RESIZE_SCALE);

Alternatively you can use the similar URLImage.createToFileSystem method instead of the Storage
[https://www.codenameone.com/javadoc/com/codename1/io/Storage.html] version.

This image can now be used anywhere a regular image will appear, it will initially show the
placeholder image and then seamlessly replace it with the file after it was downloaded and stored.
Notice that if you make changes to the image itself (e.g. the scaled method) it will generate a new
image which won’t be able to fetch the actual image.

Since ImageIO [https://www.codenameone.com/javadoc/com/codename1/ui/util/ImageIO.html]
is used to perform the operations of the adapter interface its required that ImageIO
will work. It is currently working in JavaSE, Android, iOS & Windows Phone. It
doesn’t work on J2ME/Blackberry devices so if you pass an adapter instance on
those platforms it will probably fail to perform its task.

If the file in the URL contains an image that is too big it will scale it to match the size of the
placeholder precisely!
There is also an option to fail if the sizes don’t match. Notice that the image that will be saved is the
scaled image, this means you will have very little overhead in downloading images that are the
wrong size although you will get some artifacts.

The last argument is really quite powerful, its an interface called URLImage.ImageAdapter
[https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.ImageAdapter.html] and you can
implement it to adapt the downloaded image in any way you like. E.g. you can use an image mask
to automatically create a rounded version of the downloaded image.

To do this you can just override:

public EncodedImage adaptImage(EncodedImage downloadedImage, Image placeholderImage)

In the adapter interface and just return the processed encoded image. If you do heavy processing

405

https://www.codenameone.com/javadoc/com/codename1/io/Storage.html
https://www.codenameone.com/javadoc/com/codename1/ui/util/ImageIO.html
https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.ImageAdapter.html

(e.g. rounded edge images) you would need to convert the processed image back to an encoded
image so it can be saved. You would then also want to indicate that this operation should run
asynchronously via the appropriate method in the class.

If you need to download the file instantly and not wait for the image to appear before download
initiates you can explicitly invoke the fetch() method which will asynchronously fetch the image
from the network. Notice that the downloading will still take time so the placeholder is still
required.

Mask Adapter

A URLImage can be created with a mask adapter to apply an effect to an image. This allows us to
round downloaded images or apply any sort of masking e.g. we can adapt the round mask code
above as such:

Image roundMask = Image.createImage(placeholder.getWidth(), placeholder.getHeight(), 0xff000000);
Graphics gr = roundMask.getGraphics();
gr.setColor(0xffffff);
gr.fillArc(0, 0, placeholder.getWidth(), placeholder.getHeight(), 0, 360);

URLImage.ImageAdapter ada = URLImage.createMaskAdapter(roundMask);
Image i = URLImage.createToStorage(placeholder, "fileNameInStorage", "http://xxx/myurl.jpg", ada);

URLImage In Lists

The biggest problem with image download service is with lists. We decided to attack this issue at
the core by integrating URLImage [https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.html]
support directly into GenericListCellRenderer [https://www.codenameone.com/javadoc/com/codename1/ui/

list/GenericListCellRenderer.html] which means it will work with MultiList [https://www.codenameone.com/

javadoc/com/codename1/ui/list/MultiList.html], List [https://www.codenameone.com/javadoc/java/util/List.html] &
ContainerList [https://www.codenameone.com/javadoc/com/codename1/ui/list/ContainerList.html]. To use this
support just define the name of the component (name not UIID) to end with _URLImage and give it an
icon to use as the placeholder. This is easy to do in the multilist by changing the name of icon to
icon_URLImage then using this in the data:

map.put("icon_URLImage", urlToActualImage);

Make sure you also set a "real" icon to the entry in the GUI builder or in handcoded applications.
This is important since the icon will be implicitly extracted and used as the placeholder value.
Everything else should be handled automatically. You can use setDefaultAdapter & setAdapter on
the generic list cell renderer to install adapters for the images. The default is a scale adapter
although we might change that to scale fill in the future.

406

https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.html
https://www.codenameone.com/javadoc/com/codename1/ui/list/GenericListCellRenderer.html
https://www.codenameone.com/javadoc/com/codename1/ui/list/MultiList.html
https://www.codenameone.com/javadoc/java/util/List.html
https://www.codenameone.com/javadoc/com/codename1/ui/list/ContainerList.html

Style s = UIManager.getInstance().getComponentStyle("Button");
FontImage p = FontImage.createMaterial(FontImage.MATERIAL_PORTRAIT, s);
EncodedImage placeholder = EncodedImage.createFromImage(p.scaled(p.getWidth() * 3, p.getHeight() * 4), false);

Form hi = new Form("MultiList", new BorderLayout());

ArrayList<Map<String, Object>> data = new ArrayList<>();

data.add(createListEntry("A Game of Thrones", "1996", "http://www.georgerrmartin.com/wp-
content/uploads/2013/03/GOTMTI2.jpg"));
data.add(createListEntry("A Clash Of Kings", "1998", "http://www.georgerrmartin.com/wp-
content/uploads/2012/08/clashofkings.jpg"));
data.add(createListEntry("A Storm Of Swords", "2000", "http://www.georgerrmartin.com/wp-
content/uploads/2013/03/stormswordsMTI.jpg"));
data.add(createListEntry("A Feast For Crows", "2005", "http://www.georgerrmartin.com/wp-
content/uploads/2012/08/feastforcrows.jpg"));
data.add(createListEntry("A Dance With Dragons", "2011", "http://georgerrmartin.com/gallery/art/dragons05.jpg"));
data.add(createListEntry("The Winds of Winter", "2016 (please, please, please)", "http://www.georgerrmartin.com/wp-
content/uploads/2013/03/GOTMTI2.jpg"));
data.add(createListEntry("A Dream of Spring", "Ugh", "http://www.georgerrmartin.com/wp-
content/uploads/2013/03/GOTMTI2.jpg"));

DefaultListModel<Map<String, Object>> model = new DefaultListModel<>(data);
MultiList ml = new MultiList(model);
ml.getUnselectedButton().setIconName("icon_URLImage");
ml.getSelectedButton().setIconName("icon_URLImage");
ml.getUnselectedButton().setIcon(placeholder);
ml.getSelectedButton().setIcon(placeholder);
hi.add(BorderLayout.CENTER, ml);

The createListEntry method then looks like this:

private Map<String, Object> createListEntry(String name, String date, String coverURL) {
 Map<String, Object> entry = new HashMap<>();
 entry.put("Line1", name);
 entry.put("Line2", date);
 entry.put("icon_URLImage", coverURL);
 entry.put("icon_URLImageName", name);
 return entry;
}

Figure 355. A URL image fetched dynamically into the list model

407

408

11. Events
Most events in Codename One are routed via the high level events (e.g. action listener) but
sometimes we need access to low level events (e.g. when drawing via Graphics) that provide more
fine grained access. Typically working with the higher level events is far more potable since it
might map to different functionality on different devices.

11.1. High Level Events
High level events are broadcast using an addListener/setListener - publish/subscribe system. Most
of them are channeled via the EventDispatcher [https://www.codenameone.com/javadoc/com/codename1/ui/

util/EventDispatcher.html] class which further simplifies that and makes sending events correctly far
easier.

All events are fired on the Event Dispatch Thread, the EventDispatcher makes sure
of that.

11.1.1. Chain Of Events

Since all events fire on the EDT some complexities occur. E.g.:

We have two listeners monitoring the same event (or related events e.g. pointer event and button
click event both of which will fire when the button is touched).

When the event occurs we can run into a scenario like this:

1. First event fires

2. It shows a blocking dialog or invokes an "AndWait" API

3. Second event fires only after the dialog was dismissed!

This happens because events are processed in-order per cycle. Since the old EDT cycle is stuck
(because of the Dialog) the rest of the events within the cycle can’t complete. New events are in a
new EDT cycle so they can finish just fine!

A workaround to this issue is to wrap the code in a callSerially, you shouldn’t do this universally
as this can create a case of shifting the problem to the next EDT cycle. However, using callSerially
will allow the current cycle to flush which should help.

Another workaround for the issue is avoiding blocking calls within an event chain.

11.1.2. Action Events

The most common high level event is the ActionListener [https://www.codenameone.com/javadoc/com/

codename1/ui/events/ActionListener.html] which allows binding a generic action event to pretty much
anything. This is so ubiquitous in Codename One that it is even used for networking (as a base
class) and for some of the low level event options.

E.g. we can bind an event callback for a Button [https://www.codenameone.com/javadoc/com/codename1/ui/

409

https://www.codenameone.com/javadoc/com/codename1/ui/util/EventDispatcher.html
https://www.codenameone.com/javadoc/com/codename1/ui/events/ActionListener.html
https://www.codenameone.com/javadoc/com/codename1/ui/Button.html

Button.html] by using:

Button b = new Button("Click Me");
b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ev) {
 // button was clicked, you can do anything you want here...
 }
});

Or thanks to the Java 8 lambdas we can write it as:

Button b = new Button("Click Me");
b.addActionListener((ev) ->
 // button was clicked, you can do anything you want here...
});

Notice that the click will work whether the button was touched using a mouse, finger or keypad
shortcut seamlessly with an action listener. Many components work with action events e.g. buttons,
text components, slider etc.

There are quite a few types of high level event types that are more specific to requirements.

Types Of Action Events

When an action event is fired it is given a type, however this type might change as the event
evolves e.g. a command triggered by a pointer event won’t include details of the original pointer
event.

You can get the event type from getEventType() [https://www.codenameone.com/javadoc/com/codename1/ui/

events/ActionEvent.html#getEventType--], this also gives you a rather exhaustive list of the possible event
types for the action event.

Source Of Event

ActionEvent has a source object, what that source is depends heavily on the event type. For most
component based events this is the component but there are some nuances.

The getComponent() method might not get the actual component. In case of a lead component such
as MultiButton [https://www.codenameone.com/javadoc/com/codename1/components/MultiButton.html] the
underlying Button [https://www.codenameone.com/javadoc/com/codename1/ui/Button.html] will be returned
and not the MultiButton itself.

To get the component that you would logically think of as the source component use the
getActualComponent() method.

Event Consumption

An ActionEvent can be consumed, once consumed it will no longer proceed down the chain of event

410

https://www.codenameone.com/javadoc/com/codename1/ui/events/ActionEvent.html#getEventType--
https://www.codenameone.com/javadoc/com/codename1/components/MultiButton.html
https://www.codenameone.com/javadoc/com/codename1/ui/Button.html

processing. This is useful for some cases where we would like to block behavior from proceeding
down the path.

E.g. the event dispatch thread allows us to listen to errors on the EDT using:

Display.getInstance().addEdtErrorHandler((e) -> {
 Exception err = (Exception)e.getSource();
 // ...
});

This will work great but you will still get the default error message from the EDT over that
exception. To prevent the event from proceeding to the default error handling you can just do this:

Display.getInstance().addEdtErrorHandler((e) -> {
 e.consume();
 Exception err = (Exception)e.getSource();
 // ...
});

Notice that you can check if an event was already consumed using the isConsumed() method but it’s
pretty unlikely that you will receive a consumed event as the system will usually stop sending it.

NetworkEvent

NetworkEvent [https://www.codenameone.com/javadoc/com/codename1/io/NetworkEvent.html] is a subclass of
ActionEvent that is passed to actionPerformed callbacks made in relation to generic network code.
E.g.

NetworkManager.getInstance().addErrorListener(new ActionListener<NetworkEvent>() {
 public void actionPerformed(NetworkEvent ev) {
 // now we have access to the methods on NetworkEvent that provide more information about the network specific
flags
 }
});

Or with Java 8 lambdas:

NetworkManager.getInstance().addErrorListener((ev) -> {
 // now we have access to the methods on NetworkEvent that provide more information about the network specific flags
});

The NetworkEvent allows the networking code to reuse the EventDispatcher infrastructure and to
simplify event firing thru the EDT. But you should notice that some code might not be equivalent
e.g. we could do this to read the input stream:

411

https://www.codenameone.com/javadoc/com/codename1/io/NetworkEvent.html

ConnectionRequest r = new ConnectionRequest() {
 @Override
 protected void readResponse(InputStream input) throws IOException {
 // read the input stream
 }
};

or we can do something similar using this code:

ConnectionRequest r = new ConnectionRequest();
r.addResponseListener((e) -> {
 byte[] data = (byte[])e.getMetaData();
 // work with the byte data
});

These seem very similar but they have one important distinction. The latter code is invoked on the
EDT, so if data is big it might slow down processing significantly. The ConnectionRequest is invoked
on the network thread and so can process any amount of data without slowing down the UI
significantly.

11.1.3. DataChangeListener

The DataChangedListener [https://www.codenameone.com/javadoc/com/codename1/ui/events/

DataChangedListener.html] is used in several places to indicate that the underlying model data has
changed:

• TextField [https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html] - the text field
provides an action listener but that only "fires" when the data input is complete.
DataChangeListener fires with every key entered and thus allows functionality such as "auto
complete" and is indeed used internally in the Codename One AutoCompleteTextField.

• TableModel [https://www.codenameone.com/javadoc/com/codename1/ui/table/TableModel.html] &
ListModel [https://www.codenameone.com/javadoc/com/codename1/ui/list/ListModel.html] - the model for
the Table [https://www.codenameone.com/javadoc/com/codename1/ui/table/Table.html] class notifies the
view that its content has changed via this event, thus allowing the UI to refresh properly.

There is a very exhaustive example of search that is implemented using the DataChangedListener in
the Toolbar section [https://www.codenameone.com/manual/components.html#Advanced-search-code].

11.1.4. FocusListener

The focus listener allows us to track the currently "selected" or focused component. It’s not as
useful as it used to be in feature phones.

You can bind a focus listener to the Component itself and receive an event when it gained focus, or
you can bind the listener to the Form and receive events for every focus change event within the
hierarchy.

412

https://www.codenameone.com/javadoc/com/codename1/ui/events/DataChangedListener.html
https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html
https://www.codenameone.com/javadoc/com/codename1/ui/table/TableModel.html
https://www.codenameone.com/javadoc/com/codename1/ui/list/ListModel.html
https://www.codenameone.com/javadoc/com/codename1/ui/table/Table.html
https://www.codenameone.com/manual/components.html#Advanced-search-code

11.1.5. ScrollListener

ScrollListener [https://www.codenameone.com/javadoc/com/codename1/ui/events/ScrollListener.html] allows
tracking scroll events so UI elements can be adapted if necessary.

Normally scrolling is seamless and this event isn’t necessary, however if developers wish to
"shrink" or "fade" an element on scrolling this interface can be used to achieve that. Notice that you
should bind the scroll listener to the actual scrollable component and not to an arbitrary
component.

E.g. in this code from the Flickr demo the Toolbar [https://www.codenameone.com/javadoc/com/codename1/

ui/Toolbar.html] is faded based on scroll position:

public class CustomToolbar extends Toolbar implements ScrollListener {
 private int alpha;

 public CustomToolbar() {
 }

 public void paintComponentBackground(Graphics g) {
 int a = g.getAlpha();
 g.setAlpha(alpha);
 super.paintComponentBackground(g);
 g.setAlpha(a);
 }

 public void scrollChanged(int scrollX, int scrollY, int oldscrollX, int oldscrollY) {
 alpha = scrollY;
 alpha = Math.max(alpha, 0);
 alpha = Math.min(alpha, 255);
 }
}

There is a better way of implementing this exact effect using title animations
illustrated here [https://www.codenameone.com/manual/components.html#title-animations-

section].

11.1.6. SelectionListener

The SelectionListener [https://www.codenameone.com/javadoc/com/codename1/ui/events/SelectionListener.html]
event is mostly used to broadcast list model selection changes to the list view. Since list supports the
ActionListener event callback its usually the better option since it’s more coarse grained.

SelectionListener gets fired too often for events and that might result in a performance penalty.
When running on non-touch devices list selection could be changed with the keypad and only a
specific fire button click would fire the action event, for those cases SelectionListener made a lot of
sense. However, in touch devices this API isn’t as useful.

413

https://www.codenameone.com/javadoc/com/codename1/ui/events/ScrollListener.html
https://www.codenameone.com/javadoc/com/codename1/ui/Toolbar.html
https://www.codenameone.com/manual/components.html#title-animations-section
https://www.codenameone.com/javadoc/com/codename1/ui/events/SelectionListener.html

11.1.7. StyleListener

StyleListener [https://www.codenameone.com/javadoc/com/codename1/ui/events/StyleListener.html] allows
components to track changes to the style objects. E.g. if the developer does something like:

cmp.getUnselectedStyle().setFgColor(0xffffff);

This will trigger a style event that will eventually lead to the component being repainted. This is
quite important for the component class but not a very important event for general user code. It is
recommended that developers don’t bind a style listener.

11.1.8. Event Dispatcher

When creating your own components and objects you sometimes want to broadcast your own
events, for that purpose Codename One has the EventDispatcher [https://www.codenameone.com/

javadoc/com/codename1/ui/util/EventDispatcher.html] class which saves a lot of coding effort in this regard.
E.g. if you wish to provide an ActionListener [https://www.codenameone.com/javadoc/com/codename1/ui/

events/ActionListener.html] event for components you can just add this to your class:

private final EventDispatcher listeners = new EventDispatcher();

public void addActionListener(ActionListener a) {
 listeners.addListener(a);
}
public void removeActionListener(ActionListener a) {
 listeners.removeListener(a);
}

Then when you need to broadcast the event just use:

private void fireEvent(ActionEvent ev) {
 listeners.fireActionEvent(ev);
}

11.2. Low Level Events
Low level events map to "system" events directly. Touch events are considered low level since they
might expose platform specific nuances to your code.

E.g. one platform might send a very large number of events during drag while another might send
only a few. Normally the high level event handling hides those complexities but some of them
trickle down into the low level event handling.

Codename One tries to hide some of the complexities from the low level events as
well. However, due to the nature of the event types it’s a more challenging task.

414

https://www.codenameone.com/javadoc/com/codename1/ui/events/StyleListener.html
https://www.codenameone.com/javadoc/com/codename1/ui/util/EventDispatcher.html
https://www.codenameone.com/javadoc/com/codename1/ui/events/ActionListener.html

Low level events can be bound in one of 3 ways:

• Use one of the add listener methods in Form [https://www.codenameone.com/javadoc/com/codename1/

ui/Form.html] e.g. addPointerPressedListener.

• Override one of the event callbacks on Form

• Override one of the event callbacks on a Component [https://www.codenameone.com/javadoc/com/

codename1/ui/Component.html].

When you override event callbacks on a Component the Component in question must
be focusable and have focus at that point. This can be an advantage for some use
cases as it will save you the need of handling unrelated events.

Each of those has advantages and disadvantages, specifically:

• 'Form' based events and callbacks deliver pointer events in the 'Form' coordinate space.

• 'Component' based events require focus

• 'Form' based events can block existing functionality from proceeding thru the event chain e.g.
you can avoid calling super in a form event and thus block other events from happening (e.g.
block a listener or component event from triggering).

Table 8. Event type map

Listener Override Form Override Component

Coordinate System Form Form Component

Block current
functionality

Yes, just avoid super Partially (event
consume)

No

11.2.1. Low Level Event Types

There are two basic types of low level events: Key and Pointer.

Key events are only relevant to physical keys and will not trigger on virtual
keyboard keys, to track those use a TextField [https://www.codenameone.com/javadoc/

com/codename1/ui/TextField.html] with a DataChangeListener as mentioned above.

The pointer events (touch events) can be intercepted by overriding one or more of these methods in
Component or Form. Notice that unless you want to block functionality you should probably invoke
super when overriding:

415

https://www.codenameone.com/javadoc/com/codename1/ui/Form.html
https://www.codenameone.com/javadoc/com/codename1/ui/Component.html
https://www.codenameone.com/javadoc/com/codename1/ui/TextField.html

public void pointerDragged(int[] x, int[] y)
public void pointerDragged(final int x, final int y)
public void pointerPressed(int[] x, int[] y)
public void pointerPressed(int x, int y)
public void pointerReleased(int[] x, int[] y)
public void pointerReleased(int x, int y)
public void longPointerPress(int x, int y)
public void keyPressed(int keyCode)
public void keyReleased(int keyCode)
public void keyRepeated(int keyCode)

Notice that most pointer events have a version that accepts an array as an argument, this allows for
multi-touch event handling by sending all the currently touched coordinates.

11.2.2. Drag Event Sanitation

Drag events are quite difficult to handle properly across devices. Some devices send a ridiculous
number of events for even the lightest touch while others send too little. It seems like too many
drag events wouldn’t be a problem, however if we drag over a button then it might disable the
buttons action event (since this might be the user trying to scroll).

Drag sensitivity is really about the component being dragged which is why we have the method
getDragRegionStatus that allows us to "hint" to the drag API whether we are interested in drag
events or not and if so in which directional bias.

E.g. if our component is a painting app where we are trying to draw using drag gestures we would
use code such as:

public class MyComponent extends Component {
 protected int getDragRegionStatus(int x, int y) {
 return DRAG_REGION_LIKELY_DRAG_XY;
 }
}

This indicates that we want all drag events on both AXIS to be sent as soon as possible. Notice that
this doesn’t completely disable event sanitation.

11.3. BrowserNavigationCallback
The BrowserNavigationCallback [https://www.codenameone.com/javadoc/com/codename1/ui/events/

BrowserNavigationCallback.html] isn’t quite an "event" but there is no real "proper" classification for it.

The callback method of this interface is invoked off the EDT! You must NEVER
block this method and must not access UI or Codename One sensitive elements in
this method!

The browser navigation callback is invoked directly from the native web component as it navigates

416

https://www.codenameone.com/javadoc/com/codename1/ui/events/BrowserNavigationCallback.html

to a new page. Because of that it is invoked on the native OS thread and gives us a unique
opportunity to handle the navigation ourselves as we see fit. That is why it MUST be invoked on the
native thread, since the native browser is pending on our response to that method, spanning an
invokeAndBlock/callSerially would be to slow and would bog down the browser.

You can use the browser navigation callback to change the UI or even to invoke Java code from
JavaScript code e.g.:

bc.setBrowserNavigationCallback((url) -> {
 if(url.startsWith("http://click")) {
 Display.getInstance().callSerially(() -> bc.execute("fnc('<p>You clicked!</p>')"));
 return false;
 }
 return true;
});

417

418

12. File System, Storage, Network & Parsing

12.1. Jar Resources
Resources that are packaged within the "JAR" don’t really belong in this section of the developer
guide but since they are often confused with Storage/FileSystemStorage this might be the best place
to clarify what they are.

You can place arbitrary files within the src directory of a Codename One project. This file will get
packaged into the final distribution. In standard Java SE you can usually do something like:

InputStream i = getClass().getResourceAsStream("/myFile");

This isn’t guaranteed to work on all platforms and will probably fail on some. Instead you should
use something such as:

InputStream i = Display.getInstance().getResourceAsStream(getClass(), "/myFile");

This isn’t the only limitation though, you can use hierarchies so something like this would fail:

InputStream i = Display.getInstance().getResourceAsStream(getClass(), "/res/myFile");

You can’t use relative paths either so this will fail as well (notice the lack of the first slash):

InputStream i = Display.getInstance().getResourceAsStream(getClass(), "myFile");

The reason for those limitations is portability, on iOS and Android resources behave quite
differently so supporting the full Java SE semantics is unrealistic.

This is even worse in some regards. Because of the way iOS works with resources
some unique file names might fail e.g. if you use the @ character or have a . more
than once (e.g. file.ext.act)

Notice that just like in Java SE, the entries within the "JAR" are read only and can’t be modified. You
can’t gain access to the actual file, only to the stream!

12.2. Storage
Storage [https://www.codenameone.com/javadoc/com/codename1/io/Storage.html] is accessed via the Storage
class. It is a flat filesystem like interface and contains the ability to list/delete and write to named
storage entries.

The Storage API also provides convenient methods to write objects to Storage and read them from

419

https://www.codenameone.com/javadoc/com/codename1/io/Storage.html

Storage specifically readObject & writeObject.

The objects in Storage are usually deleted when an app is uninstalled but are
retained between application updates. A notable exception is Android which, on
some devices, keeps by default objects in Storage after app uninstalling. To force
Android to remove them on app uninstalling, use the build hint
android.allowBackup=false

The sample code below demonstrates listing the content of the storage, adding/viewing and deleting
entries within the storage:

420

Toolbar.setGlobalToolbar(true);
Form hi = new Form("Storage", new BoxLayout(BoxLayout.Y_AXIS));
hi.getToolbar().addCommandToRightBar("+", null, e -> {
 TextField tf = new TextField("", "File Name", 20, TextField.ANY);
 TextArea body = new TextArea(5, 20);
 body.setHint("File Body");
 Command ok = new Command("OK");
 Command cancel = new Command("Cancel");
 Command result = Dialog.show("File Name", BorderLayout.north(tf).add(BorderLayout.CENTER, body), ok, cancel);
 if(ok == result) {
 try(OutputStream os = Storage.getInstance().createOutputStream(tf.getText());) {
 os.write(body.getText().getBytes("UTF-8"));
 createFileEntry(hi, tf.getText());
 hi.getContentPane().animateLayout(250);
 } catch(IOException err) {
 Log.e(err);
 }
 }
});
for(String file : Storage.getInstance().listEntries()) {
 createFileEntry(hi, file);
}
hi.show();

private void createFileEntry(Form hi, String file) {
 Label fileField = new Label(file);
 Button delete = new Button();
 Button view = new Button();
 FontImage.setMaterialIcon(delete, FontImage.MATERIAL_DELETE);
 FontImage.setMaterialIcon(view, FontImage.MATERIAL_OPEN_IN_NEW);
 Container content = BorderLayout.center(fileField);
 int size = Storage.getInstance().entrySize(file);
 content.add(BorderLayout.EAST, BoxLayout.encloseX(new Label(size + "bytes"), delete, view));
 delete.addActionListener(e -> {
 Storage.getInstance().deleteStorageFile(file);
 content.setY(hi.getWidth());
 hi.getContentPane().animateUnlayoutAndWait(150, 255);
 hi.removeComponent(content);
 hi.getContentPane().animateLayout(150);
 });
 view.addActionListener(e -> {
 try(InputStream is = Storage.getInstance().createInputStream(file);) {
 String s = Util.readToString(is, "UTF-8");
 Dialog.show(file, s, "OK", null);
 } catch(IOException err) {
 Log.e(err);
 }
 });
 hi.add(content);
}

421

Figure 356. List of files within the storage

Figure 357. Content of a file added to the storage

12.2.1. The Preferences API

Storage also offers a very simple API in the form of the Preferences [https://www.codenameone.com/

javadoc/com/codename1/io/Preferences.html] class. The Preferences class allows developers to store
simple variables, strings, numbers, booleans etc. in storage without writing any storage code. This is
a common use case within applications e.g. you have a server token that you need to store you can
store it like this:

Preferences.set("token", myToken);

You can then read the token like this:

String token = Preferences.get("token", null);

This gets somewhat confusing with primitive numbers e.g. if you use
Preferences.set("primitiveLongValue", myLongNumber) then invoke
Preferences.get("primitiveLongValue", 0) you might get an exception!
This would happen because the value is physically a Long object but you are trying
to get an Integer. The workaround is to remain consistent and use code like this
Preferences.get("primitiveLongValue", (long)0).

422

https://www.codenameone.com/javadoc/com/codename1/io/Preferences.html

12.3. File System
FileSystemStorage [https://www.codenameone.com/javadoc/com/codename1/io/FileSystemStorage.html]
provides file system access. It maps to the underlying OS’s file system API providing most of the
common operations expected from a file API somewhat in the vain of java.io.File &
java.io.FileInputStream e.g. opening, renaming, deleting etc.

Notice that the file system API is somewhat platform specific in its behavior. All paths used the API
should be absolute otherwise they are not guaranteed to work.

The main reason java.io.File & java.io.FileInputStream weren’t supported directly has a lot to do
with the richness of those two API’s. They effectively allow saving a file anywhere, however mobile
devices are far more restrictive and don’t allow apps to see/modify files that are owned by other
apps.

12.3.1. File Paths & App Home

All paths in FileSystemStorage are absolute, this simplifies the issue of portability significantly since
the concept of relativity and current working directory aren’t very portable.

All URL’s use the / as their path separator we try to enforce this behavior even in Windows.

Directories end with the / character and thus can be easily distinguished by their name.

The FileSystemStorage API provides a getRoots() call to list the root directories of the file system
(you can then "dig in" via the listFiles API). However, this is confusing and unintuitive for
developers.

To simplify the process of creating/reading files we added the getAppHomePath() method. This
method allows us to obtain the path to a directory where files can be stored/read.

We can use this directory to place an image to share as we did in the share sample
[https://www.codenameone.com/manual/components.html#sharebutton-section].

A common Android hack is to write files to the SDCard storage to share them
among apps. Android 4.x disabled the ability to write to arbitrary directories on
the SDCard even when the appropriate permission was requested.

A more advanced usage of the FileSystemStorage API can be a FileSystemStorage Tree:

423

https://www.codenameone.com/javadoc/com/codename1/io/FileSystemStorage.html
https://www.codenameone.com/manual/components.html#sharebutton-section

Form hi = new Form("FileSystemTree", new BorderLayout());
TreeModel tm = new TreeModel() {
 @Override
 public Vector getChildren(Object parent) {
 String[] files;
 if(parent == null) {
 files = FileSystemStorage.getInstance().getRoots();
 return new Vector<Object>(Arrays.asList(files));
 } else {
 try {
 files = FileSystemStorage.getInstance().listFiles((String)parent);
 } catch(IOException err) {
 Log.e(err);
 files = new String[0];
 }
 }
 String p = (String)parent;
 Vector result = new Vector();
 for(String s : files) {
 result.add(p + s);
 }
 return result;
 }

 @Override
 public boolean isLeaf(Object node) {
 return !FileSystemStorage.getInstance().isDirectory((String)node);
 }
};
Tree t = new Tree(tm) {
 @Override
 protected String childToDisplayLabel(Object child) {
 String n = (String)child;
 int pos = n.lastIndexOf("/");
 if(pos < 0) {
 return n;
 }
 return n.substring(pos);
 }
};
hi.add(BorderLayout.CENTER, t);
hi.show();

424

Figure 358. Simple sample of a tree for the FileSystemStorage API

12.3.2. Storage vs. File System

The question of storage vs. file system is often confusing for novice mobile developers. This embeds
two separate questions:

• Why are there 2 API’s where one would have worked?

• Which one should I pick?

The main reasons for the 2 API’s are technical. Many OS’s provide 2 ways of accessing data specific
to the app and this is reflected within the API. E.g. on Android the FileSystemStorage maps to API’s
such as java.io.FileInputStream whereas the Storage maps to Context.openFileInput().

The secondary reason for the two API’s is conceptual. FileSystemStorage is more powerful and in a
sense provides more ways to fail, this is compounded by the complex on-device behavior of the API.
Storage is designed to be friendlier to the uninitiated and more portable.

You should pick Storage unless you have a specific requirement that prevents it. Some API’s such as
Capture expect a FileSystemStorage URI so in those cases this would also be a requirement.

Another case where FileSystemStorage is beneficial is the case of hierarchy or native API usage. If
you need a a directory structure or need to communicate with a native API the FileSystemStorage
approach is usually easier.

In some OS’s the FileSystemStorage API can find the content of the Storage API. As
one is implemented on top of the other. This is undocumented behavior that can
change at any moment!

To summarize the differences between the 3 file storage options:

Table 9. Compare Storage, FileSystem & Jar Resources

Option Storage File System JAR Resource

Main Use Case General application
Data

Low level access Ship data within the
app

Initial State Blank Blank As defined by
developer

425

Option Storage File System JAR Resource

Modifiable Yes Yes No

Supports Hierarchies No Yes No

12.4. SQL
Most new devices contain one version of sqlite or another; sqlite is a very lightweight SQL database
designed for embedding into devices. For portability we recommend avoiding SQL altogether since
it is both fragmented between devices (different sqlite versions) and isn’t supported on all devices.

In general SQL seems overly complex for most embedded device programming tasks.

Portability Of SQLite

SQLite is supported on iOS, Android, RIM, Desktop & JavaScript builds. However, the
JavaScript version of SQL has been deprecated and isn’t supported on all platforms.

You will notice that at this time support is still missing from the Windows builds.

The biggest issue with SQLite portability is in iOS. The SQLite version for most platforms is
threadsafe and as a result very stable. However, the iOS version is not!

This might not seem like a big deal normally, however if you forget to close a connection the
GC might close it for you thus producing a crash. This is such a common occurrence that
Codename One logs a warning when the GC collects a database resource on the simulator.

SQL is pretty powerful and very well suited for common tabular data. The Codename One SQL API
is similar in spirit to JDBC but considerably simpler since many of the abstractions of JDBC designed
for pluggable database architecture make no sense for a local database.

The Database [https://www.codenameone.com/javadoc/com/codename1/db/Database.html] API is a high level
abstraction that allows you to open an arbitrary database file using syntax such as:

Database db = Display.getInstance().openOrCreate(“databaseName”);

Some SQLite apps ship with a "ready made" database. We allow you to replace the DB file by using
the code:

String path = Display.getInstance().getDatabasePath(“databaseName”);

You can then use the FileSystemStorage class to write the content of your DB file into the path.
Notice that it must be a valid SQLite file!

 getDatabasePath() is not supported in the Javascript port. It will always return null.

426

https://www.codenameone.com/javadoc/com/codename1/db/Database.html

This is very useful for applications that need to synchronize with a central server or applications
that ship with a large database as part of their core product.

Working with a database is pretty trivial, the application logic below can send arbitrary queries to
the database and present the results in a Table. You can probably integrate this code into your app
as a debugging tool:

Toolbar.setGlobalToolbar(true);
Style s = UIManager.getInstance().getComponentStyle("TitleCommand");
FontImage icon = FontImage.createMaterial(FontImage.MATERIAL_QUERY_BUILDER, s);
Form hi = new Form("SQL Explorer", new BorderLayout());
hi.getToolbar().addCommandToRightBar("", icon, (e) -> {
 TextArea query = new TextArea(3, 80);
 Command ok = new Command("Execute");
 Command cancel = new Command("Cancel");
 if(Dialog.show("Query", query, ok, cancel) == ok) {
 Database db = null;
 Cursor cur = null;
 try {
 db = Display.getInstance().openOrCreate("MyDB.db");
 if(query.getText().startsWith("select")) {
 cur = db.executeQuery(query.getText());
 int columns = cur.getColumnCount();
 hi.removeAll();
 if(columns > 0) {
 boolean next = cur.next();
 if(next) {
 ArrayList<String[]> data = new ArrayList<>();
 String[] columnNames = new String[columns];
 for(int iter = 0 ; iter < columns ; iter++) {
 columnNames[iter] = cur.getColumnName(iter);
 }
 while(next) {
 Row currentRow = cur.getRow();
 String[] currentRowArray = new String[columns];
 for(int iter = 0 ; iter < columns ; iter++) {
 currentRowArray[iter] = currentRow.getString(iter);
 }
 data.add(currentRowArray);
 next = cur.next();
 }
 Object[][] arr = new Object[data.size()][];
 data.toArray(arr);
 hi.add(BorderLayout.CENTER, new Table(new DefaultTableModel(columnNames, arr)));
 } else {
 hi.add(BorderLayout.CENTER, "Query returned no results");
 }
 } else {
 hi.add(BorderLayout.CENTER, "Query returned no results");
 }
 } else {
 db.execute(query.getText());
 hi.add(BorderLayout.CENTER, "Query completed successfully");
 }
 hi.revalidate();
 } catch(IOException err) {
 Log.e(err);

427

 hi.removeAll();
 hi.add(BorderLayout.CENTER, "Error: " + err);
 hi.revalidate();
 } finally {
 Util.cleanup(db);
 Util.cleanup(cur);
 }
 }
});
hi.show();

Figure 359. Querying the temp demo generated by the SQLDemo application

Figure 360. Issuing a query

12.5. Network Manager & Connection Request
One of the more common problems in Network programming is spawning a new thread to handle
the network operations. In Codename One this is done seamlessly and becomes unessential thanks
to the NetworkManager [http://www.codenameone.com/javadoc/com/codename1/io/NetworkManager.html].

NetworkManager effectively alleviates the need for managing network threads by managing the
complexity of network threading. The connection request class can be used to facilitate web service
requests when coupled with the JSON/XML parsing capabilities.

To open a connection one needs to use a ConnectionRequest [http://www.codenameone.com/javadoc/com/

codename1/io/ConnectionRequest.html] object, which has some similarities to the networking
mechanism in JavaScript but is obviously somewhat more elaborate.

You can send a get request to a URL using something like:

428

http://www.codenameone.com/javadoc/com/codename1/io/NetworkManager.html
http://www.codenameone.com/javadoc/com/codename1/io/ConnectionRequest.html

ConnectionRequest request = new ConnectionRequest(url, false);
request.addResponseListener((e) -> {
 // process the response
});

// request will be handled asynchronously
NetworkManager.getInstance().addToQueue(request);

Notice that you can also implement the same thing and much more by avoiding the response
listener code and instead overriding the methods of the ConnectionRequest class which offers
multiple points to override e.g.

ConnectionRequest request = new ConnectionRequest(url, false) {
 protected void readResponse(InputStream input) {
 // just read from the response input stream
 }

 protected void postResponse() {
 // invoked on the EDT after processing is complete to allow the networking code
 // to update the UI
 }

 protected void buildRequestBody(OutputStream os) {
 // writes post data, by default this “just works” but if you want to write this
 // manually then override this
 }
};
NetworkManager.getInstance().addToQueue(request);

Notice that overriding buildRequestBody(OutputStream) will only work for POST
requests and will replace writing the arguments

You don’t need to close the output/input streams passed to the request methods.
They are implicitly cleaned up.

NetworkManager also supports synchronous requests which work in a similar way to Dialog via the
invokeAndBlock call and thus don’t block the EDT [9] illegally. E.g. you can do something like this:

ConnectionRequest request = new ConnectionRequest(url, false);
// request will be handled synchronously
NetworkManager.getInstance().addToQueueAndWait(request);
byte[] resultOfRequest = request.getData();

Notice that in this case the addToQueueAndWait method returned after the connection completed. Also
notice that this was totally legal to do on the EDT!

429

12.5.1. Threading

By default the NetworkManager launches with a single network thread. This is sufficient for very
simple applications that don’t do too much networking but if you need to fetch many images
concurrently and perform web services in parallel this might be an issue.

Once you increase the thread count there is no guarantee of order for your
requests. Requests might not execute in the order with which you added them to
the queue!

To update the number of threads use:

NetworkManager.getInstance().updateThreadCount(4);

All the callbacks in the ConnectionRequest occur on the network thread and not on the EDT!

There is one exception to this rule which is the postResponse() method designed to update the UI
after the networking code completes.

Never change the UI from a ConnectionRequest callback. You can either use a
listener on the ConnectionRequest, use postResponse() (which is the only exception
to this rule) or wrap your UI code with callSerially.

12.5.2. Arguments, Headers & Methods

HTTP/S is a complex protocol that expects complex encoded data for its requests. Codename One
tries to simplify and abstract most of these complexities behind common sense API’s while still
providing the full low level access you would expect from such an API.

Arguments

HTTP supports several "request methods", most commonly GET & POST but also a few others such as
HEAD, PUT, DELETE etc.

Arguments in HTTP are passed differently between GET and POST methods. That is what the setPost
method in Codename One determines, whether arguments added to the request should be placed
using the GET semantics or the POST semantics.

So if we continue our example from above we can do something like this:

ConnectionRequest request = new ConnectionRequest(url, false);
request.addArgument("MyArgName", value);

This will implicitly add a get argument with the content of value. Notice that we don’t really care
what value is. It’s implicitly HTTP encoded based on the get/post semantics. In this case it will use
the get encoding since we passed false to the constructor.

430

A simpler implementation could do something like this:

ConnectionRequest request = new ConnectionRequest(url +
 "MyArgName=" + Util.encodeUrl(value), false);

This would be almost identical but doesn’t provide the convenience for switching back and forth
between GET/POST and it isn’t as fluent.

We can skip the encoding in complex cases where server code expects illegal HTTP characters (this
happens) using the addArgumentNoEncoding method. We can also add multiple arguments with the
same key using addArgumentArray.

Methods

As we explained above, the setPost() method allows us to manipulate the get/post semantics of a
request. This implicitly changes the POST or GET method submitted to the server.

However, if you wish to have finer grained control over the submission process e.g. for making a
HEAD request you can do this with code like:

ConnectionRequest request = new ConnectionRequest(url, false);
request.setHttpMethod("HEAD");

Headers

When communicating with HTTP servers we often pass data within headers mostly for
authentication/authorization but also to convey various properties.

Some headers are builtin as direct API’s e.g. content type is directly exposed within the API since it’s
a pretty common use case. We can set the content type of a post request using:

ConnectionRequest request = new ConnectionRequest(url, true);
request.setContentType("text/xml");

We can also add any arbitrary header type we want, e.g. a very common use case is basic
authorization where the authorization header includes the Base64 encoded user/password
combination as such:

String authCode = user + ":" + password;
String authHeader = "Basic " + Base64.encode(authCode.getBytes());
request.addRequestHeader("Authorization", authHeader);

This can be quite tedious to do if you want all requests from your app to use this header. For this
use case you can just use:

431

String authCode = user + ":" + password;
String authHeader = "Basic " + Base64.encode(authCode.getBytes());
NetworkManager.getInstance().addDefaultHeader("Authorization", authHeader);

Server Headers

Server returned headers are a bit trickier to read. We need to subclass the connection request and
override the readHeaders method e.g.:

ConnectionRequest request = new ConnectionRequest(url, false) {
 protected void readHeaders(Object connection) throws IOException {
 String[] headerNames = getHeaderFieldNames(connection);
 for(String headerName : headerNames) {
 String headerValue = getHeader(headerName);
 //....
 }
 }
 protected void readResponse(InputStream input) {
 // just read from the response input stream
 }
};
NetworkManager.getInstance().addToQueue(request);

Here we can extract the headers one by one to handle complex headers such as cookies,
authentication etc.

Error Handling

As you noticed above practically all of the methods in the ConectionRequest throw IOException. This
allows you to avoid the try/catch semantics and just let the error propagate up the chain so it can be
handled uniformly by the application.

There are two distinct placed where you can handle a networking error:

• The ConnectionRequest - by overriding callback methods

• The NetworkManager error handler

Notice that the NetworkManager error handler takes precedence thus allowing you to define a global
policy for network error handling by consuming errors.

E.g. if I would like to block all network errors from showing anything to the user I could do
something like this:

NetworkManager.getInstance().addToQueue(request);
NetworkManager.getInstance().addErrorListener((e) -> e.consume());

The error listener is invoked first with the NetworkEvent [https://www.codenameone.com/javadoc/com/

432

https://www.codenameone.com/javadoc/com/codename1/io/NetworkEvent.html

codename1/io/NetworkEvent.html] matching the error. Consuming the event prevents it from
propagating further down the chain into the ConnectionRequest callbacks.

We can also override the error callbacks of the various types in the request e.g. in the case of a
server error code we can do:

ConnectionRequest request = new ConnectionRequest(url, false) {
 protected void handleErrorResponseCode(int code, String message) {
 if(code == 444) {
 // do something
 }
 }
 protected void readResponse(InputStream input) {
 // just read from the response input stream
 }
};
NetworkManager.getInstance().addToQueue(request);

The error callback callback is triggered in the network thread!
As a result it can’t access the UI to show a Dialog or anything like that.

Another approach is to use the setFailSilently(true) method on the ConnectionRequest. This will
prevent the ConnectionRequest from displaying any errors to the user. It’s a very powerful strategy if
you use the synchronous version of the API’s e.g.:

ConnectionRequest request = new ConnectionRequest(url, false);
request.setFailSilently(true);
NetworkManager.getInstance().addToQueueAndWait(request);
if(request.getResponseCode() != 200) {
 // probably an error...
}

This code will only work with the synchronous "AndWait" version of the method
since the response code will take a while to return for the non-wait version.

Error Stream

When we get an error code that isn’t 200/300 we ignore the result. This is problematic as the result
might contain information we need. E.g. many webservices provide further XML/JSON based details
describing the reason for the error code.

Calling setReadResponseForErrors(true) will trigger a mode where even errors will receive the
readResponse callback with the error stream. This also means that API’s like getData and the listener
API’s will also work correctly in case of error.

433

12.5.3. GZIP

Gzip is a very common compression format based on the lz algorithm, it’s used by web servers
around the world to compress data.

Codename One supports GZipInputStream [https://www.codenameone.com/javadoc/com/codename1/io/gzip/

GZIPInputStream.html] and GZipOutputStream [https://www.codenameone.com/javadoc/com/codename1/io/

gzip/GZIPOutputStream.html], which allow you to compress data seamlessly into a stream and extract
compressed data from a stream. This is very useful and can be applied to every arbitrary stream.

Codename One also features a GZConnectionRequest [https://www.codenameone.com/javadoc/com/

codename1/io/gzip/GZConnectionRequest.html], which will automatically unzip an HTTP response if it is
indeed gzipped. Notice that some devices (iOS) always request gzip’ed data and always decompress
it for us, however in the case of iOS it doesn’t remove the gziped header. The GZConnectionRequest is
aware of such behaviors so it’s better to use that when connecting to the network (if applicable).

By default GZConnectionRequest doesn’t request gzipped data (only unzips it when its received) but
its pretty easy to do so just add the HTTP header Accept-Encoding: gzip e.g.:

GZConnectionRequest con = new GZConnectionRequest();
con.addRequestHeader("Accept-Encoding", "gzip");

Do the rest as usual and you should have smaller responses from the servers.

12.5.4. File Upload

MultipartRequest [https://www.codenameone.com/javadoc/com/codename1/io/MultipartRequest.html] tries to
simplify the process of uploading a file from the local device to a remote server.

You can always submit data in the buildRequestBody but this is flaky and has some limitations in
terms of devices/size allowed. HTTP standardized file upload capabilities thru the multipart request
protocol, this is implemented by countless servers and is well documented. Codename One supports
this out of the box:

MultipartRequest request = new MultipartRequest();
request.setUrl(url);
request.addData("myFileName", fullPathToFile, "text/plain")
NetworkManager.getInstance().addToQueue(request);

MultipartRequest is a ConnectionRequest most stuff you expect from there should
work. Even addArgument etc.

Since we assume most developers reading this will be familiar with Java here is the way to
implement the multipart upload in the servlet API:

434

https://www.codenameone.com/javadoc/com/codename1/io/gzip/GZIPInputStream.html
https://www.codenameone.com/javadoc/com/codename1/io/gzip/GZIPOutputStream.html
https://www.codenameone.com/javadoc/com/codename1/io/gzip/GZConnectionRequest.html
https://www.codenameone.com/javadoc/com/codename1/io/MultipartRequest.html

@WebServlet(name = "UploadServlet", urlPatterns = {"/upload"})
@MultipartConfig(fileSizeThreshold = 1024 * 1024 * 100, // 10 MB
 maxFileSize = 1024 * 1024 * 150, // 50 MB
 maxRequestSize = 1024 * 1024 * 200) // 100 MB
public class UploadServlet extends HttpServlet {

 @Override
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 Collection<Part> parts = req.getParts();
 Part data = parts.iterator().next();
 try(InputStream is = data.getInputStream();) {}
 // store or do something with the input stream
 }
 }
}

12.5.5. Parsing

Codename One has several built in parsers for JSON, XML, CSV & Properties formats. You can use
those parsers to read data from the Internet or data that is shipping with your product. E.g. use the
CSV data to setup default values for your application.

All our parsers are designed with simplicity and small distribution size; they don’t validate and will
fail in odd ways when faced with broken data. The main logic behind this is that validation takes up
CPU time on the device where CPU is a precious resource.

Parsing CSV

CSV is probably the easiest to use, the "Comma Separated Values" format is just a list of values
separated by commas (or some other character) with new lines to indicate another row in the table.
These usually map well to an Excel spreadsheet or database table and are supported by default in
all spreadsheets.

To parse a CSV just use the CSVParser [https://www.codenameone.com/javadoc/com/codename1/io/

CSVParser.html] class as such:

435

https://www.codenameone.com/javadoc/com/codename1/io/CSVParser.html

Form hi = new Form("CSV Parsing", new BorderLayout());
CSVParser parser = new CSVParser();
try(Reader r = new CharArrayReader("1997,Ford,E350,\"Super, \"\"luxurious\"\" truck\"".toCharArray());) {
 String[][] data = parser.parse(r);
 String[] columnNames = new String[data[0].length];
 for(int iter= 0 ; iter < columnNames.length ; iter++) {
 columnNames[iter] = "Col " + (iter + 1);
 }
 TableModel tm = new DefaultTableModel(columnNames, data);
 hi.add(BorderLayout.CENTER, new Table(tm));
} catch(IOException err) {
 Log.e(err);
}
hi.show();

Figure 361. CSV parsing results, notice the properly escaped parentheses and comma

The data contains a two dimensional array of the CSV content. You can change the delimiter
character by using the CSVParser constructor that accepts a character.

Notice that we used CharArrayReader from the com.codename1.io package for this
sample. Normally you would want to use java.util.InputStreamReader for real
world data.

JSON

The JSON ("Java Script Object Notation") format is popular on the web for passing values to/from
webservices since it works so well with JavaScript. Parsing JSON is just as easy but has two different
variations. You can use the JSONParser [https://www.codenameone.com/javadoc/com/codename1/io/

JSONParser.html] class to build a tree of the JSON data as such:

JSONParser parser = new JSONParser();
Hashtable response = parser.parse(reader);

The response is a Map containing a nested hierarchy of Collection (java.util.List), Strings and
numbers to represent the content of the submitted JSON. To extract the data from a specific path
just iterate the Map keys and recurs into it.

The sample below uses results from an API of ice and fire [https://anapioficeandfire.com/] that queries
structured data about the "Song Of Ice & Fire" book series. Here is a sample result returned from
the API for the query http://www.anapioficeandfire.com/api/characters?page=5&pageSize=3 :

[
 {
 "url": "http://www.anapioficeandfire.com/api/characters/13",

436

https://www.codenameone.com/javadoc/com/codename1/io/JSONParser.html
https://anapioficeandfire.com/
http://www.anapioficeandfire.com/api/characters?page=5&pageSize=3

 "name": "Chayle",
 "culture": "",
 "born": "",
 "died": "In 299 AC, at Winterfell",
 "titles": [
 "Septon"
],
 "aliases": [],
 "father": "",
 "mother": "",
 "spouse": "",
 "allegiances": [],
 "books": [
 "http://www.anapioficeandfire.com/api/books/1",
 "http://www.anapioficeandfire.com/api/books/2",
 "http://www.anapioficeandfire.com/api/books/3"
],
 "povBooks": [],
 "tvSeries": [],
 "playedBy": []
 },
 {
 "url": "http://www.anapioficeandfire.com/api/characters/14",
 "name": "Gillam",
 "culture": "",
 "born": "",
 "died": "",
 "titles": [
 "Brother"
],
 "aliases": [],
 "father": "",
 "mother": "",
 "spouse": "",
 "allegiances": [],
 "books": [
 "http://www.anapioficeandfire.com/api/books/5"
],
 "povBooks": [],
 "tvSeries": [],
 "playedBy": []
 },
 {
 "url": "http://www.anapioficeandfire.com/api/characters/15",
 "name": "High Septon",
 "culture": "",
 "born": "",
 "died": "",
 "titles": [
 "High Septon",
 "His High Holiness",

437

 "Father of the Faithful",
 "Voice of the Seven on Earth"
],
 "aliases": [
 "The High Sparrow"
],
 "father": "",
 "mother": "",
 "spouse": "",
 "allegiances": [],
 "books": [
 "http://www.anapioficeandfire.com/api/books/5",
 "http://www.anapioficeandfire.com/api/books/8"
],
 "povBooks": [],
 "tvSeries": [
 "Season 5"
],
 "playedBy": [
 "Jonathan Pryce"
]
 }
]

We will place that into a file named "anapioficeandfire.json" in the src directory to make the next
sample simpler:

Form hi = new Form("JSON Parsing", new BoxLayout(BoxLayout.Y_AXIS));
JSONParser json = new JSONParser();
try(Reader r = new InputStreamReader(Display.getInstance().getResourceAsStream(getClass(), "/anapioficeandfire.json"),
"UTF-8");) {
 Map<String, Object> data = json.parseJSON(r);
 java.util.List<Map<String, Object>> content = (java.util.List<Map<String, Object>>)data.get("root"); ①
 for(Map<String, Object> obj : content) { ②
 String url = (String)obj.get("url");
 String name = (String)obj.get("name");
 java.util.List<String> titles = (java.util.List<String>)obj.get("titles"); ③
 if(name == null || name.length() == 0) {
 java.util.List<String> aliases = (java.util.List<String>)obj.get("aliases");
 if(aliases != null && aliases.size() > 0) {
 name = aliases.get(0);
 }
 }
 MultiButton mb = new MultiButton(name);
 if(titles != null && titles.size() > 0) {
 mb.setTextLine2(titles.get(0));
 }
 mb.addActionListener((e) -> Display.getInstance().execute(url));
 hi.add(mb);
 }
} catch(IOException err) {
 Log.e(err);
}
hi.show();

① The JSONParser returns a Map which is great if the root object is a Map but in some cases its a list of

438

elements (as is the case above). In this case a special case "root" element is created to contain the
actual list of elements.

② We rely that the entries are all maps, this might not be the case for every API type.

③ Notice that the "titles" and "aliases" entries are both lists of elements. We use java.util.List to
avoid a clash with com.codename1.ui.List.

Figure 362. Parsed JSON result, clicking the elements opens the URL from the JSON

The structure of the returned map is sometimes unintuitive when looking at the
raw JSON. The easiest thing to do is set a breakpoint on the method and use the
inspect variables capability of your IDE to inspect the returned element hierarchy
while writing the code to extract that data

An alternative approach is to use the static data parse() method of the JSONParser class and
implement a callback parser e.g.:

JSONParser.parse(reader, callback);

Notice that a static version of the method is used! The callback object is an instance of the
JSONParseCallback interface, which includes multiple methods. These methods are invoked by the
parser to indicate internal parser states, this is similar to the way traditional XML SAX event
parsers work.

XML Parsing

The XMLParser [https://www.codenameone.com/javadoc/com/codename1/xml/XMLParser.html] started its life
as an HTML parser built for displaying mobile HTML. That usage has since been deprecated but the
parser can still parse many HTML pages and is very "loose" in terms of verification. This is both
good and bad as the parser will work with invalid data without complaining.

The simplest usage of XMLParser looks a bit like this:

XMLParser parser = new XMLParser();
Element elem = parser.parse(reader);

The Element [https://www.codenameone.com/javadoc/com/codename1/xml/Element.html] contains children
and attributes. It represents a tag within the XML document and even the root document itself. You
can iterate over the XML tree to extract the data from within the XML file.

439

https://www.codenameone.com/javadoc/com/codename1/xml/XMLParser.html
https://www.codenameone.com/javadoc/com/codename1/xml/Element.html

We’ve had a great sample of working with XMLParser in the Tree Section
[https://www.codenameone.com/manual/components.html#tree-section] of this guide.

XMLParser has the complimentary XMLWriter [https://www.codenameone.com/javadoc/com/codename1/xml/

XMLWriter.html] class which can generate XML from the Element hierarchy. This allows a developers
to mutate (modify) the elements and save them to a writer stream.

XPath Processing

The Result [https://www.codenameone.com/javadoc/com/codename1/processing/Result.html] class provides a
subset of XPath [https://www.w3schools.com/xml/xpath_intro.asp], but it is not limited to just XML
documents, it can also work with JSON documents, and even with raw Map objects.

Lets start by demonstrating how to process a response from the Google Reverse Geocoder API
[https://developers.google.com/maps/documentation/geocoding/]. Lets start with this XML snippet:

<?xml version="1.0" encoding="UTF-8"?>
<GeocodeResponse>
 <status>OK</status>
 <result> <!-- (irrelevant content removed) -->
 <address_component>
 <long_name>London</long_name>
 <short_name>London</short_name>
 <type>locality</type>
 <type>political</type>
 </address_component>
 <!-- (irrelevant content removed) -->
 <address_component>
 <long_name>Ontario</long_name>
 <short_name>ON</short_name>
 <type>administrative_area_level_1</type>
 <type>political</type>
 </address_component>
 <address_component>
 <long_name>Canada</long_name>
 <short_name>CA</short_name>
 <type>country</type>
 <type>political</type>
 </address_component>
 </result>
</GeocodeResponse>

We want to extract some of the data above into simpler string results. We can do this using:

Result result = Result.fromContent(input, Result.XML);
String country = result.getAsString("/result/address_component[type='country']/long_name");
String region = result.getAsString("/result/address_component[type='administrative_area_level_1']/long_name");
String city = result.getAsString("/result/address_component[type='locality']/long_name");

440

https://www.codenameone.com/manual/components.html#tree-section
https://www.codenameone.com/javadoc/com/codename1/xml/XMLWriter.html
https://www.codenameone.com/javadoc/com/codename1/processing/Result.html
https://www.w3schools.com/xml/xpath_intro.asp
https://developers.google.com/maps/documentation/geocoding/

If you are at all familiar with processing responses from webservices, you will notice that what
would normally require several lines of code of selecting and testing nodes in regular java can now
be done in a single line using the new path expressions.

In the code above, input can be any of:

• InputStream directly from ConnectionRequest.readResponse(java.io.InputStream).

• XML or JSON document in the form of a {@code String}

• XML DOM Element [https://www.codenameone.com/javadoc/com/codename1/xml/Element.html] returned
from XMLParser [https://www.codenameone.com/javadoc/com/codename1/xml/XMLParser.html]

• JSON DOM Map returned from JSONParser [https://www.codenameone.com/javadoc/com/codename1/io/

JSONParser.html]

To use the expression processor when calling a webservice, you could use something like the
following to parse JSON (notice this is interchangeable between JSON and XML):

Form hi = new Form("Location", new BoxLayout(BoxLayout.Y_AXIS));
hi.add("Pinpointing Location");
Display.getInstance().callSerially(() -> {
 Location l = Display.getInstance().getLocationManager().getCurrentLocationSync();
 ConnectionRequest request = new ConnectionRequest("http://maps.googleapis.com/maps/api/geocode/json", false) {
 private String country;
 private String region;
 private String city;
 private String json;

 @Override
 protected void readResponse(InputStream input) throws IOException {
 Result result = Result.fromContent(input, Result.JSON);
 country = result.getAsString("/results/address_components[types='country']/long_name");
 region =
result.getAsString("/results/address_components[types='administrative_area_level_1']/long_name");
 city = result.getAsString("/results/address_components[types='locality']/long_name");
 json = result.toString();
 }

 @Override
 protected void postResponse() {
 hi.removeAll();
 hi.add(country);
 hi.add(region);
 hi.add(city);
 hi.add(new SpanLabel(json));
 hi.revalidate();
 }
 };
 request.setContentType("application/json");
 request.addRequestHeader("Accept", "application/json");
 request.addArgument("sensor", "true");
 request.addArgument("latlng", l.getLatitude() + "," + l.getLongitude());

 NetworkManager.getInstance().addToQueue(request);
});
hi.show();
[source,java]

The returned JSON looks something like this (notice it’s snipped because the data is too long):

441

https://www.codenameone.com/javadoc/com/codename1/xml/Element.html
https://www.codenameone.com/javadoc/com/codename1/xml/XMLParser.html
https://www.codenameone.com/javadoc/com/codename1/io/JSONParser.html

{
 "status": "OK",
 "results": [
 {
 "place_id": "ChIJJ5T9-iFawokRTPGaOginEO4",
 "formatted_address": "280 Broadway, New York, NY 10007, USA",
 "address_components": [
 {
 "short_name": "280",
 "types": ["street_number"],
 "long_name": "280"
 },
 {
 "short_name": "Broadway",
 "types": ["route"],
 "long_name": "Broadway"
 },
 {
 "short_name": "Lower Manhattan",
 "types": [
 "neighborhood",
 "political"
],
 "long_name": "Lower Manhattan"
 },
 {
 "short_name": "Manhattan",
 "types": [
 "sublocality_level_1",
 "sublocality",
 "political"
],
 "long_name": "Manhattan"
 },
 {
 "short_name": "New York",
 "types": [
 "locality",
 "political"
],
 "long_name": "New York"
 },
 {
 "short_name": "New York County",
 "types": [
 "administrative_area_level_2",
 "political"
],
 "long_name": "New York County"
 },

442

 {
 "short_name": "NY",
 "types": [
 "administrative_area_level_1",
 "political"
],
 "long_name": "New York"
 },
 {
 "short_name": "US",
 "types": [
 "country",
 "political"
],
 "long_name": "United States"
 },
 {
 "short_name": "10007",
 "types": ["postal_code"],
 "long_name": "10007"
 },
 {
 "short_name": "1868",
 "types": ["postal_code_suffix"],
 "long_name": "1868"
 }
],
 "types": ["street_address"],
 "geometry": {
 "viewport": {
 "northeast": {
 "lng": -74.0044642197085,
 "lat": 40.7156470802915
 },
 "southwest": {
 "lng": -74.0071621802915,
 "lat": 40.7129491197085
 }
 },
 "location_type": "ROOFTOP",
 "location": {
 "lng": -74.00581319999999,
 "lat": 40.7142981
 }
 }
 }
 /* SNIPED the rest */
]
}

443

Figure 363. Running the geocode sample above in the simulator

The XML processor currently handles global selections by using a double slash anywhere within the
expression, for example:

// get all address_component names anywhere in the document with a type "political"
String array[] = result.getAsStringArray("//address_component[type='political']/long_name");

// get all types anywhere under the second result (dimension is 0-based)
String array[] = result.getAsStringArray("/result[1]//type");

Notice that Google’s JSON webservice uses plural form for each of the node names
in that API (ie. results, address_components, and types) where they don’t in the
XML services (ie result, address_component etc.)

Second Example

It also possible to do some more complex expressions. We’ll use the following XML fragment for the
next batch of examples:

444

<rankings type="aus" gender="male" date="2011-12-31">
 <player id="1036" coretennisid="6752" rank="1"
 delta="0" singlespoints="485000" doublespoints="675"
 deductedpoints="0" totalpoints="485675">
 <firstname>Bernard</firstname>
 <lastname>Tomic</lastname>
 <town>SOUTHPORT</town>
 <state>QLD</state>
 <dob>1992-10-21</dob>
 </player>
 <player id="2585" coretennisid="1500" rank="2"
 delta="0" singlespoints="313500" doublespoints="12630"
 deductedpoints="0" totalpoints="326130">
 <firstname>Mathew</firstname>
 <lastname>Ebden</lastname>
 <town>CHURCHLANDS</town>
 <state>WA</state>
 <dob>1987-11-26</dob>
 </player>
 <player id="6457" coretennisid="287" rank="3"
 delta="0" singlespoints="132500" doublespoints="1500"
 deductedpoints="0" totalpoints="134000">
 <firstname>Lleyton</firstname>
 <lastname>Hewitt</lastname>
 <town>EXETER</town>
 <state>SA</state>
 <dob>1981-02-24</dob>
 </player>
 <!-- ... etc ... -->
</rankings>

Above, if you want to select the IDs of all players that are ranked in the top 2, you can use an
expression like:

int top2[] = result.getAsIntegerArray("//player[@rank < 3]/@id");

Notice above that the expression is using an attribute for selecting both rank and
id. In JSON documents, if you attempt to select an attribute, it will look for a child
node under the attribute name you ask for)

If a document is ordered, you might want to select nodes by their position, for example:

String first2[] = result.getAsStringArray("//player[position() < 3]/firstname");

String secondLast = result.getAsString("//player[last() - 1]/firstName");

It is also possible to select parent nodes, by using the ‘..’ expression. For example:

445

int id = result.getAsInteger("//lastname[text()='Hewitt']/../@id");

Above, we globally find a lastname element with a value of ‘Hewitt’, then grab the parent node of
lastname which happens to be the player node, then grab the id attribute from the player node.
Alternatively, you could get the same result from the following simpler statement:

int id = result.getAsInteger("//player[lastname='Hewitt']/@id");

It is also possible to nest expressions, for example:

String id=result.getAsInteger("//player[//address[country/isocode='CA']]/@id");

In the above example, if the player node had an address object, we’d be selecting all players from
Canada. This is a simple example of a nested expression, but they can get much more complex,
which will be required as the documents themselves get more complex.
Moving on, to select a node based on the existence of an attribute:

int id[] = result.getAsIntegerArray("//player[@rank]/@id");

Above, we selected the IDs of all ranked players. Conversely, we can select the non-ranked players
like this:

int id[] = result.getAsIntegerArray("//player[@rank=null]/@id");

 Logical not (!) operators currently are not implemented)

You can also select by the existence of a child node

int id[] = result.getAsIntegerArray("//player[middlename]/@id");

Above, we selected all players that have a middle name.
 Keep in mind that the Codename One
path expression language is not a full implementation of XPath 1.0, but does already handle many
of the most useful features of the specification.

Properties Files

Properties [https://www.codenameone.com/javadoc/com/codename1/io/Properties.html] files are standard
key/value pairs encoded into a text file. This file format is very familiar to Java developers and the
Codename One specific version tries to be as close as possible to the original Java implementation.

Notice that properties file both in Java proper and in Codename One don’t support non-ascii
characters. In order to encode unicode values into the properties file format you should use the
native2ascii tool that ships with the JDK.

446

https://www.codenameone.com/javadoc/com/codename1/io/Properties.html

One major difference between standard Java properties and the ones in Codename One is that
Codename One sorts properties alphabetically when saving. Java uses random order based on the
Hashtable natural ordering.

This was done to provide consistency for saved files.

12.6. Debugging Network Connections

Figure 364. Debugging Network Connections

Codename One includes a Network Monitor tool which you can access via the simulator menu
option. This tool reflects all the requests made through the connection requests and displays them
in the left pane. This allows you to track issues in your code/web service and see everything the is
"going through the wire".

This is a remarkably useful tool for optimizing and for figuring out what exactly is happening with
your server connection logic.

12.6.1. Simpler Downloads

A very common task is file download to storage or filesystem.

The Util [https://www.codenameone.com/javadoc/com/codename1/io/Util.html] class has simple utility
methods:

downloadUrlToFileSystemInBackground, downloadUrlToStorageInBackground, downloadUrlToFile &
downloadUrlToStorage.

These all delegate to a feature in ConnectionRequest [https://www.codenameone.com/javadoc/com/

codename1/io/ConnectionRequest.html]:

ConnectionRequest.setDestinationStorage(fileName) &
ConnectionRequest.setDestinationFile(fileName);

Both of which simplify the whole process of downloading a file.

Downloading Images

Codename One has multiple ways to download an image and the general recommendation is the
URLImage [https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.html]. However, the
URLImage assumes that you know the size of the image in advance or that you are willing to resize it.
In that regard it works great for some use cases but not so much for others.

The download methods mentioned above are great alternatives but they are a bit verbose when
working with images and don’t provide fine grained control over the ConnectionRequest e.g. making

447

https://www.codenameone.com/javadoc/com/codename1/io/Util.html
https://www.codenameone.com/javadoc/com/codename1/io/ConnectionRequest.html
https://www.codenameone.com/javadoc/com/codename1/ui/URLImage.html

a POST request to get an image.

Adding global headers is another use case but you can use addDefaultHeader
[https://www.codenameone.com/javadoc/com/codename1/io/NetworkManager.html#

addDefaultHeader-java.lang.String-java.lang.String-] to add those.

To make this process simpler there is a set of helper methods in ConnectionRequest that downloads
images directly [https://www.codenameone.com/javadoc/com/codename1/io/ConnectionRequest.html#

downloadImageToStorage-java.lang.String-com.codename1.util.SuccessCallback-].

These methods complement the Util methods but go a bit further and feature very terse syntax e.g.
you can just download a ConnectionRequest to Storage using code like this:

request.downloadImageToStorage(url, (img) -> theImageIsHereDoSomethingWithIt(img));

This effectively maps the ConnectionRequest directly to a SuccessCallback
[https://www.codenameone.com/javadoc/com/codename1/util/SuccessCallback.html] for further processing.

URLImage Caching

URLImage is great. It changed the way we do some things in Codename One.

However, when we introduced it we didn’t have support for the cache filesystem or for the
JavaScript port. The cache filesystem is probably the best place for images of URLImage so supporting
that as a target is a "no brainer" but JavaScript seems to work so why would it need a special case?

JavaScript already knows how to download and cache images from the web. URLImage is actually a
step back from the things a good browser can do so why not use the native abilities of the browser
when we are running there and fallback to using the cache filesystem if it’s available and as a last
resort go to storage…

That’s exactly what the new method of URLImage does:

public static Image createCachedImage(String imageName, String url, Image placeholder, int resizeRule);

There are a few important things you need to notice about this method:

• It returns Image and not URLImage. This is crucial. Down casting to `URLImage* will work on
the simulator but might fail in some platforms (e.g. JavaScript) so don’t do that!
Since this is implemented natively in JavaScript we need a different abstraction for that
platform.

• It doesn’t support image adapters and instead uses a simplified resize rule. Image adapters
work on URLImage since we have a lot of control in that class. However, in the browser our
control is limited and so an adapter won’t work.

If you do use this approach it would be far more efficient when running in the JavaScript port and
will make better use of caching in most OS’s.

448

https://www.codenameone.com/javadoc/com/codename1/io/NetworkManager.html#addDefaultHeader-java.lang.String-java.lang.String-
https://www.codenameone.com/javadoc/com/codename1/io/ConnectionRequest.html#downloadImageToStorage-java.lang.String-com.codename1.util.SuccessCallback-
https://www.codenameone.com/javadoc/com/codename1/io/ConnectionRequest.html#downloadImageToStorage-java.lang.String-com.codename1.util.SuccessCallback-
https://www.codenameone.com/javadoc/com/codename1/util/SuccessCallback.html

12.7. Rest API
The Rest API makes it easy to invoke a restfull webservice without many of the nuances of
ConnectionRequest. You can use it to define the HTTP method and start building based on that. So if I
want to get a parsed JSON result from a URL you could do:

Map<String, Object> jsonData = Rest.get(myUrl).getAsJsonMap();

For a lot of REST requests this will fail because we need to add an HTTP header indicating that we
accept JSON results. We have a special case support for that:

Map<String, Object> jsonData = Rest.get(myUrl).acceptJson().getAsJsonMap();

We can also do POST requests just as easily:

Map<String, Object> jsonData = Rest.post(myUrl).body(bodyValueAsString).getAsJsonMap();

Notice the usage of post and the body builder method. There are MANY methods in the builder class
that cover pretty much everything you would expect and then some when it comes to the needs of
rest services.

I changed the code in the kitchen sink webservice sample to use this API. I was able to make it
shorter and more readable without sacrificing anything.

12.7.1. Rest in Practice - Twilio

The best way to explain the usage of this API is via a concrete "real world" example. Twilio provides
many great telephony oriented webservices to developers. One of those is an SMS sending
webservice which can be useful for things such as "device activation".

To get started you would need to signup to Twilio [http://twillo.com/] and have the following 3 variable
values:

String accountSID = "----------------";
String authToken = "---------------";
String fromPhone = "your Twilio phone number here";

You can open a trial Twilio account and it just tags all of your SMS’s. Notice you
would need to use a US based number if you don’t want to pay

We can now send hello world as an SMS to the end user. Once this is in place sending an SMS via
REST is just a matter of using the Rest API:

449

http://twillo.com/

Response<Map> result = Rest.post("https://api.twilio.com/2010-04-01/Accounts/" + accountSID + "/Messages.json").
 queryParam("To", destinationPhone).
 queryParam("From", fromPhone).
 queryParam("Body", "Hello World").
 basicAuth(accountSID, authToken)).
 getAsJsonMap();

Notice that this is equivalent of this "curl" command:

curl 'https://api.twilio.com/2010-04-01/Accounts/[accountSID]/Messages.json' -X POST \
--data-urlencode 'To=[destinationPhone]' \
--data-urlencode 'From=[fromPhone]' \
--data-urlencode 'Body=Hello World' \
-u [accountSID]:[AuthToken]

That’s pretty cool as the curl command maps almost directly to the Rest API call!

What we do here is actually pretty trivial, we open a connection the the api messages URL. We add
arguments to the body of the post request and define the basic authentication data.

The result is in JSON form we mostly ignore it since it isn’t that important but it might be useful for
error handling. This is a sample response (redacted keys):

{
 "sid": "[sid value]",
 "date_created": "Sat, 09 Sep 2017 19:47:30 +0000",
 "date_updated": "Sat, 09 Sep 2017 19:47:30 +0000",
 "date_sent": null,
 "account_sid": "[sid value]",
 "to": "[to phone number]",
 "from": "[from phone number]",
 "messaging_service_sid": null,
 "body": "Sent from your Twilio trial account - Hello World",
 "status": "queued",
 "num_segments": "1",
 "num_media": "0",
 "direction": "outbound-api",
 "api_version": "2010-04-01",
 "price": null,
 "price_unit": "USD",
 "error_code": null,
 "error_message": null,
 "uri": "/2010-04-01/Accounts/[sid value]/Messages/SMe802d86b9f2246989c7c66e74b2d84ef.json",
 "subresource_uris": {
 "media": "/2010-04-01/Accounts/[sid value]/Messages/[message value]/Media.json"
 }
}

Notice the error message entry which is null meaning there was no error, if there was an error
we’d have a message there or an error code that isn’t in the 200-210 range.

450

This should display an error message to the user if there was a problem sending the SMS:

if(result.getResponseData() != null) {
 String error = (String)result.getResponseData().get("error_message");
 if(error != null) {
 ToastBar.showErrorMessage(error);
 }
} else {
 ToastBar.showErrorMessage("Error sending SMS: " + result.getResponseCode());
}

12.8. Webservice Wizard
The Webservice Wizard can be invoked directly from the plugin. It generates stubs for the client
side that allow performing simple method invocations on the server. It also generates a servlet that
can be installed on any servlet container to intercept client side calls.

There are limits to the types of values that can be passed via the webservice wizard protocol but it
is highly efficient since it is a binary protocol and very extensible thru object externalization. All
methods are provided both as asynchronous and synchronous calls for the convenience of the
developer.

Figure 365. The first step in creating a client/server connection using the webservice wizard is to create a
web application

Figure 366. Any name will do

Normally you should have a server setup locally. I use Tomcat since it’s really trivial and I don’t
really need much but there are many great Java webservers out there and this should work with all
of them!

451

Figure 367. Setup your webserver in the IDE

Figure 368. Configure the application server to the newly created app, notice the application context value
which we will use later

Figure 369. In the main Codename One project right click and select the WebService Wizard option

Figure 370. Set the package and class name for the webservice abstraction (notice this isn’t your main class
name) and then add the methods you want in the webservice

Figure 371. Add the methods and their arguments/return types. Once you finished adding all of those press
the "Generate" button

452

The types of arguments are pretty limited however you can pass an arbitrary
Externalizable object which can be "anything"

Figure 372. Pick the directory in the server project to which the source files will be generated by default this
is the src/java directory under the project we created in the first step

Figure 373. If you saved to the right location the server project directory should look like this

We can now open the GameOfThronesServiceServer.java file in the server and it looks like this:

public class GameOfThronesServiceServer {
 public static String[] getBookNames() {
 // your code goes here...
 return null;
 }

 public static String[] getBookPovCharacters(String bookName) {
 // your code goes here...
 return null;
 }
}

All we need to do is fill in the code, for this example we’ll only implement the first method for
simplicity:

453

public class GameOfThronesServiceServer {
 public static String[] getBookNames() {
 return new String[] {
 "A Game of Thrones", "A Clash Of Kings", "A Storm Of Swords", "A Feast For Crows",
 "A Dance With Dragons", "The Winds of Winter", "A Dream of Spring"
 };
 }

 public static String[] getBookPovCharacters(String bookName) {
 // your code goes here...
 return null;
 }
}

Now lets open the client side code, in the GameOfThronesService.java file we see this

public class GameOfThronesService {
 private static final String DESTINATION_URL = "http://localhost:8080/cn1proxy";

//...
}

The destination URL needs to point at the actual server which you will recall from the new project
creation should include "HelloWebServiceWizard". So we can fix the URL to:

private static final String DESTINATION_URL = "http://localhost:8080/HelloWebServiceWizard/cn1proxy";

You would naturally need to update the host name of the server for running on a device otherwise
the device would need to reside within your internal network and point to your IP address.

It is now time to write the actual client code that calls this. Every method we defined above is now
defined as a static method within the GameOfThronesService class with two permutations. One is a
synchronous permutation that behaves exactly as expected. It blocks the calling thread while
calling the server and might throw an IOException if something failed.

This type of method (synchronous method) is very easy to work with since it’s completely legal to
call it from the event dispatch thread and it’s very easy to map it to application logic flow.

The second type of method uses the async JavaScript style callbacks and accepts the callback
interface. It returns immediately and doesn’t throw any exception. It will call onSuccess/onError
based on the server result.

You can pick either one of these approaches based on your personal preferences. Here we
demonstrate both uses with the server API:

454

Form hi = new Form("WebService Wizard", new BoxLayout(BoxLayout.Y_AXIS));
Button getNamesSync = new Button("Get Names - Sync");
Button getNamesASync = new Button("Get Names - ASync");
hi.add(getNamesSync).add(getNamesASync);

getNamesSync.addActionListener((e) -> {
 try {
 String[] books = GameOfThronesService.getBookNames();
 hi.add("--- SYNC");
 for(String b : books) {
 hi.add(b);
 }
 hi.revalidate();
 } catch(IOException err) {
 Log.e(err);
 }
});

getNamesASync.addActionListener((e) -> {
 GameOfThronesService.getBookNamesAsync(new Callback<String[]>() {
 @Override
 public void onSucess(String[] value) {
 hi.add("--- ASYNC");
 for(String b : value) {
 hi.add(b);
 }
 hi.revalidate();
 }

 @Override
 public void onError(Object sender, Throwable err, int errorCode, String errorMessage) {
 Log.e(err);
 }
 });
});

Figure 374. The final result of the WebService Wizard code

12.9. Connection Request Caching
Caching server data locally is a huge part of the advantage a native app has over a web app.

455

Normally this is non-trivial as it requires a delicate balance especially if you want to test the server
resource for changes.

HTTP provides two ways to do that the ETag [https://en.wikipedia.org/wiki/HTTP_ETag] and Last-Modified
[https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Last-Modified]. While both are great they are
non-trivial to use and by no definition seamless.

We just added an experimental feature to connection request that allows you to set the caching
mode to one of 4 states either globally or per connection request:

• OFF is the default meaning no caching.

• SMART means all get requests are cached intelligently and caching is "mostly" seamless

• MANUAL means that the developer is responsible for the actual caching but the system will not
do a request on a resource that’s already "fresh"

• OFFLINE will fetch data from the cache and wont try to go to the server. It will generate a 404
error if data isn’t available

You can toggle these in the specific request by using setCacheMode(CachingMode) and set the global
default using setDefaultCacheMode(CachingMode).

 Caching only applies to GET operations, it will not work for POST or other methods

There are several methods of interest to keep an eye for:

protected InputStream getCachedData() throws IOException;
protected void cacheUnmodified() throws IOException;
public void purgeCache();
public static void purgeCacheDirectory() throws IOException;

12.9.1. getCachedData()

This returns the cached data. This is invoked to implement readResponse(InputStream) when
running offline or when we detect that the local cache isn’t stale.

The smart mode implements this properly and will fetch the right data. However, the manual mode
doesn’t store the data and relies on you to do so. In that case you need to return the data you stored
at this point and must implement this method for manual mode.

12.9.2. cacheUnmodified()

This is a callback that’s invoked to indicate a cache hit, meaning that we already have the data.

The default implementation still tries to call all the pieces for compatibility (e.g. readResponse).
However, if this is unnecessary you can override that method with a custom implementation or
even a blank implementation to block such a case.

456

https://en.wikipedia.org/wiki/HTTP_ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Last-Modified

12.9.3. purgeCache & purgeCacheDirectory

These methods are pretty self explanatory. Notice one caveat though…

When you download a file or a storage element we don’t cache them and rely on the file/storage
element to be present and serve as "cache". When purging we won’t delete a file or storage element
you downloaded and thus these might remain.

However, we do remove the ETag and Last-Modified data so the files might get refreshed the next
time around.

12.10. Cached Data Service
The CachedDataService [https://www.codenameone.com/javadoc/com/codename1/io/services/

CachedDataService.html] allows caching data and only updating it if the data changed on the server.
Normally the download API’s won’t check for update if there is a local cache of the data (e.g.
URLImage always uses the local copy). This isn’t a bad thing, it’s pretty efficient.

However, it might be important to update the image if it changed but we still want caching.

The CachedDataService will fetch data if it isn’t cached locally and cache it. When you "refresh" it
will send a special HTTP request that will only send back the data if it has been updated since the
last refresh:

CachedDataService.register();
CachedData d = (CachedData)Storage.getInstance().readObject("LocallyCachedData");

if(d == null) {
 d = new CachedData();
 d.setUrl("http://....");
}
// check if there is a new version of this on the server
CachedDataService.updateData(d, new ActionListener() {
 public void actionPerformed(ActionEvent ev) {
 // invoked when/if the data arrives, we now have a fresh cache
 Storage.getInstance().writeObject("LocallyCachedData", d);
 }
});

12.11. Externalizable Objects
Codename One provides the Externalizable [https://www.codenameone.com/javadoc/com/codename1/io/

Externalizable.html] interface, which is similar to the Java SE Externalizable interface. This interface
allows an object to declare itself as Externalizable for serialization (so an object can be stored in a
file/storage or sent over the network). However, due to the lack of reflection and use of obfuscation
these objects must be registered with the Util [https://www.codenameone.com/javadoc/com/codename1/io/

Util.html] class.

457

https://www.codenameone.com/javadoc/com/codename1/io/services/CachedDataService.html
https://www.codenameone.com/javadoc/com/codename1/io/Externalizable.html
https://www.codenameone.com/javadoc/com/codename1/io/Util.html

Codename One doesn’t support the Java SE Serialization API due to the size issues and complexities
related to obfuscation.

The major objects that are supported by default in the Codename One Externalizable are: String,
Collection, Map, ArrayList, HashMap, Vector, Hashtable, Integer, Double, Float, Byte, Short, Long,
Character, Boolean, Object[], byte[], int[], float[], long[], double[].

Externalizing an object such as h below should work just fine:

Map<String, Object> h = new HashMap<>();
h.put("Hi","World");
h.put("data", new byte[] {(byte)1});
Storage.getInstance().writeObject("Test", h);

However, notice that some things aren’t polymorphic e.g. if we will externalize a String[] we will
get back an Object[] since String arrays aren’t detected by the implementation.

The externalization process caches objects so the app will seem to work and only
fail on restart!

Implementing the Externalizable interface is only important when we want to store a proprietary
object. In this case we must register the object with the com.codename1.io.Util class so the
externalization algorithm will be able to recognize it by name by invoking:

Util.register("MyClass", MyClass.class);

You should do this early on in the app e.g. in the init(Object) but you shouldn’t do
it in a static initializer within the object as that might never be invoked!

An Externalizable object must have a default public constructor and must implement the
following 4 methods:

public int getVersion();
public void externalize(DataOutputStream out) throws IOException;
public void internalize(int version, DataInputStream in) throws IOException;
public String getObjectId();

The getVersion() method returns the current version of the object allowing the stored data to
change its structure in the future (the version is then passed when internalizing the object). The
object id is a String uniquely representing the object; it usually corresponds to the class name (in
the example above the Unique Name should be MyClass).

458

It’s a common mistake to use getClass().getName() to implement getObjectId() and
it would seem to work in the simulator. This isn’t the case though!
Since devices obfuscate the class names this becomes a problem as data is stored
in a random name that changes with every release.

Developers need to write the data of the object in the externalize method using the methods in the
data output stream and read the data of the object in the internalize method e.g.:

public void externalize(DataOutputStream out) throws IOException {
 out.writeUTF(name);
 if(value != null) {
 out.writeBoolean(true);
 out.writeUTF(value);
 } else {
 out.writeBoolean(false);
 }
 if(domain != null) {
 out.writeBoolean(true);
 out.writeUTF(domain);
 } else {
 out.writeBoolean(false);
 }
 out.writeLong(expires);
}

public void internalize(int version, DataInputStream in) throws IOException {
 name = in.readUTF();
 if(in.readBoolean()) {
 value = in.readUTF();
 }
 if(in.readBoolean()) {
 domain = in.readUTF();
 }
 expires = in.readLong();
}

Since strings might be null sometimes we also included convenience methods to implement such
externalization. This effectively writes a boolean before writing the UTF to indicate whether the
string is null:

459

public void externalize(DataOutputStream out) throws IOException {
 Util.writeUTF(name, out);
 Util.writeUTF(value, out);
 Util.writeUTF(domain, out);
 out.writeLong(expires);
}

public void internalize(int version, DataInputStream in) throws IOException {
 name = Util.readUTF(in);
 value = Util.readUTF(in);
 domain = Util.readUTF(in);
 expires = in.readLong();
}

Assuming we added a new date field to the object we can do the following. Notice that a Date is
really a long value in Java that can be null. For completeness the full class is presented below:

460

public class MyClass implements Externalizable {
 private static final int VERSION = 2;
 private String name;
 private String value;
 private String domain;
 private Date date;
 private long expires;

 public MyClass() {}

 public int getVersion() {
 return VERSION;
 }

 public String getObjectId() {
 return "MyClass";
 }

 public void externalize(DataOutputStream out) throws IOException {
 Util.writeUTF(name, out);
 Util.writeUTF(value, out);
 Util.writeUTF(domain, out);
 if(date != null) {
 out.writeBoolean(true);
 out.writeLong(date.getTime());
 } else {
 out.writeBoolean(false);
 }
 out.writeLong(expires);
 }

 public void internalize(int version, DataInputStream in) throws IOException {
 name = Util.readUTF(in);
 value = Util.readUTF(in);
 domain = Util.readUTF(in);
 if(version > 1) {
 boolean hasDate = in.readBoolean();
 if(hasDate) {
 date = new Date(in.readLong());
 }
 }
 expires = in.readLong();
 }
}

Notice that we only need to check for compatibility during the reading process as the writing
process always writes the latest version of the data.

461

12.12. UI Bindings & Utilities
Codename One provides several tools to simplify the path between networking/IO & GUI. A
common task of showing a wait dialog or progress indication while fetching network data can be
simplified by using the InfiniteProgress [https://www.codenameone.com/javadoc/com/codename1/

components/InfiniteProgress.html] class e.g.:

InfiniteProgress ip = new InfiniteProgress();
Dialog dlg = ip.showInifiniteBlocking();
request.setDisposeOnCompletion(dlg);

The process of showing a progress bar for a long IO operation such as downloading is automatically
mapped to the IO stream in Codename One using the SliderBridge [https://www.codenameone.com/

javadoc/com/codename1/components/SliderBridge.html] class.

You can simulate network delays and disconnected network in the Simulator
menu

The SliderBridge class can bind a ConnectionRequest to a Slider and effectively indicate the progress
of the download. E.g.:

Form hi = new Form("Download Progress", new BorderLayout());
Slider progress = new Slider();
Button download = new Button("Download");
download.addActionListener((e) -> {
 ConnectionRequest cr = new ConnectionRequest("https://www.codenameone.com/img/blog/new_icon.png", false);
 SliderBridge.bindProgress(cr, progress);
 NetworkManager.getInstance().addToQueueAndWait(cr);
 if(cr.getResponseCode() == 200) {
 hi.add(BorderLayout.CENTER, new ScaleImageLabel(EncodedImage.create(cr.getResponseData())));
 hi.revalidate();
 }
});
hi.add(BorderLayout.SOUTH, progress).add(BorderLayout.NORTH, download);
hi.show();

Figure 375. SliderBridge progress for downloading the image in the slow network mode

462

https://www.codenameone.com/javadoc/com/codename1/components/InfiniteProgress.html
https://www.codenameone.com/javadoc/com/codename1/components/SliderBridge.html

12.13. Logging & Crash Protection
Codename One includes a Log [https://www.codenameone.com/javadoc/com/codename1/io/Log.html] API that
allows developers to just invoke Log.p(String) or Log.e(Throwable) to log information to storage.

As part of the premium cloud features it is possible to invoke Log.sendLog() in order to email a log
directly to the developer account. Codename One can do that seamlessly based on changes printed
into the log or based on exceptions that are uncaught or logged e.g.:

Log.setReportingLevel(Log.REPORTING_DEBUG);
DefaultCrashReporter.init(true, 2);

This code will send a log every 2 minutes to your email if anything was changed. You can place it
within the init(Object) method of your application.

For a production application you can use Log.REPORTING_PRODUCTION which will only email the log on
exception.

12.14. Sockets
At this moment Codename One only supports TCP sockets. Server socket (listen/accept) is only
available on Android and the simulator but not on iOS.

You can check if Sockets are supported using the Socket.isSupported(). You can test for server
socket support using Socket.isServerSocketSupported().

To use sockets you can use the Socket.connect(String host, int port, SocketConnection
eventCallback) method.

To listen on sockets you can use the Socket.listen(int port, Class scClass) method which will
instantiate a SocketConnection instance (scClass is expected to be a subclass of SocketConnection) for
every incoming connection.

This simple example allows you to create a server and a client assuming the device supports both:

public class MyApplication {
 private Form current;

 public void init(Object context) {
 try {
 Resources theme = Resources.openLayered("/theme");
 UIManager.getInstance().setThemeProps(theme.getTheme(theme.getThemeResourceNames()[0]));
 } catch(IOException e){
 e.printStackTrace();
 }
 }

 public void start() {
 if(current != null){
 current.show();

463

https://www.codenameone.com/javadoc/com/codename1/io/Log.html

 return;
 }
 final Form soc = new Form("Socket Test");
 Button btn = new Button("Create Server");
 Button connect = new Button("Connect");
 final TextField host = new TextField("127.0.0.1");
 btn.addActionListener((evt) -> {
 soc.addComponent(new Label("Listening: " + Socket.getIP()));
 soc.revalidate();
 Socket.listen(5557, SocketListenerCallback.class);
 });
 connect.addActionListener((evt) -> {
 Socket.connect(host.getText(), 5557, new SocketConnection() {
 @Override
 public void connectionError(int errorCode, String message) {
 System.out.println("Error");
 }

 @Override
 public void connectionEstablished(InputStream is, OutputStream os) {
 try {
 int counter = 1;
 while(isConnected()) {
 os.write(("Hi: " + counter).getBytes());
 counter++;
 Thread.sleep(2000);
 }
 } catch(Exception err) {
 err.printStackTrace();
 }
 }
 });
 });
 soc.setLayout(new BoxLayout(BoxLayout.Y_AXIS));
 soc.addComponent(btn);
 soc.addComponent(connect);
 soc.addComponent(host);
 soc.show();
 }

 public static class SocketListenerCallback extends SocketConnection {
 private Label connectionLabel;

 @Override
 public void connectionError(int errorCode, String message) {
 System.out.println("Error");
 }

 private void updateLabel(final String t) {
 Display.getInstance().callSerially(new Runnable() {
 public void run() {
 if(connectionLabel == null) {
 connectionLabel = new Label(t);
 Display.getInstance().getCurrent().addComponent(connectionLabel);
 } else {
 connectionLabel.setText(t);
 }

464

 Display.getInstance().getCurrent().revalidate();
 }
 });
 }

 @Override
 public void connectionEstablished(InputStream is, OutputStream os) {
 try {
 byte[] buffer = new byte[8192];
 while(isConnected()) {
 int pending = is.available();
 if(pending > 0) {
 int size = is.read(buffer, 0, 8192);
 if(size == -1) {
 return;
 }
 if(size > 0) {
 updateLabel(new String(buffer, 0, size));
 }
 } else {
 Thread.sleep(50);
 }
 }
 } catch(Exception err) {
 err.printStackTrace();
 }
 }
 }

 public void stop() {
 current = Display.getInstance().getCurrent();
 }

 public void destroy() {
 }
}

12.15. Properties
In standard Java we usually have a POJO (Plain Old Java Object) which has getters/setters e.g. we
can have a simple Meeting class like this:

465

public class Meeting {
 private Date when;
 private String subject;
 private int attendance;

 public Date getWhen() {
 return when;
 }

 public String getSubject() {
 return subject;
 }

 public int getAttendance() {
 return attendance;
 }

 public void setWhen(Date when) {
 this.when = when;
 }

 public void setSubject(String subject) {
 this.subject = subject;
 }

 public void setAttendance(int attendance) {
 this.attendance = attendance;
 }
}

That’s a classic POJO and it is the force that underlies JavaBeans and quite a few tools in Java.

The properties are effectively the getters/setters e.g. subject, when etc. but properties have several
features that are crucial:

• They can be manipulated in runtime by a tool that had no knowledge of them during compile
time

• They are observable - a tool can monitor changes to a value of a property

• They can have meta-data associated with them

These features are crucial since properties allow us all kinds of magic e.g. hibernate/ORM uses
properties to bind Java objects to a database representation, jaxb does it to parse XML directly into
Java objects and GUI builders use them to let us customize UI’s visually.

POJO’s don’t support most of that so pretty much all Java based tools use a lot of reflection &
bytecode manipulation. This works but has a lot of downsides e.g. say I want to map an object both
to the Database and to XML/JSON.

Would the bytecode manipulation collide?

466

Would it result in duplicate efforts?

And how do I write custom generic code that uses such abilities? Do I need to manipulate the VM?

12.15.1. Properties in Java

These are all very abstract ideas, lets look at how we think properties should look in Java and how
we can benefit from this moving forward.

This is the same class as the one above written with properties:

public class Meeting implements PropertyBusinessObject {
 public final Property<Date,Meeting> when = new Property<>("when");
 public final Property<String,Meeting> subject = new Property<>("subject");
 public final Property<Integer,Meeting> attendance = new Property<>("attendance");
 private final PropertyIndex idx = new PropertyIndex(this, "Meeting", when, subject, attendance);

 @Override
 public PropertyIndex getPropertyIndex() {
 return idx;
 }
}

This looks a bit like a handful so let’s start with usage which might clarify a few things then dig into
the class itself.

When we used a POJO we did this:

Meeting meet = new Meeting();
meet.setSubject("My Subject");
Log.p(meet.getSubject());

With properties we do this:

Meeting meet = new Meeting();
meet.subject.set("My Subject");
Log.p(meet.subject.get());

Encapsulation

At first glance it looks like we just created public fields (which we did) but if you will look closely at
the declaration you will notice the final keyword:

public final Property<String,Meeting> subject = new Property<>("subject");

This means that this code will not compile:

467

meet.subject = otherValue;

So all setting/getting must happen thru the set/get methods and they can be replaced. E.g. this is
valid syntax that prevents setting the property to null and defaults it to an empty string:

public final Property<String,Meeting> subject = new Property<>("subject", "") {
 public Meeting set(String value) {
 if(value == null) {
 return Meeting.this;
 }
 return super.set(value);
 }
};

 We’ll discuss the reason for returning the Meeting instance below

Introspection & Observability

Since Property is a common class it’s pretty easy for introspective code to manipulate properties.
However, it can’t detect properties in an object without reflection.

That’s why we have the index object and the PropertyBusinessObject interface (which defines
getPropertyIndex).

The PropertyIndex class provides meta data for the surrounding class including the list of the
properties within. It allows enumerating the properties and iterating over them making them
accessible to all tools.

Furthermore all properties are observable with the property change listener. I can just write this to
instantly print out any change made to the property:

meet.subject.addChangeListener((p) -> Log.p("New property value is: " + p.get()));

12.15.2. The Cool Stuff

That’s the simple stuff that can be done with properties, but they can do much more!

For starters all the common methods of Object can be implemented with almost no code:

468

public class Meeting implements PropertyBusinessObject {
 public final Property<Date,Meeting> when = new Property<>("when");
 public final Property<String,Meeting> subject = new Property<>("subject");
 public final Property<Integer,Meeting> attendance = new Property<>("attendance");
 private final PropertyIndex idx = new PropertyIndex(this, "Meeting", when, subject, attendance);

 @Override
 public PropertyIndex getPropertyIndex() {
 return idx;
 }

 public String toString() {
 return idx.toString();
 }

 @Override
 public boolean equals(Object obj) {
 return obj.getClass() == getClass() && idx.equals(((TodoTask)obj).getPropertyIndex());
 }

 @Override
 public int hashCode() {
 return idx.hashCode();
 }
}

This is easy thanks to introspection…

We already have some simple code that can convert an object to/from JSON Maps e.g. this can fill
the property values from parsed JSON:

meet.getPropertyIndex().populateFromMap(jsonParsedData);

And visa versa:

String jsonString = meet.toJSON();

We also have a very simple ORM solution that maps values to table columns and can create tables.
It’s no hibernate but sqlite isn’t exactly big iron so it might be good enough.

Constructors

One of the problematic issues with constructors is that any change starts propagating everywhere.
If I have fields in the constructor and I add a new field later I need to keep the old constructor for
compatibility.

So we added a new syntax:

469

Meeting meet = new Meeting().
 subject.set("My Subject").
 when.set(new Date());

That is why every property in the definition needed the Meeting generic and the set method returns
the Meeting instance…

We are pretty conflicted on this feature and are thinking about removing it.

Without this feature the code would look like this:

Meeting meet = new Meeting();
meet.subject.set("My Subject");
meet.when.set(new Date());

Seamless Serialization

Lets assume I have an object called Contacts which includes contact information of contact e.g.:

public class Contact implements PropertyBusinessObject {
 public final IntProperty<Contact> id = new IntProperty<>("id");
 public final Property<String, Contact> name = new Property<>("name");
 public final Property<String, Contact> email = new Property<>("email");
 public final Property<String, Contact> phone = new Property<>("phone");
 public final Property<Date, Contact> dateOfBirth = new Property<>("dateOfBirth", Date.class);
 public final Property<String, Contact> gender = new Property<>("gender");
 public final IntProperty<Contact> rank = new IntProperty<>("rank");
 public final PropertyIndex idx = new PropertyIndex(this, "Contact", id, name, email, phone, dateOfBirth, gender,
rank);

 @Override
 public PropertyIndex getPropertyIndex() {
 return idx;
 }

 public Contact() {
 name.setLabel("Name");
 email.setLabel("E-Mail");
 phone.setLabel("Phone");
 dateOfBirth.setLabel("Date Of Birth");
 gender.setLabel("Gender");
 rank.setLabel("Rank");
 }
}

Standard Java Objects can be serialized in Codename One by implementing the Codename One
Externalizable interface. You also need to register the Externalizable object so the implementation
will be aware of it. Codename One business objects are seamlessly Externalizable and you just need
to register them.

E.g. you can do something like this in your init(Object) method:

470

new Contact().getPropertyIndex().registerExternalizable();

After you do that once you can write/read contacts from storage if you so desire:

Storage.getInstance().writeObject("MyContact", contact);

Contact readContact = (Contact)Storage.getInstance().readObject("MyContact");

This will obviously also work for things like List<Contact> etc…

Seamless SQL Storage

Writing SQL code can be tedious. Which is why SQLMap is such an important API for some of us.
SQLMap allows CRUD (Create, Read, Update, Delete) operations on the builtin SQLite database using
property objects.

If we continue the example from above to show persistence to the SQL database we can just do
something like this:

private Database db;
private SQLMap sm;
public void init(Object context) {
 theme = UIManager.initFirstTheme("/theme");
 Toolbar.setGlobalToolbar(true);
 Log.bindCrashProtection(true);

 try {
 Contact c = new Contact();
 db = Display.getInstance().openOrCreate("propertiesdemo.db"); ①
 sm = SQLMap.create(db); ②
 sm.setPrimaryKeyAutoIncrement(c, c.id); ③
 sm.createTable(c); ④
 } catch(IOException err) {
 Log.e(err);
 }
}

In the above code we do the following:

① Create or open an SQLite database using the standard syntax

② Create a properties binding instance

③ Define the primary key for contact as id and set it to auto increment which will give it a unique
value from the database

④ Call SQL’s createTable if the table doesn’t exist yet!

471

Notice that at this time altering a created table isn’t possible so if you add a new
property you might need to detect that and do an alter call manually

We can then add entries to the contact table using:

sm.insert(myContact);

We can update an entry using:

sm.update(myContact);

And delete an entry using:

sm.delete(myContact);

Listing the entries is more interesting:

List<PropertyBusinessObject> contacts = sm.select(c, c.name, true, 1000, 0);

for(PropertyBusinessObject cc : contacts) {
 Contact currentContact = (Contact)cc;

 // ...
}

The arguments for the select method are:

• The object type

• The attribute by which we want to sort the result (can be null)

• Whether sort is ascending

• Number of elements to fetch

• Page to start with - in this case if we have more than 1000 elements we can fetch the next page
using sm.select(c, c.name, true, 1000, 1)

There are many additional configurations where we can fine tune how a specific property maps to
a column etc.

What’s Still Missing

The SQLMap API is very simplistic and doesn’t try to be Hibernate/JPA for mobile. So basic things
aren’t available at this time and just won’t work. This isn’t necessarily a problem as mobile
databases don’t need to be as powerful as server databases.

472

Relational Mappings/JOIN

Right now we can’t map an object to another object in the database with the typical one-many, one-
one etc. relationships that would could do with JPA. The SQLMap API is really simplistic and isn’t
suited for that level of mapping at this time.

If there is demand for this it’s something we might add moving forward but our goal isn’t to re-
invent hibernate.

Threading

SQLite is sensitive to threading issues especially on iOS. We mostly ignored the issue of threading
and issue all calls in process. This can be a problem for larger data sets as the calls would usually go
on the EDT.

This is something we might want to fix for the generic SQLite API so low level SQL queries will
work with our mapping in a sensible way.

Alter

Right now we don’t support table altering to support updated schemas. This is doable and shouldn’t
be too hard to implement correctly so if there is demand for doing it we’ll probably add support for
this.

Complex SQL/Transactions

We ignored functions, joins, transactions and a lot of other SQL capabilities.

You can use SQL directly to use all of these capabilities e.g. if you begin a transaction before
inserting/updating or deleting this will work as advertised however if a rollback occurs our
mapping will be unaware of that so you will need to re-fetch the data.

You will notice we mapped auto-increment so we will generally try to map things that make sense
for various use cases, if you have such a use case we’d appreciate pull requests and feedback on the
implementation.

Caching/Collision

As mentioned above, we don’t cache anything and there might be a collision if you select the same
object twice you will get two separate instances that might collide if you update both (one will
"win").

That means you need to pay attention to the way you cache objects to avoid a case of a modified
version of an object kept with an older version.

Preferences Binding

Some objects make sense as global objects, we can just use the Preferences API to store that data
directly but then we don’t have the type safety that property objects bring to the table. That’s where
the binding of property objects to preferences makes sense. E.g. say we have a global Settings
property object we can just bind it to preferences using:

473

PreferencesObject.create(settingsInstance).bind();

So if settings has a property called companyName it would bind into Preferences under the
Settings.companyName entry.

We can do some more elaborate bindings such as:

PreferencesObject.create(settingsInstance).
 setPrefix("MySettings-").
 setName(settingsInstance.companyName, "company").
 bind();

This would customize all entry keys to start with MySettings- instead of Settings.. This would also
set the company name entry to company so in this case instead of Settings.companyName we’d have
MySettings-company.

UI Binding

One of the bigger features of properties are their ability to bind UI to a property. E.g. if we continue
the sample above with the Contact class let’s say we have a text field on the form and we want the
property (which we mapped to the database) to have the value of the text field. We could do
something like this:

myNameTextField.setText(myNameTextField.getText());
myNameTextField.addActionListener(e -> myContact.name.set(myNameTextField.getText()));

That would work nicely but what if we changed the property value, that wouldn’t be reflected back
into the text field?

Also that works nicely for text field but what about other types e.g. numbers, check boxes, pickers
etc. this becomes a bit more tedious with those.

Binding makes this all seamless. E.g. the code above can be written as:

UiBinding uib = new UiBinding();
uib.bind(myNameTextField, myContact.name);

The cool thing is that this works with multiple component types and property types almost
magically. Binding works by using an adapter class to convert the data to/from the component. The
adapter itself works with a generic converter e.g. this code:

uib.bind(myRankTextField, myContact.rank);

Seems similar to the one above but it takes a String that is returned by the text field and seamlessly

474

converts it to the integer needed by rank. This also works in the other direction…

We can easily build a UI that would allow us to edit the Contact property in memory:

Container resp = new Container(BoxLayout.y());
UiBinding uib = new UiBinding();

TextField nameTf = new TextField();
uib.bind(c.name, nameTf);
resp.add(c.name.getLabel()). ①
 add(nameTf);

TextField emailTf = new TextField();
emailTf.setConstraint(TextField.EMAILADDR);
uib.bind(c.email, emailTf);
resp.add(c.email.getLabel()).
 add(emailTf);

TextField phoneTf = new TextField();
phoneTf.setConstraint(TextField.PHONENUMBER);
uib.bind(c.phone, phoneTf);
resp.add(c.phone.getLabel()).
 add(phoneTf);

Picker dateOfBirth = new Picker();
dateOfBirth.setType(Display.PICKER_TYPE_DATE); ②
uib.bind(c.dateOfBirth, dateOfBirth);
resp.add(c.dateOfBirth.getLabel()).
 add(dateOfBirth);

ButtonGroup genderGroup = new ButtonGroup();
RadioButton male = RadioButton.createToggle("Male", genderGroup);
RadioButton female = RadioButton.createToggle("Female", genderGroup);
RadioButton undefined = RadioButton.createToggle("Undefined", genderGroup);
uib.bindGroup(c.gender, new String[] {"M", "F", "U"}, male, female, undefined); ③
resp.add(c.gender.getLabel()).
 add(GridLayout.encloseIn(3, male, female, undefined));

TextField rankTf = new TextField();
rankTf.setConstraint(TextField.NUMERIC);
uib.bind(c.rank, rankTf); ④
resp.add(c.rank.getLabel()).
 add(rankTf);

① Notice I use the label of the property which allows better encapsulation

② We can bind picker seamlessly

③ We can bind multiple radio buttons to a single property to allow the user to select the gender,
notice that labels and values can be different e.g. "Male" selection will translate to "M" as the
value

475

④ Numeric bindings "just work"

Figure 376. Properties form for the contact

Binding Object & Auto Commit

We skipped a couple of fact about the bind() method. It has an additional version that accepts a
ComponentAdapter which allows you to adapt the binding to any custom 3rd party component. That’s
a bit advanced for now but I might discuss this later.

However, the big thing I "skipped" was the return value… bind returns a UiBinding.Binding object
when performing the bind. This object allows us to manipulate aspects of the binding specifically
unbind a component and also manipulate auto commit for a specific binding.

Auto commit determines if a property is changed instantly or on commit. This is useful for a case
where we have an "OK" button and want the changes to the UI to update the properties only when
"OK" is pressed (this might not matter if you keep different instances of the object). When auto-
commit is on (the default which you can change via setAutoCommit in the UiBinding) changes reflect
instantly, when it’s off you need to explicitly call commit() or rollback() on the Binding class.

commit() applies the changes in the UI to the properties, rollback() restores the UI to the values
from the properties object (useful for a "reset changes" button).

Binding also includes the ability to "unbind" this is important if you have a global object that’s
bound to a UI that’s discarded. Binding might hold a hard reference to the UI and the property
object might create a memory leak.

By using the disconnect() method in Binding we can separate the UI from the object and allow the
GC to cleanup.

UI Generation

Up until now this was pretty cool but if you looked at the UI construction code above you would see
that it’s pretty full of boilerplate code. The thing about boilerplate is that it shows where
automation can be applied, that’s the exact idea behind the magical "InstantUI" class. This means
that the UI above can be generated using this code:

476

InstantUI iui = new InstantUI();
iui.excludeProperty(myContact.id); ①
iui.setMultiChoiceLabels(myContact.gender, "Male", "Female", "Undefined"); ②
iui.setMultiChoiceValues(myContact.gender, "M", "F", "U");
Container cnt = iui.createEditUI(myContact, true); ③

① The id property is useful for database storage but we want to exclude it from the UI

② This implements the gender toggle button selection, we provide a hint to the UI so labels and
values differ

③ We create the UI from the screenshot above with one line and it’s seamlessly bound to the
properties of myContact. The second argument indicates the "auto commit" status.

This still carries most of the flexibilities of the regular binding e.g. I can still get a binding object
using:

UiBinding.Binding b = iui.getBindings(cnt);

You might not have noticed this but in the previous vebose code we had lines like:

emailTf.setConstraint(TextField.EMAILADDR);

You might be surprised to know that this will still work seamlessly without doing anything, as
would the picker component used to pick a date…

The picker component implicitly works for date type properties, numeric constraints and numbers
are implicitly used for number properties and check boxes are used for booleans.

But how do we know to use an email constraint for the email property?

We have some special case defaults for some common property names, so if your property is
named email it will use an email constraint by default. If it’s named url or password etc. it will do
the "right thing" unless you explicitly state otherwise. You can customize the constraint for a
specific property using something like:

iui.setTextFieldConstraint(contact.email, TextArea.ANY);

This will override the defaults we have in place. The goal of this tool is to have sensible "magical"
defaults that "just work".

[9] Event Dispatch Thread

477

478

13. Push Notifications
This chapter discusses push support in Codename One applications. It covers how to set up push on
the various platforms, how to respond to push notifications in your app, and how to send push
notifications to your app.

Push notifications require a Codename One Pro account or higher. You must
register your app to receive push notification using
Display.getInstance().registerPush();

For a quick reference on setting up Push notifications, check out the Push
Cheatsheet [https://www.codenameone.com/files/push-cheatsheet.pdf].

13.1. Understanding Push Notifications
Push notifications provide a way to inform users that something of interest has taken place. It is
one of the few mechanisms available to interact with the user even when the app isn’t running. If
your app is registered to receive push notifications, then you can send messages to the user’s device
via REST API either from another device, or, as is usually the case, from a web server.

Messages may contain a short title and text body that will be displayed to the user in their device’s
messages stream. They may also specify a badge to display on the app’s icon (e.g. that red circle on
your mail app icon that indicates how many unread messages you have), a sound to play then the
message arrives, an image attachment, and a set of "actions" that the user can perform directly in
the push notification.

In addition to messages that the user sees, a push notification can contain non-visual information
that is silently sent to your app.

13.2. Implementing Push Support
Enabling push support in your application is just a matter of implementing the PushCallback
interface in your application’s main class (i.e. the class that includes your start(), init(), etc…
methods.

479

https://www.codenameone.com/files/push-cheatsheet.pdf
https://www.codenameone.com/files/push-cheatsheet.pdf

public class MyApplication implements PushCallback {

 //

 /**
 * Invoked when the push notification occurs
 *
 * @param value the value of the push notification
 */
 public void push(String value) {
 System.out.println("Received push message: "+value);
 }

 /**
 * Invoked when push registration is complete to pass the device ID to the application.
 *
 * @param deviceId OS native push id you should not use this value and instead use <code>Push.getPushKey()</code>
 * @see Push#getPushKey()
 */
 public void registeredForPush(String deviceId) {
 System.out.println("The Push ID for this device is "+Push.getPushKey());
 }

 /**
 * Invoked to indicate an error occurred during registration for push notification
 * @param error descriptive error string
 * @param errorCode an error code
 */
 public void pushRegistrationError(String error, int errorCode) {
 System.out.println("An error occurred during push registration.");
 }
}

There will be additional steps required to deploy to each platform (e.g. iOS requires you to generate
push certificates, Android needs you to register your app ID with their cloud messaging platform,
etc…), but, fundamentally, this is all that is required to enable push support in your app.

13.3. The Push Lifecycle
Let’s take minute to go over the three callbacks in our application.

13.3.1. Registration

When your application first opens, it needs to register with the platform’s central cloud messaging
infrastructure. On Android this involves a call to their GCM/FCM server; on iOS, the call will be to
the APNS server, on Windows (UWP) the call will be to the WNS server. And so on. That server will
return a unique device ID that can be used to send push notifications to the device. This device ID
will then be passed to your registeredForPush() method as the deviceId parameter so that you can
save it somewhere. Typically you would send this value to your own web service so that you can
use it to send notifications to the device later on. The device ID will generally not change unless you
uninstall and reinstall the app, but you will receive the callback every time the app starts.

480

The deviceId parameter cannot be used directly when sending push messages via
the Codename One push service. It needs to be prefixed with a platform identifier
so the that push server knows which messaging service to route the message
through. You can obtain the complete device ID, including the platform prefix, by
calling Push.getPushKey()

If the registration failed for some reason, the the pushRegistrationError() callback will be fired
instead.

Notice that all of this happens seamlessly behind the scenes when your app loads. You don’t need to
initiate any of this workflow.

13.3.2. Sending a Push Notification

Codename One provides a secure REST API for sending push notifications. As an HTTP API, it is
language agnostic. You can send push notifications to your app using Java, PHP, Python, Ruby, or
even by hand using something like curl. Each HTTP request can contain a push message and a list
of device IDs to which the message should be sent. You don’t need to worry about whether your app
is running on Android, iOS, Windows, or the web. A single HTTP request can send a message to
many devices at once.

13.3.3. Receiving a Push Notification

There are two different scenarios to be aware of when it comes to receiving push notifications. If
your app is running in the foreground when the message arrives, then it will be passed directly to
your push() callback. If your app is either in the background, or not running, then the notification
will be displayed in your device’s notifications. If the user then taps the notification, it will open
your app, and the push() callback will be run with the contents of the message.

Some push message types include hidden content that will not be displayed in your device’s
notifications. These hidden messages (or portions of messages) are passed directly to the push()
callback of your app for processing.

On iOS, hidden push messages (push type 2) will not be delivered when the app is
in the background.

You can set the android.background_push_handling build hint to "true" to deliver
push messages on Android when the app is minimized (running in the
background). There is no equivalent setting on other platforms currently.

13.4. Testing Push Support
The easiest way to test push notifications in your app is to use the push simulation feature of the
Codename One Simulator.

481

Figure 377. The "Push Simulation" menu item in the simulator opens the push simulator tool.

The "Registered Successfully" button will trigger your app’s registeredForPush() method, and the
"Registration Error" button will trigger your app’s pushRegistrationError() method.

The "Send" button will trigger the push() callback with the message body that you place in the "Send
Message" field.

The "Push Type" drop-down allows you to select the "type" of the push message. This dictates how
the message body (i.e. the contents of the "Send Message" field) is interpreted. Some push types
simply pass the message to the device verbatim, while others assume that the message contains
structure that is meant to be parsed by the client to extract such things as badges, sounds, images,
and actions that are associated with the message. We’ll go over the available push types in a
moment, but for now, we’ll keep it simple by just using a push type of "1" - which just sends the
message verbatim.

Figure 378. Sending a basic hello world push from the push simulator

Let’s try a simple "hello world" push message. Select "1" from the "Push Type" drop-down menu,
and enter "Hello World" into the "Send Message" field as shown above. Then press "send".

482

Assuming your push() method looks like:

public void push(String value) {
 System.out.println("Received push message: "+value);
}

You should see the following output in your console:

Received push message: Hello World

This experiment simulated a push notification while the app is running in the foreground. Now let’s
simulate the case where the app is not running, or running in the background. We can simulate this
by pausing the app. Return to the Codename One simulator window, and select "Pause App" from
the "Simulate" menu as shown below.

Figure 379. Pausing the app in the simulator so we can simulate push notifications while app is in the
background.

When the app is paused it will simply display a white screen in the simulator with the text "Paused"
in the middle.

Now return to the push simulator again, and press "Send" again with same values in the other fields
(Push type 1, and Message "Hello World"). Rather than running the push() callback this time, it will
display a popup dialog outside the app, as shown below.

483

Figure 380. Push message causes a popup dialog in the simulator when the app is paused.

While this popup dialog doesn’t replicate what a push notification will look like in a device’s
notifications stream when the app is closed, it does simulate the conceptual workflow. The process
whereby the user is notified of the message outside of the app, and the app is not notified
until/unless the user taps on the notification.

If you monitor the console for your app, you should notice that the push() callback hasn’t been
called yet for this notification, but if you click "OK" in the dialog, your push() callback will be run.
Clicking OK is analogous to the user tapping on the notification. If you simply close the dialog box
(by clicking the "x" in the corner), this would be analogous to the user dismissing the notification. In
this case the push() callback would not be called at all.

13.5. Push Types and Message Structure
The example above sends a simple message to be displayed to the user. Push notifications can
include more data than just an alert message, though. When the selected "push type" is 0 or 1, the
push server will interpret the message body a simple alert string. Selecting a different push type
will affect how the message body is interpreted. The following push types are supported:

• 0, 1 - The default push types, they work everywhere and present the string as the push alert to
the user

• 2 - hidden, non-visual push. This won’t show any visual indicator on any OS!
In Android this will trigger the push(String) call with the message body. In iOS this will only
happen if the application is in the foreground otherwise the push will be lost

• 3 - 1 + 2 = 3 allows combining a visual push with a non-visual portion. Expects a message in the
form: This is what the user won’t see;This is something he will see. E.g. you can bundle a
special ID or even a JSON string in the hidden part while including a friendly message in the
visual part.
When active this will trigger the push(String) method twice, once with the visual and once with
the hidden data.

• 4 - Allows splitting a visual push request based on the format title;body to provide better visual
representation in some OS’s.

• 5 - Sends a regular push message but doesn’t play a sound when the push arrives

• 99 - The message body is expected to be XML, where the root element contains at least type and
body attributes which correspond to one of the other push push types and message body
respectively. This push type supports additional information such as image attachments and
push actions. E.g. <push type="1" body="Hello World"/>

• 100 - Applicable only to iOS and Windows. Allows setting the numeric badge on the icon to the

484

given number. The body of the message must be a number e.g. unread count.

• 101 - identical to 100 with an added message payload separated with a space. E.g. 30 You have 30
unread messages will set the badge to "30" and present the push notification text of "You have 30
unread messages". Supported on Android, iOS, and Windows.

The following sections will show examples of the various kinds of pushes. You can try them out
yourself by opening the push simulator.

13.5.1. Example Push Type 1

Push Type 1; Message Body: "Hello World"

Figure 381. Push type 1 "Hello World" message in simulator.

Figure 382. Push type 1 "Hello World" message in Android when app is in background.

Figure 383. Push type 1 "Hello World" message in iOS when app is in background.

Figure 384. Push type 1 "Hello World" message in Chrome desktop.

In all cases, if the user taps/clicks the notification, it will bring the app to the foreground and call
the push() callback with "Hello World" as the argument.

13.5.2. Example Push Type 2

Push Type 2; Message Body: "Hello World"

Push type 2 is a hidden push so it will behave differently on different platforms. On Android, the
push() callback will be fired even if the app is in the background. On iOS, it will simply be ignored if
the app is in the background.

If the app is in the foreground, this will trigger the push() callback with "Hello World" as the
argument.

485

You can determine the the type of push that has been received in your push()
callback by calling Display.getInstance().getProperty("pushType"). This will return
a String of the push type. E.g. in this case
Display.getInstance().getProperty("pushType") will return "2".

13.5.3. Example Push Type 3

Push Type 3; Message Body Hello World;{"from":"Jim", "content":"Hello World"}

Push type 3 combines an alert message with some hidden content that the user won’t see. In the
example above, the alert message is "Hello World" and the hidden content is a JSON string that will
be passed to our app to be parsed.

If the app is in the background, then the alert message will be posted to the user’s notifications. See
"Example Push Type 1" above as this message will be identical.

Figure 385. Push type 3 shows only the alert message (the portion before the first ";").

This push will result in our push() callback being fired twice; once with the alert message, and once
with the hidden content. When it is fired with the alert message,
Display.getInstance().getProperty("pushType") will report a type of "1". When it is fired with the
JSON hidden content, it will report a push type of "2".

13.5.4. Example Push Type 4

Push Type 4; Message Body "Hello World;I’m just saying hello"

Push type 4 specifies a title and a message body. In this example, alert title will be "Hello World",
and the body will by "I’m just saying hello".

Figure 386. Push type 4 "Hello World" message in simulator.

Figure 387. Push type 4 "Hello World" message in Android when app is in background.

Figure 388. Push type 4 "Hello World" message in iOS when app is in background.

486

Figure 389. Push type 4 "Hello World" message in Firefox desktop.

With this push type, the push() callback will be fired only if the user taps/opens the notification, and
the argument will contain the entire message ("Title;Body").

On some platforms, the argument of the push() callback will only include the
"body" portion of the payload, and in other platforms it will include the full
"Title;Body" payload.

13.5.5. Example Push Type 5

Push Type 5; Message Body "Hello World"

Push type 5 will behave identically to push type 1, except that the notification won’t make any
sound on the device. On some platforms, Display.getInstance().getProperty("pushType") will report
a push type of "1", when it receives a push of type 5.

13.5.6. Example Push Type 100

Push Type 100; Message Body "5"

Push type 100 just expects an integer in the message body. This is interpreted as the badge that
should be set on the app. This is currently only supported on Windows and iOS.

Figure 390. Push type 100 on iOS, setting the badge to "5"

Push type 100 should not trigger the push() callback.

13.5.7. Example Push Type 101

Push Type 101; Message Body "5 Hello World"

Push type 101 combines a badge with an alert message. The badge number should be the first thing
in the payload, followed by a space, and the remainder is the alert message.

On platforms that do not support badges, Push type 101 will behave exactly as push type 1, except
that the badge prefix will be stripped from the message.

487

The push() callback will be called only if the user taps the notification.
Display.getInstance().getProperty("pushType") will return "1" for this type.

Badging on iOS

The badge number can be set thru code as well, this is useful if you want the badge to
represent the unread count within your application.

To do this we have two methods in the Display [https://www.codenameone.com/javadoc/com/

codename1/ui/Display.html] class: isBadgingSupported() and setBadgeNumber(int). Notice that even
if isBadgingSupported will return true, it will not work unless you activate push support!

To truly utilize this you might need to disable the clearing of the badges on startup which you
can do with the build hint ios.enableBadgeClear=false.

13.6. Rich Push Notifications
Rich push notifications refer to push notifications that include functionality above and beyond
simply displaying an alert message to the user. Codename One’s support for rich notifications
includes image attachments and push actions.

13.6.1. Image Attachment Support

When you attach an image to a push notification, it will appear as a large image in the push
notification on the user’s device if that device supports it. iOS supports image attachments in iOS
10, Android supports them in API 26. The Javascript port, and Windows (UWP) port do not
currently support image attachments. If a platform that doesn’t support image attachments
receives a push notification with an image attachment, it will just ignore it.

Push type "99" is used to send rich push notifications. It is sort of a "meta" push type, or a
"container", as it can be used to send any of the other push types, but to attach additional content,
such as image attachments.

The message body should be an XML string. A minimal example of a push type 99 that actually
sends a push type 1, which message "Hello World", but with an attached image is:

<push type="1" body="Hello World"></push>

The image URL must be a secure URL (i.e. start with "https:" and not "http:",
otherwise, iOS will simply ignore it.

488

https://www.codenameone.com/javadoc/com/codename1/ui/Display.html

Figure 391. Push type 99 with attached image in simulator.

Figure 392. Push type 99 with attached image in Android when app is in background.

489

Figure 393. Push type 99 with attached image in iOS when app is in background.

The image will only be shown if you press and pull down on the notification.
When the notification initially appears in the user’s notifications it will appear like
a normal alert - but possibly with the image shown as a small thumbnail.

The push() callback will receive "Hello World" as its argument and
Display.getInstance().getProperty("pushType") will return "1" in this example.

You can access additional information about the push content using the
com.codename1.push.PushContent class, as follows:

public void push(String message) {
 PushContent content = PushContent.get();
 if (content != null) {
 String imageUrl = content.getImageUrl();
 // The image attachment URL in the push notification
 // or `null` if there was no image attachment.
 }
}

Make sure to only call PushContent.get() once inside your push() callback, and
store the return value. PushContent.get() works like a queue of size=1, and it pops
off the item from the front of the queue when it is called. If you call it twice, the
second time will return null.

13.6.2. Notification Actions

When you include actions in a push notification, the user will be presented with buttons as part of
the notification on supported platforms. E.g. if the notification is intended to invite the user to an

490

event, you might want to include buttons/actions like "Attending", "Not Attending", "Maybe", so that
the user can respond quickly to the notification and not necessarily have to open your app.

You can determine whether the user has pressed a particular button on the notification using the
`PushContent.getActionId()` method inside your `push()` callback.

How it works

Your app defines which action categories it supports, and associates a set of actions with each
category. If a push notification includes a "category" attribute, then the notification will be
presented with the associated actions manifested as buttons.

Defining the Categories and Actions

You can specify the available categories and actions for your app by implementing the
com.codename1.push.PushActionsProvider interface in your app’s main class.

E.g.

import com.codename1.push.PushAction;
import com.codename1.push.PushActionCategory;
import com.codename1.push.PushActionsProvider;
...

public class MyApplication implements PushCallback, PushActionsProvider {

 ...

 @Override
 public PushActionCategory[] getPushActionCategories() {
 return new PushActionCategory[]{
 new PushActionCategory("invite", new PushAction[]{
 new PushAction("yes", "Yes"),
 new PushAction("no", "No"),
 new PushAction("maybe", "Maybe")
 })

 };
 }
}

In the above example, we create only a single category, "invite" that has actions "yes", "no", and
"maybe".

Sending a Push Notification with "invite" Category

Now we can test our new category. In the push simulator, you can select Push Type "99", with the
message body:

491

<push type="1" body="Would you like to come to a party?" category="invite"/>

Figure 394. Push notification with "invite" category on the simulator will show dialog with buttons to select
between the actions defined in the "invite" category.

Figure 395. Push notification with "invite" category on the android will show dialog with buttons to select
between the actions defined in the "invite" category.

Figure 396. Push notification with "invite" category on the android will show dialog with buttons to select
between the actions defined in the "invite" category.

Figure 397. Push notification with "invite" category on the Chrome desktop includes a "More" dropdown
where user can select the action.

The push() callback will be fired after the user taps on the notification, or one of its actions. If the

492

user taps the notification itself, and not one of the actions, then your PushContent.getActionId() will
return null. If they selected one of the actions, then the action ID of that action can be obtained
from getActionId().

The category of the notification will be made available via the getCategory() method of
PushContent.

E.g.

public void push(String message) {
 PushContent content = PushContent.get();
 if (content != null) {
 if ("invite".equals(content.getCategory())) {
 if (content.getActionId() != null) {
 System.out.println("The user selected the "+content.getActionid()+" action");
 } else {
 System.out.println("The user clicked on the invite notification, but didn't select an action.");
 }
 }
 }
}

13.7. Deploying Push-Enabled Apps to Device
So, you’ve implemented the Push callback in your app, and tested it in the push simulator and it
works. If you try to deploy your app to a device, you may be disappointed to discover that your app
doesn’t seem to be receiving push notifications when installed on the device. This is because each
platform has its own bureaucracy and hoops that you have to jump through before they will deliver
notifications to your app. Read on to find out how to satisfy their requirements.

13.7.1. The Push Bureaucracy - Android

To set the push icon place a 24x24 icon named ic_stat_notify.png under the
native/android folder of the app. The icon can be white with transparency areas

Android Push goes thru Google servers and to do that we need to register with Google to get keys
for server usage. Google uses Firebase for its cloud messaging, so we’ll begin by creating a Firebase
project.

Go to https://console.firebase.google.com/ and click Add project:

493

https://console.firebase.google.com/

Figure 398. Click "Add project"

This will open a form as shown here:

Figure 399. Enter project name

Enter the project name, select your country, read/accept their terms, and press "Create Project".

Once the project has been created (should take only a few seconds), you’ll be sent to your new
project’s dashboard.

Figure 400. Firebase Project Dashboard

Expand the "Grow" section of the left menu bar, then click on the "Cloud Messaging" link.

494

Figure 401. Expand "Grow" Section and select "Cloud Messaging"

On the next screen, click on the Android icon where is says "Add an app to get started".

Figure 402. Click on the "Android" icon to add an Android App to the project

This will bring us to the "Add Application Form", which visually shows us the remainder of the
steps.

Fill in the Android package name with the package name of your project, and the app nickname
with your app’s name.

The Debug signing certificate SHA-1 is optional, but you can paste the SHA-1 from your app’s
certificate here if you like.

Figure 403. Fill in the package name

Press "Register app" once you have filled in the required fields.

This will expand "Step 2" of this form: "Download config file".

495

Figure 404. Download the google-services.json file

All we need to do here is press the "Download google-services.json" file, then copy the file into your
project’s native/android directory.

Firebase console directs you to copy the google-services.json file into the "app"
directory of your project. Ignore this direction as it only applies for Android studio
projects. For Codename One, this file goes into the native/android directory of your
project.

There is one last piece of information that we need so that we can send push notifications to our
app: The FCM_SERVER_API_KEY value.

Go to your project dashboard in Firebase console. Then click the "Settings" menu (the "Gear" icon
next to "Project Overview" in the upper left):

Figure 405. Select "Project settings"

Then select the "Cloud Messaging" tab.

The "Server Key" displayed here is the FCM_SERVER_API_KEY that we refer to throughout this
document. It will be used to send push notifications to your app from a server, or from another
device. You can copy and paste this value now, or you can retrieve it later by logging into the
Firebase console.

Figure 406. Save the Server key for later use.

The Sender ID shown in the above is not required for our Android app, however it
it is helpful/required to support Push notifications in Javascript builds (in Chrome).
This value is referred to elsewhere in this document as GCM_SENDER_ID.

13.7.2. The Push Bureaucracy - iOS

Push on iOS is much harder to handle than the Android version, however we simplified this

496

significantly with the certificate wizard.

iOS push needs two additional P12 certificates.

Please notice that these are NOT the signing certificates!
They are completely different certificates that have nothing to do with the build
process!

The certificate wizard can generate these additional push certificates and do quite a few other
things if you just check this flag in the end of the wizard:

Figure 407. Enable Push in the certificate wizard

If you already have signing certificated defined for your app just skip the
certificate generation phase (answer no) the rest will work as usual.

You can then install the push certificates locally and use them later on but there is an easier way.

You need to host the push certificates in the cloud so they will be reachable by the push servers,
Codename One that for you seamlessly.
Once you go thru the wizard you should get an automated email containing information about
push and the location of the push certificates, it should start like this:

iOS Push certificates have been created for your app with bundle ID com.mycompany.myapp.mypushdemo. Please file this
email away for safe keeping as you will need the details about the certificate locations and passwords to use Push
successfully in your apps.

Development Push Certificate URL:
https://codename-one-push-
certificates.s3.amazonaws.com/com.mycompany.myapp.mypushdemo_DevelopmentPush_LONG_UNIQUE_KEY.p12

Development Push Certificate Password: ssDfdsfer324

Production Push Certificate URL:
https://codename-one-push-certificates.s3.amazonaws.com/com.mycompany.myapp.mypushdemo_ProductionPush_LONG_UNIQUE_KEY.p12

Production Push Certificate Password: ssDfdsfer324

The URL’s and passwords are everything that you will need later on to get push working on iOS.

497

Notice that the wizard also performs a couple of other tasks specifically it sets the ios.includePush
build hint to true & adds push to the provisioning profile etc.

You can read more about the certificate wizard in the signing section [https://www.codenameone.com/

manual/signing.html].

13.7.3. The Push Bureaucracy - UWP (Windows 10)

Push on UWP requires only that you register your app in the Windows Store Dashboard. You will
then be provided with credentials (Package Security Identifier (SID) and a secret key) that you can
use to send push notifications to your app. To begin this process, go to the Windows Dev Center
[https://developer.microsoft.com/en-us/windows] and select "Dashboard".

You can read more about the registering your app in the Windows store here
[https://www.codenameone.com/manual/appendix-uwp.html#building-for-the-windows-store].

Once you have registered your app in the Windows Store, and completed the corresponding setup
in Codename One settings (e.g. generated a certificate), you should proceed to configure your app
for push notifications.

Navigate to the App overview page for your app inside the Windows store dashboard. Under the
"Services" menu (left side), select "Push notifications".

Figure 408. Push notifications menu item in Windows Store dashboard

Then, select the "WNS/MPNS" option that appears in the left menu under "Push notifications"

Figure 409. WNS menu item in Windows Store dashboard

This will bring you to a page with information about WNS push notifications. You’ll be interested in
the paragraph shown here:

Figure 410. Live services link

Click on the "Live Services Site" link.

You’ll be prompted to log in using your Windows Store account. Then you’ll be taken to a page that
contains the push credentials that you can use for sending push messages to your app. You’ll be
interested in two values:

Package SID. (It will be of the form "ms-app://XXXXXXXXXXX…")

498

https://www.codenameone.com/manual/signing.html
https://developer.microsoft.com/en-us/windows
https://www.codenameone.com/manual/appendix-uwp.html#building-for-the-windows-store

Figure 411. WNS Package SID

Client Secret. This will be listed in a section called "Application Secrets"

Figure 412. WNS Client secret

You will use these two values for sending push notifications to your app.

Microsoft provides full instructions on setting up WNS notifications here [https://msdn.microsoft.com/

library/windows/apps/hh465407] but much of this is not relevant for Codename One apps. For
Codename One apps, one need only obtain Package Security ID and client secret values for the app.

13.7.4. The Push Bureaucracy - Javascript

Codename One apps support push in browsers that implement the Web Push API. At time of
writing, this list includes:

• Firefox (Version 50)

• Chrome (Version 49)

• Opera (Version 42)

• Chrome for Android (Version 56)

• MS Edge

Firefox doesn’t require any special setup for Push. If your main class implements the PushCallback
interface, it should just work.

Chrome uses FCM for its push notifications - the same system that Android uses. The directions for
setting up a FCM account are the same as provided here, and you can reuse the same GCM_SENDER_ID
and FCM_API_SERVER_KEY values. For Chrome push support you will need to add the GCM_SENDER_ID in
the gcm.sender_id build hint so that the GCM_SENDER_ID will be added to the app’s manifest file:

gcm.sender_id=GCM_SENDER_ID

Where GCM_SENDER_ID is your GCM_SENDER_ID.

Push support requires that your app be served over https with a valid SSL
certificate. It will not work with the "preview" version of your app. You’ll need to
download the .zip or .war file and host the file on your own site - with a valid SSL
certificate.

499

https://msdn.microsoft.com/library/windows/apps/hh465407

13.8. Sending Push Messages
You can send a push message in many ways e.g. from another device or any type of server but there
are some values that you will need regardless of the way in which you send the push message.

private static final String PUSH_TOKEN = "********-****-****-****-*************";

The push token is a unique "key" that you can use to send push thru your Codename One account. It
allows you to send push messages without placing your Codename One email or password into
your source files.

You can get it by going to the Codename One build server dashboard at
https://www.codenameone.com/build-server.html and selecting the Account tab.

The token should appear at the bottom as such:

Figure 413. Push Token from the build server

The instructions for extracting the API key for Google are listed above.

private static final String FCM_SERVER_API_KEY = "******************-********************";

The instructions for extracting the SID and Client Secret for Windows are listed above.

private static final String WNS_SID = "ms-app://**************************************";
private static final String WNS_CLIENT_SECRET = "*************************";

When sending push to iOS devices we have two modes: - Production - Distribution

This allows you to debug the push related functionality without risking the possibility of sending a
push into a production app. Its important to send the values to the right server during
development/production.

private static final boolean ITUNES_PRODUCTION_PUSH = false;

iOS needs a certificate in order to send a push, this allows you to prove to Apples push servers that
you are who you claim to be (the author of the app).

500

https://www.codenameone.com/build-server.html

 These are not the signing certificates and are completely separate from them!

You can obtain these two certificates (for development/appstore) via the certificate wizard as
explained above.

private static final String ITUNES_PRODUCTION_PUSH_CERT = "https://domain.com/linkToP12Prod.p12";
private static final String ITUNES_PRODUCTION_PUSH_CERT_PASSWORD = "ProdPassword";
private static final String ITUNES_DEVELOPMENT_PUSH_CERT = "https://domain.com/linkToP12Dev.p12";
private static final String ITUNES_DEVELOPMENT_PUSH_CERT_PASSWORD = "DevPassword";

13.8.1. Sending a Push Message From Codename One

While normally sending a push message to a device should involve a server code there might be
cases (e.g. instant messaging/social) where initiating a push from one client to another makes sense.

To simplify these use cases we added the Push [https://www.codenameone.com/javadoc/com/codename1/

push/Push.html] API. To use the Push API you need the device key of the destination device to which
you want to send the message. You can get that value from the Push.getPushKey() method. Notice
that you need that value from the destination device and not the local device!

To send a message to another device just use:

String cert = ITUNES_DEVELOPMENT_PUSH_CERT;
String pass = ITUNES_DEVELOPMENT_PUSH_CERT_PASSWORD;
if(ITUNES_PRODUCTION_PUSH) {
 cert = ITUNES_PRODUCTION_PUSH_CERT;
 pass = ITUNES_PRODUCTION_PUSH_CERT_PASSWORD;
}
new Push(PUSH_TOKEN, "Hello World", deviceKey)
 .apnsAuth(cert, pass, ITUNES_PRODUCTION_PUSH)
 .gcmAuth(FCM_SERVER_API_KEY)
 .wnsAuth(WNS_SID, WNS_CLIENT_SECRET)
 .send();

The "builder" style API used in the above sample was added post Codename One 3.6 to facilitate the
addition of new Push services. If you are building against Codename one 3.6 or earlier, you should
use the static Push.sendPushMessage() instead as shown below:

Push.sendPushMessage(PUSH_TOKEN, "Hello World",
 ITUNES_PRODUCTION_PUSH, FCM_SERVER_API_KEY, cert, pass, 1, deviceKey));

This will send the push message "Hello World" to the device with the key deviceKey. The 1 argument
represents the standard push message type, which we discussed previously.

501

https://www.codenameone.com/javadoc/com/codename1/push/Push.html

13.8.2. Sending Push Message From A Java or Generic Server

Sending a push message from the server is a more elaborate affair and might require sending push
messages to many devices in a single batch.

We can send a push message as an HTTP POST request to https://push.codenameone.com/push/push
[https://push.codenameone.com/push/push]. That URL accepts the following arguments:

• token - your developer token to identify the account sending the push - PUSH_TOKEN

• device - one or more device keys to send the push to. You can send push to up to 500 devices
with a single request -

• type - the message type identical to the old set of supported types in the old push servers

• body - the body of the message

• auth - the Google push auth key - FCM_SERVER_API_KEY (also used for sending to Chrome
Javascript Apps)

• production - true/false whether to push to production or sandbox environment in iOS -
ITUNES_PRODUCTION_PUSH

• certPassword - password for the push certificate in iOS push -
ITUNES_DEVELOPMENT_PUSH_CERT_PASSWORD or ITUNES_PRODUCTION_PUSH_CERT_PASSWORD

• cert - http or https URL containing the push certificate for an iOS push -
ITUNES_DEVELOPMENT_PUSH_CERT or ITUNES_PRODUCTION_PUSH_CERT

• sid - The package security ID (SID) for UWP apps.

• client_secret - The client secret for UWP apps.

We can thus send a push from Java EE using code like this:

502

https://push.codenameone.com/push/push

HttpURLConnection connection = (HttpURLConnection)new URL("https://push.codenameone.com/push/push").openConnection();
connection.setDoOutput(true);
connection.setRequestMethod("POST");
connection.setRequestProperty("Content-Type", "application/x-www-form-urlencoded;charset=UTF-8");
String cert = ITUNES_DEVELOPMENT_PUSH_CERT;
String pass = ITUNES_DEVELOPMENT_PUSH_CERT_PASSWORD;
if(ITUNES_PRODUCTION_PUSH) {
 cert = ITUNES_PRODUCTION_PUSH_CERT;
 pass = ITUNES_PRODUCTION_PUSH_CERT_PASSWORD;
}
String query = "token=" + PUSH_TOKEN +
 "&device=" + URLEncoder.encode(deviceId1, "UTF-8") +
 "&device=" + URLEncoder.encode(deviceId2, "UTF-8") +
 "&device=" + URLEncoder.encode(deviceId3, "UTF-8") +
 "&type=1" +
 "&auth=" + URLEncoder.encode(FCM_SERVER_API_KEY, "UTF-8") +
 "&certPassword=" + URLEncoder.encode(pass, "UTF-8") +
 "&cert=" + URLEncoder.encode(cert, "UTF-8") +
 "&body=" + URLEncoder.encode(MESSAGE_BODY, "UTF-8") +
 "&production=" + ITUNES_PRODUCTION_PUSH +
 "&sid=" + URLEncoder.encode(WNS_SID, "UTF-8") +
 "&client_secret=" + URLEncoder.encode(WNS_CLIENT_SECRET, "UTF-8");
try (OutputStream output = connection.getOutputStream()) {
 output.write(query.getBytes("UTF-8"));
}
int c = connection.getResponseCode();
// read response JSON

Notice that you can send a push to 500 devices. To send in larger batches you need to split the push
requests into 500 device batches.

Server JSON Responses

The push servers send responses in JSON form. It’s crucial to parse and manage those as they might
contain important information.

If there is an error that isn’t fatal such as quota exceeded etc. you will get an error message like
this:

{"error":"Error message"}

A normal response, will be an array with results:

[
 {"id"="deviceId","status"="error","message"="Invalid Device ID"},
 {"id"="cn1-gcm-nativegcmkey","status"="updateId", "newId"="cn1-gcm-newgcmkey"},
 {"id"="cn1-gcm-okgcmkey","status"="OK"},
 {"id"="cn1-gcm-errorkey","status"="error","message"="Server error message"},
 {"id"="cn1-ios-iphonekey","status"="inactive"},
]

There are several things to notice in the responses above:

503

• If the response contains status=updateId it means that the GCM server wants you to update the
device id to a new device id. You should do that in the database and avoid sending pushes to the
old key

• iOS doesn’t acknowledge device receipt but it does send a status=inactive result which you
should use to remove the device from the list of devices

APNS (Apple’s push service) returns uppercase key results. This means that code
for managing the keys in your database must be case insensitive

Apple doesn’t always send back a result for a device being inactive and might fail
silently

504

14. Miscellaneous Features

14.1. Phone Functions
Most of the low level phone functionality is accessible in the Display [https://www.codenameone.com/

javadoc/com/codename1/ui/Display.html] class. Think of it as a global central class covering your access to
the "system".

14.1.1. SMS

Codename One supports sending SMS messages but not receiving them as this functionality isn’t
portable. You can send an SMS using:

Display.getInstance().setSMS("+999999999", "My SMS Message");

Android/Blackberry support sending SMS’s in the background without showing the user anything.
iOS & Windows Phone just don’t have that ability, the best they can offer is to launch the native SMS
app with your message already in that app. Android supports that capability as well (launching the
OS native SMS app).

The default sendSMS API ignores that difference and simply works interactively on iOS/Windows
Phone while sending in the background for the other platforms.

The getSMSSupport API returns one of the following options:

• SMS_NOT_SUPPORTED - for desktop, tablet etc.

• SMS_SEAMLESS - sendSMS will not show a UI and will just send in the background

• SMS_INTERACTIVE - sendSMS will show an SMS sending UI

• SMS_BOTH - sendSMS can support both seamless and interactive mode, this currently only works
on Android

The sendSMS can accept an interactive argument: sendSMS(String phoneNumber, String message,
boolean interactive)

The last argument will be ignored unless SMS_BOTH is returned from getSMSSupport at which point
you would be able to choose one way or the other. The default behavior (when not using that flag)
is the background sending which is the current behavior on Android.

A typical use of this API would be something like this:

505

https://www.codenameone.com/javadoc/com/codename1/ui/Display.html

switch(Display.getInstance().getSMSSupport()) {
 case Display.SMS_NOT_SUPPORTED:
 return;
 case Display.SMS_SEAMLESS:
 showUIDialogToEditMessageData();
 Display.getInstance().sendSMS(phone, data);
 return;
 default:
 Display.getInstance().sendSMS(phone, data);
 return;
}

14.1.2. Dialing

Dialog the phone is pretty trivial, this should open the dialer UI without physically dialing the
phone as that is discouraged by device vendors.

You can dial the phone by using:

Display.getInstance().dial("+999999999");

14.1.3. E-Mail

You can send an email via the platforms native email client with code such as this:

Message m = new Message("Body of message");
Display.getInstance().sendMessage(new String[] {"someone@gmail.com"}, "Subject of message", m);

You can add one attachment by using setAttachment and setAttachmentMimeType.

 You need to use files from FileSystemStorage and NOT Storage files!

You can add more than one attachment by putting them directly into the attachment map e.g.:

Message m = new Message("Body of message");
m.getAttachments().put(textAttachmentUri, "text/plain");
m.getAttachments().put(imageAttachmentUri, "image/png");
Display.getInstance().sendMessage(new String[] {"someone@gmail.com"}, "Subject of message", m);

Some features such as attachments etc. don’t work correctly in the simulator but
should work on iOS/Android

The email messaging API has an additional ability within the Message [https://www.codenameone.com/

javadoc/com/codename1/messaging/Message.html] class. The sendMessageViaCloud method allows you to use
the Codename One cloud to send an email without end user interaction. This feature is available to

506

https://www.codenameone.com/javadoc/com/codename1/messaging/Message.html

pro users only since it makes use of the Codename One cloud:

Message m = new Message("<html><body>Check out Codename One</body></html>");
m.setMimeType(Message.MIME_HTML);

// notice that we provide a plain text alternative as well in the send method
boolean success = m.sendMessageViaCloudSync("Codename One", "destination@domain.com", "Name Of User", "Message Subject",
 "Check out Codename One at https://www.codenameone.com/");

14.2. Contacts API
The contacts API provides us with the means to query the phone’s address book, delete elements
from it and create new entries into it. To get the platform specific list of contacts you can use
String[] contacts = ContactsManager.getAllContacts();

Notice that on some platforms this will prompt the user for permissions and the user might choose
not to grant that permission. To detect whether this is the case you can invoke
isContactsPermissionGranted() after invoking getAllContacts(). This can help you adapt your error
message to the user.

Once you have a Contact [https://www.codenameone.com/javadoc/com/codename1/contacts/Contact.html] you
can use the getContactById method, however the default method is a bit slow if you want to pull a
large batch of contacts. The solution for this is to only extract the data that you need via

getContactById(String id, boolean includesFullName,
 boolean includesPicture, boolean includesNumbers, boolean includesEmail,
 boolean includeAddress)

Here you can specify true only for the attributes that actually matter to you.

Another capability of the contacts API is the ability to extract all of the contacts very quickly. This
isn’t supported on all platforms but platforms such as Android can really get a boost from this API
as extracting the contacts one by one is remarkably slow on Android.

You can check if a platform supports the extraction of all the contacts quickly thru
ContactsManager.isGetAllContactsFast().

When retrieving all the contacts, notice that you should probably not retrieve all
the data and should set some fields to false to perform a more efficient query

You can then extract all the contacts using code that looks a bit like this, notice that we use a thread
so the UI won’t be blocked!

507

https://www.codenameone.com/javadoc/com/codename1/contacts/Contact.html

Form hi = new Form("Contacts", new BoxLayout(BoxLayout.Y_AXIS));
hi.add(new InfiniteProgress());
Display.getInstance().scheduleBackgroundTask(() -> {
 Contact[] contacts = ContactsManager.getAllContacts(true, true, false, true, false, false);
 Display.getInstance().callSerially(() -> {
 hi.removeAll();
 for(Contact c : contacts) {
 MultiButton mb = new MultiButton(c.getDisplayName());
 mb.setTextLine2(c.getPrimaryPhoneNumber());
 hi.add(mb);
 mb.putClientProperty("id", c.getId());
 }
 hi.getContentPane().animateLayout(150);
 });
});
hi.show();

Figure 414. List of contacts

Notice that we didn’t fetch the image of the contact as the performance of loading these images
might be prohibitive. We can enhance the code above to include images by using slightly more
complex code such as this:

The scheduleBackgroundTask method is similar to new Thread() in some regards. It
places elements in a queue instead of opening too many threads so it can be good
for non-urgent tasks

508

Form hi = new Form("Contacts", new BoxLayout(BoxLayout.Y_AXIS));
hi.add(new InfiniteProgress());
int size = Display.getInstance().convertToPixels(5, true);
FontImage fi = FontImage.createFixed("" + FontImage.MATERIAL_PERSON, FontImage.getMaterialDesignFont(), 0xff, size,
size);

Display.getInstance().scheduleBackgroundTask(() -> {
 Contact[] contacts = ContactsManager.getContacts(true, true, false, true, false, false);
 Display.getInstance().callSerially(() -> {
 hi.removeAll();
 for(Contact c : contacts) {
 MultiButton mb = new MultiButton(c.getDisplayName());
 mb.setIcon(fi);
 mb.setTextLine2(c.getPrimaryPhoneNumber());
 hi.add(mb);
 mb.putClientProperty("id", c.getId());
 Display.getInstance().scheduleBackgroundTask(() -> {
 Contact cc = ContactsManager.getContactById(c.getId(), false, true, false, false, false);
 Display.getInstance().callSerially(() -> {
 Image photo = cc.getPhoto();
 if(photo != null) {
 mb.setIcon(photo.fill(size, size));
 mb.revalidate();
 }
 });
 });
 }
 hi.getContentPane().animateLayout(150);
 });
});

Figure 415. Contacts with the default photos on the simulator, on device these will use actual user photos
when available

Notice that the code above uses callSerially & scheduleBackgroundTask in a liberal
nested way. This is important to avoid an EDT violation

You can use createContact(String firstName, String familyName, String officePhone, String
homePhone, String cellPhone, String email) to add a new contact and deleteContact(String id) to
delete a contact.

509

14.3. Localization & Internationalization (L10N & I18N)
Localization (l10n) means adapting to a locale which is more than just translating to a specific
language but also to a specific language within environment e.g. en_US != en_UK.
Internationalization (i18n) is the process of creating one application that adapts to all locales and
regional requirements.

Codename One supports automatic localization and seamless internationalization of an application
using the Codename One design tool.

Although localization is performed in the design tool most features apply to hand
coded applications as well. The only exception is the tool that automatically
extracts localizable strings from the GUI.

Figure 416. Localization tool in the Designer

To translate an application you need to use the localization section of the Codename One Designer.
This section features a handy tool to extract localization called Sync With UI, it’s a great tool to get
you started assuming you used the old GUI builder.

Some fields on some components (e.g. Commands) are not added when using "Sync With UI" button.
But you can add them manually on the localization bundle and they will be automatically localized.
You can just use the Property Key used in the localization bundle in the Command name of the
form.

You can add additional languages by pressing the Add Locale button.

This generates “bundles” in the resource file which are really just key/value pairs mapping a string
in one language to another language. You can install the bundle using code like this:

UIManager.getInstance().setBundle(res.getL10N("l10n", local));

The device language (as an ISO 639 two letter code) could be retrieved with this:

String local = L10NManager.getInstance().getLanguage();

Once installed a resource bundle takes over the UI and every string set to a label (and label like

510

components) will be automatically localized based on the bundle. You can also use the localize
method of UIManager [https://www.codenameone.com/javadoc/com/codename1/ui/plaf/UIManager.html] to
perform localization on your own:

UIManager.getInstance().localize("KeyInBundle", "DefaultValue");

The list of available languages in the resource bundle could be retrieved like this. Notice that this a
list that was set by you and doesn’t need to confirm to the ISO language code standards:

Resources res = fetchResourceFile();
Enumeration locales = res.listL10NLocales("l10n");

An exception for localization is the TextField/TextArea components both of which contain user data,
in those cases the text will not be localized to avoid accidental localization of user input.

You can preview localization in the theme mode within the Codename One designer by selecting
Advanced, picking your locale then clicking the theme again.

You can export and import resource bundles as standard Java properties files, CSV
and XML. The formats are pretty standard for most localization shops, the XML
format Codename One supports is the one used by Android’s string bundles which
means most localization specialists should easily localize it

The resource bundle is just a map between keys and values e.g. the code below displays "This Label
is localized" on the Label with the hardcoded resource bundle. It would work the same with a
resource bundle loaded from a resource file:

Form hi = new Form("L10N", new BoxLayout(BoxLayout.Y_AXIS));
HashMap<String, String> resourceBudle = new HashMap<String, String>();
resourceBudle.put("Localize", "This Label is localized");
UIManager.getInstance().setBundle(resourceBudle);
hi.add(new Label("Localize"));
hi.show();

Figure 417. Localized label

14.3.1. Localization Manager

The L10NManager [https://www.codenameone.com/javadoc/com/codename1/l10n/L10NManager.html] class
includes a multitude of features useful for common localization tasks.

It allows formatting numbers/dates & time based on platform locale. It also provides a great deal of
the information you need such as the language/locale information you need to pick the proper

511

https://www.codenameone.com/javadoc/com/codename1/ui/plaf/UIManager.html
https://www.codenameone.com/javadoc/com/codename1/l10n/L10NManager.html

resource bundle.

Form hi = new Form("L10N", new TableLayout(16, 2));
L10NManager l10n = L10NManager.getInstance();
hi.add("format(double)").add(l10n.format(11.11)).
 add("format(int)").add(l10n.format(33)).
 add("formatCurrency").add(l10n.formatCurrency(53.267)).
 add("formatDateLongStyle").add(l10n.formatDateLongStyle(new Date())).
 add("formatDateShortStyle").add(l10n.formatDateShortStyle(new Date())).
 add("formatDateTime").add(l10n.formatDateTime(new Date())).
 add("formatDateTimeMedium").add(l10n.formatDateTimeMedium(new Date())).
 add("formatDateTimeShort").add(l10n.formatDateTimeShort(new Date())).
 add("getCurrencySymbol").add(l10n.getCurrencySymbol()).
 add("getLanguage").add(l10n.getLanguage()).
 add("getLocale").add(l10n.getLocale()).
 add("isRTLLocale").add("" + l10n.isRTLLocale()).
 add("parseCurrency").add(l10n.formatCurrency(l10n.parseCurrency("33.77$"))).
 add("parseDouble").add(l10n.format(l10n.parseDouble("34.35"))).
 add("parseInt").add(l10n.format(l10n.parseInt("56"))).
 add("parseLong").add("" + l10n.parseLong("4444444"));
hi.show();

Figure 418. Localization formatting/parsing and information

14.3.2. RTL/Bidi

RTL stands for right to left, in the world of internationalization it refers to languages that are
written from right to left (Arabic, Hebrew, Syriac, Thaana).

Most western languages are written from left to right (LTR), however some languages are written
from right to left (RTL) speakers of these languages expect the UI to flow in the opposite direction
otherwise it seems weird just like reading this word would be to most English speakers: "drieW".

The problem posed by RTL languages is known as BiDi (Bi-directional) and not as RTL since the
"true" problem isn’t the reversal of the writing/UI but rather the mixing of RTL and LTR together.
E.g. numbers are always written from left to right (just like in English) so in an RTL language the
direction is from right to left and once we reach a number or English text embedded in the middle
of the sentence (such as a name) the direction switches for a duration and is later restored.

512

The main issue in the Codename One world is in the layouts, which need to reverse on the fly.
Codename One supports this via an RTL flag on all components that is derived from the global RTL
flag in UIManager [https://www.codenameone.com/javadoc/com/codename1/ui/plaf/UIManager.html].

Resource bundles can also include special case constant @rtl, which indicates if a language is
written from right to left. This allows everything to automatically reverse.

When in RTL mode the UI will be the exact mirror so WEST will become EAST, RIGHT will become LEFT
and this would be true for paddings/margins as well.

If you have a special case where you don’t want this behavior you will need to wrap it with an isRTL
check. You can also use setRTL on a per Component basis to disable RTL behavior for a specific
Component.

Most UI API’s have special cases for BiDi instead of applying it globally e.g. AWT
introduced constants such as LEADING instead of making WEST mean the opposite
direction. We think that was a mistake since the cases where you wouldn’t want
the behavior of automatic reversal are quite rare.

Codename One’s support for bidi includes the following components:

• Bidi algorithm - allows converting between logical to visual representation for rendering

• Global RTL flag - default flag for the entire application indicating the UI should flow from right
to left

• Individual RTL flag - flag indicating that the specific component/container should be presented
as an RTL/LTR component (e.g. for displaying English elements within a RTL UI).

• RTL text field input

Most of Codename One’s RTL support is under the hood, the LookAndFeel
[https://www.codenameone.com/javadoc/com/codename1/ui/plaf/LookAndFeel.html] global RTL flag can be
enabled using:

UIManager.getInstance().getLookAndFeel().setRTL(true);

Once RTL is activated all positions in Codename One become reversed and the UI becomes a mirror
of itself. E.g. Adding a Toolbar command to the left will actually make it appear on the right.
Padding on the left becomes padding on the right. The scroll moves to the left etc.

This applies to the layout managers (except for group layout) and most components. Bidi is mostly
seamless in Codename One but a developer still needs to be aware that his UI might be mirrored for
these cases.

14.4. Location - GPS
The Location [https://www.codenameone.com/javadoc/com/codename1/location/Location.html] API allows us to
track changes in device location or the current user position.

513

https://www.codenameone.com/javadoc/com/codename1/ui/plaf/UIManager.html
https://www.codenameone.com/javadoc/com/codename1/ui/plaf/LookAndFeel.html
https://www.codenameone.com/javadoc/com/codename1/location/Location.html

The Simulator includes a Location Simulation tool that you can launch to
determine the current position of the simulator and debug location events

The most basic usage for the API allows us to just fetch a device Location, notice that this API is
blocking and can take a while to return:

Location position = LocationManager.getLocationManager().getCurrentLocationSync();

In order for location to work on iOS you MUST define the build hint
ios.locationUsageDescription and describe why your application needs access to
location. Otherwise you won’t get location updates!

The getCurrentLocationSync() method is very good for cases where you only need to fetch a current
location once and not repeatedly query location. It activates the GPS then turns it off to avoid
excessive battery usage. However, if an application needs to track motion or position over time it
should use the location listener API to track location as such:

Notice that there is a method called getCurrentLocation() which will return the
current state immediately and might not be accurate for some cases.

public MyListener implements LocationListener {
 public void locationUpdated(Location location) {
 // update UI etc.
 }

 public void providerStateChanged(int newState) {
 // handle status changes/errors appropriately
 }
}
LocationManager.getLocationManager().setLocationListener(new MyListener());

On Android location maps to low level API’s if you disable the usage of Google Play
Services. By default location should perform well if you leave the Google Play
Services on

14.4.1. Location In The Background - Geofencing

Polling location is generally expensive and requires a special permission on iOS. Its also
implemented rather differently both in iOS and Android. Both platforms place restrictions on the
location API usage in the background.

Because of the nature of background location the API is non-trivial. It starts with the venerable
LocationManager but instead of using the standard API you need to use
setBackgroundLocationListener.

Instead of passing a LocationListener instance you need to pass a Class object instance. This is

514

important because background location might be invoked when the app isn’t running and an object
would need to be allocated.

Notice that you should NOT perform long operations in the background listener callback. IOS wake-
up time is limited to approximately 10 seconds and the app could get killed if it exceeds that time
slice.

Notice that the listener can also send events when the app is in the foreground, therefore it is
recommended to check the app state before deciding how to process this event. You can use
Display.isMinimized() to determine if the app is currently running or in the background.

When implementing this make sure that:

• The class passed to the API is a public class in the global scope. Not an inner class or anything
like that!

• The class has a public no-argument constructor

• You need to pass it as a class literal e.g. MyClassName.class. Don’t use
Class.forName("my.package.MyClassName")!
Class names are problematic since device builds are obfuscated, you should only use literals
which the obfuscator detects and handles correctly.

The following code demonstrates usage of the GeoFence API:

Geofence gf = new Geofence("test", loc, 100, 100000);

LocationManager.getLocationManager()
 .addGeoFencing(GeofenceListenerImpl.class, gf);

public class GeofenceListenerImpl implements GeofenceListener {
 @Override
 public void onExit(String id) {
 }

 @Override
 public void onEntered(String id) {
 if(Display.getInstance().isMinimized()) {
 Display.getInstance().callSerially(() -> {
 Dialog.show("Welcome", "Thanks for arriving", "OK", null);
 });
 } else {
 LocalNotification ln = new LocalNotification();
 ln.setAlertTitle("Welcome");
 ln.setAlertBody("Thanks for arriving!");
 Display.getInstance().scheduleLocalNotification(ln, 10, false);
 }
 }
}

515

14.5. Background Music Playback
Codename One supports playing music in the background (e.g. when the app is minimized) which is
quite useful for developers building a music player style application.

This support isn’t totally portable since the Android and iOS approaches for background music
playback differ a great deal. To get this to work on Android you need to use the API:
MediaManager.createBackgroundMedia().

You should use that API when you want to create a media stream that will work even when your
app is minimized.

For iOS you will need to use a special build hint: ios.background_modes=music.

Which should allow background playback of music on iOS and would work with the
createBackgroundMedia() method.

14.6. Capture - Photos, Video, Audio
The capture API allows us to use the camera to capture photographs or the microphone to capture
audio. It even includes an API for video capture.
The API itself couldn’t be simpler:

String filePath = Capture.capturePhoto();

Just captures and returns a path to a photo you can either open it using the Image
[https://www.codenameone.com/javadoc/com/codename1/ui/Image.html] class or save it somewhere.

The returned file is a temporary file, you shouldn’t store a reference to it and
instead copy it locally or work with the Image object

E.g. you can copy the Image to Storage using:

String filePath = Capture.capturePhoto();
if(filePath != null) {
 Util.copy(FileSystemStorage.getInstance().openInputStream(filePath),
Storage.getInstance().createOutputStream(myImageFileName));
}

When running on the simulator the Capture API opens a file chooser API instead of
physically capturing the data. This makes debugging device or situation specific
issues simpler

We can capture an image from the camera using an API like this:

516

https://www.codenameone.com/javadoc/com/codename1/ui/Image.html

Form hi = new Form("Capture", new BorderLayout());
hi.setToolbar(new Toolbar());
Style s = UIManager.getInstance().getComponentStyle("Title");
FontImage icon = FontImage.createMaterial(FontImage.MATERIAL_CAMERA, s);

ImageViewer iv = new ImageViewer(icon);

hi.getToolbar().addCommandToRightBar("", icon, (ev) -> {
 String filePath = Capture.capturePhoto();
 if(filePath != null) {
 try {
 DefaultListModel<Image> m = (DefaultListModel<Image>)iv.getImageList();
 Image img = Image.createImage(filePath);
 if(m == null) {
 m = new DefaultListModel<>(img);
 iv.setImageList(m);
 iv.setImage(img);
 } else {
 m.addItem(img);
 }
 m.setSelectedIndex(m.getSize() - 1);
 } catch(IOException err) {
 Log.e(err);
 }
 }
});

hi.add(BorderLayout.CENTER, iv);
hi.show();

Figure 419. Captured photos previewed in the ImageViewer

We demonstrate video capture in the MediaManager section [https://www.codenameone.com/manual/

components.html#mediamanager-section].

The sample below captures audio recordings (using the 'Capture' API) and copies them locally
under unique names. It also demonstrates the storage and organization of captured audio:

517

https://www.codenameone.com/manual/components.html#mediamanager-section

Form hi = new Form("Capture", BoxLayout.y());
hi.setToolbar(new Toolbar());
Style s = UIManager.getInstance().getComponentStyle("Title");
FontImage icon = FontImage.createMaterial(FontImage.MATERIAL_MIC, s);

FileSystemStorage fs = FileSystemStorage.getInstance();
String recordingsDir = fs.getAppHomePath() + "recordings/";
fs.mkdir(recordingsDir);
try {
 for(String file : fs.listFiles(recordingsDir)) {
 MultiButton mb = new MultiButton(file.substring(file.lastIndexOf("/") + 1));
 mb.addActionListener((e) -> {
 try {
 Media m = MediaManager.createMedia(recordingsDir + file, false);
 m.play();
 } catch(IOException err) {
 Log.e(err);
 }
 });
 hi.add(mb);
 }

 hi.getToolbar().addCommandToRightBar("", icon, (ev) -> {
 try {
 String file = Capture.captureAudio();
 if(file != null) {
 SimpleDateFormat sd = new SimpleDateFormat("yyyy-MMM-dd-kk-mm");
 String fileName =sd.format(new Date());
 String filePath = recordingsDir + fileName;
 Util.copy(fs.openInputStream(file), fs.openOutputStream(filePath));
 MultiButton mb = new MultiButton(fileName);
 mb.addActionListener((e) -> {
 try {
 Media m = MediaManager.createMedia(filePath, false);
 m.play();
 } catch(IOException err) {
 Log.e(err);
 }
 });
 hi.add(mb);
 hi.revalidate();
 }
 } catch(IOException err) {
 Log.e(err);
 }
 });
} catch(IOException err) {
 Log.e(err);
}
hi.show();

518

Figure 420. Captured recordings in the demo

Alternatively, you can use the Media, MediaManager and MediaRecorderBuilder APIs to capture audio,
as a more customizable approach than using the Capture API:

 private static final EasyThread countTime = EasyThread.start("countTime");

 public void start() {
 if (current != null) {
 current.show();
 return;
 }
 Form hi = new Form("Recording audio", BoxLayout.y());
 hi.add(new SpanLabel("Example of recording and playback audio using the Media, MediaManager and
MediaRecorderBuilder APIs"));
 hi.add(recordAudio((String filePath) -> {
 ToastBar.showInfoMessage("Do something with the recorded audio file: " + filePath);
 }));
 hi.show();
 }

 public static Component recordAudio(OnComplete<String> callback) {
 try {
 // mime types supported by Android: audio/amr, audio/aac, audio/mp4
 // mime types supported by iOS: audio/mp4, audio/aac, audio/m4a
 // mime type supported by Simulator: audio/wav
 // more info: https://www.iana.org/assignments/media-types/media-types.xhtml

 List<String> availableMimetypes = Arrays.asList(MediaManager.getAvailableRecordingMimeTypes());
 String mimetype;
 if (availableMimetypes.contains("audio/aac")) {
 // Android and iOS
 mimetype = "audio/aac";
 } else if (availableMimetypes.contains("audio/wav")) {
 // Simulator
 mimetype = "audio/wav";
 } else {
 // others
 mimetype = availableMimetypes.get(0);
 }
 String fileName = "audioExample." + mimetype.substring(mimetype.indexOf("/") + 1);
 String output = FileSystemStorage.getInstance().getAppHomePath() + "/" + fileName;
 // https://tritondigitalcommunity.force.com/s/article/Choosing-Audio-Bitrate-Settings
 MediaRecorderBuilder options = new MediaRecorderBuilder()
 .mimeType(mimetype)
 .path(output)
 .bitRate(64000)
 .samplingRate(44100);
 Media[] microphone = {MediaManager.createMediaRecorder(options)};
 Media[] speaker = {null};

519

 Container recordingUI = new Container(BoxLayout.y());
 Label time = new Label("0:00");
 Button recordBtn = new Button("", FontImage.MATERIAL_FIBER_MANUAL_RECORD, "Button");
 Button playBtn = new Button("", FontImage.MATERIAL_PLAY_ARROW, "Button");
 Button stopBtn = new Button("", FontImage.MATERIAL_STOP, "Button");
 Button sendBtn = new Button("Send");
 sendBtn.setEnabled(false);
 Container buttons = GridLayout.encloseIn(3, recordBtn, stopBtn, sendBtn);
 recordingUI.addAll(FlowLayout.encloseCenter(time), FlowLayout.encloseCenter(buttons));

 recordBtn.addActionListener(l -> {
 try {
 // every time we have to create a new instance of Media to make it working correctly (as reported in
the Javadoc)
 microphone[0] = MediaManager.createMediaRecorder(options);
 if (speaker[0] != null && speaker[0].isPlaying()) {
 return; // do nothing if the audio is currently recorded or played
 }
 recordBtn.setEnabled(false);
 sendBtn.setEnabled(true);
 Log.p("Audio recording started", Log.DEBUG);
 if (buttons.contains(playBtn)) {
 buttons.replace(playBtn, stopBtn, CommonTransitions.createEmpty());
 buttons.revalidateWithAnimationSafety();
 }
 if (speaker[0] != null) {
 speaker[0].pause();
 }

 microphone[0].play();
 startWatch(time);
 } catch (IOException ex) {
 Log.p("ERROR recording audio", Log.ERROR);
 Log.e(ex);
 }
 });

 stopBtn.addActionListener(l -> {
 if (!microphone[0].isPlaying() && (speaker[0] == null || !speaker[0].isPlaying())) {
 return; // do nothing if the audio is NOT currently recorded or played
 }
 recordBtn.setEnabled(true);
 sendBtn.setEnabled(true);
 Log.p("Audio recording stopped");
 if (microphone[0].isPlaying()) {
 microphone[0].pause();
 } else if (speaker[0] != null) {
 speaker[0].pause();
 } else {
 return;
 }
 stopWatch(time);
 if (buttons.contains(stopBtn)) {
 buttons.replace(stopBtn, playBtn, CommonTransitions.createEmpty());
 buttons.revalidateWithAnimationSafety();
 }
 if (FileSystemStorage.getInstance().exists(output)) {
 Log.p("Audio saved to: " + output);
 } else {
 ToastBar.showErrorMessage("Error recording audio", 5000);
 Log.p("ERROR SAVING AUDIO");
 }
 });

 playBtn.addActionListener(l -> {
 // every time we have to create a new instance of Media to make it working correctly (as reported in the
Javadoc)

520

 if (microphone[0].isPlaying() || (speaker[0] != null && speaker[0].isPlaying())) {
 return; // do nothing if the audio is currently recorded or played
 }
 recordBtn.setEnabled(false);
 sendBtn.setEnabled(true);
 if (buttons.contains(playBtn)) {
 buttons.replace(playBtn, stopBtn, CommonTransitions.createEmpty());
 buttons.revalidateWithAnimationSafety();
 }
 if (FileSystemStorage.getInstance().exists(output)) {
 try {
 speaker[0] = MediaManager.createMedia(output, false, () -> {
 // callback on completation
 recordBtn.setEnabled(true);
 if (speaker[0].isPlaying()) {
 speaker[0].pause();
 }
 stopWatch(time);
 if (buttons.contains(stopBtn)) {
 buttons.replace(stopBtn, playBtn, CommonTransitions.createEmpty());
 buttons.revalidateWithAnimationSafety();
 }
 });
 speaker[0].play();
 startWatch(time);
 } catch (IOException ex) {
 Log.p("ERROR playing audio", Log.ERROR);
 Log.e(ex);
 }
 }
 });

 sendBtn.addActionListener(l -> {
 if (microphone[0].isPlaying()) {
 microphone[0].pause();
 }
 if (speaker[0] != null && speaker[0].isPlaying()) {
 speaker[0].pause();
 }
 if (buttons.contains(stopBtn)) {
 buttons.replace(stopBtn, playBtn, CommonTransitions.createEmpty());
 buttons.revalidateWithAnimationSafety();
 }
 stopWatch(time);
 recordBtn.setEnabled(true);

 callback.completed(output);
 });

 return FlowLayout.encloseCenter(recordingUI);

 } catch (IOException ex) {
 Log.p("ERROR recording audio", Log.ERROR);
 Log.e(ex);
 return new Label("Error recording audio");
 }

 }

 private static void startWatch(Label label) {
 label.putClientProperty("stopTime", Boolean.FALSE);
 countTime.run(() -> {
 long startTime = System.currentTimeMillis();
 while (label.getClientProperty("stopTime") == Boolean.FALSE) {
 // the sleep is every 200ms instead of 1000ms to make the app more reactive when stop is tapped
 Util.sleep(200);
 int seconds = (int) ((System.currentTimeMillis() - startTime) / 1000);

521

 String min = (seconds / 60) + "";
 String sec = (seconds % 60) + "";
 if (sec.length() == 1) {
 sec = "0" + sec;
 }
 String newTime = min + ":" + sec;
 if (!label.getText().equals(newTime)) {
 CN.callSerially(() -> {
 label.setText(newTime);
 if (label.getParent() != null) {
 label.getParent().revalidateWithAnimationSafety();
 }
 });
 }
 }
 });
 }

 private static void stopWatch(Label label) {
 label.putClientProperty("stopTime", Boolean.TRUE);
 }

[Example of recording and playback audio using Media API] | https://user-

522

images.githubusercontent.com/1997316/78480286-02131b00-7735-11ea-8a70-5ca5512e7d92.png

14.6.1. Capture Asynchronous API

The Capture API also includes a callback based API that uses the ActionListener interface to
implement capture. E.g. we can adapt the previous sample to use this API as such:

hi.getToolbar().addCommandToRightBar("", icon, (ev) -> {
 Capture.capturePhoto((e) -> {
 if(e != null && e.getSource() != null) {
 try {
 DefaultListModel<Image> m = (DefaultListModel<Image>)iv.getImageList();
 Image img = Image.createImage((String)e.getSource());
 if(m == null) {
 m = new DefaultListModel<>(img);
 iv.setImageList(m);
 iv.setImage(img);
 } else {
 m.addItem(img);
 }
 m.setSelectedIndex(m.getSize() - 1);
 } catch(IOException err) {
 Log.e(err);
 }
 }
 });
});

14.7. Gallery
The gallery API allows picking an image and/or video from the cameras gallery (camera roll).

Like the Capture API the image returned is a temporary image that should be
copied locally, this is due to device restrictions that don’t allow direct
modifications of the gallery

We can adapt the Capture sample above to use the gallery as such:

523

Form hi = new Form("Capture", new BorderLayout());
hi.setToolbar(new Toolbar());
Style s = UIManager.getInstance().getComponentStyle("Title");
FontImage icon = FontImage.createMaterial(FontImage.MATERIAL_CAMERA, s);

ImageViewer iv = new ImageViewer(icon);

hi.getToolbar().addCommandToRightBar("", icon, (ev) -> {
 Display.getInstance().openGallery((e) -> {
 if(e != null && e.getSource() != null) {
 try {
 DefaultListModel<Image> m = (DefaultListModel<Image>)iv.getImageList();
 Image img = Image.createImage((String)e.getSource());
 if(m == null) {
 m = new DefaultListModel<>(img);
 iv.setImageList(m);
 iv.setImage(img);
 } else {
 m.addItem(img);
 }
 m.setSelectedIndex(m.getSize() - 1);
 } catch(IOException err) {
 Log.e(err);
 }
 }
 }, Display.GALLERY_IMAGE);
});

hi.add(BorderLayout.CENTER, iv);

There is no need for a screenshot as it will look identical to the capture image
screenshot above

The last value is the type of content picked which can be one of: Display.GALLERY_ALL,
Display.GALLERY_VIDEO or Display.GALLERY_IMAGE.

14.8. Analytics Integration
One of the features in Codename One is builtin support for analytic instrumentation. Currently
Codename One has builtin support for Google Analytics [https://www.google.com/analytics/], which
provides reasonable enough statistics of application usage.

Analytics is pretty seamless for the old GUI builder since navigation occurs via the Codename One
API and can be logged without developer interaction. However, to begin the instrumentation one
needs to add the line:

524

https://www.google.com/analytics/

AnalyticsService.setAppsMode(true);
AnalyticsService.init(agent, domain);

To get the value for the agent value just create a Google Analytics account and add a domain, then
copy and paste the string that looks something like UA-99999999-8 from the console to the agent
string. Once this is in place you should start receiving statistic events for the application.

If your application is not a GUI builder application or you would like to send more detailed data
you can use the Analytics.visit() method to indicate that you are entering a specific page.

14.8.1. Application Level Analytics

In 2013 Google introduced an improved application level analytics API that is specifically built for
mobile apps. However, it requires a slightly different API usage. You can activate this specific mode
by invoking setAppsMode(true).

When using this mode you can also report errors and crashes to the Google analytics server using
the sendCrashReport(Throwable, String message, boolean fatal) method.

We generally recommend using this mode and setting up an apps analytics account as the results
are more refined.

14.8.2. Overriding The Analytics Implementation

The Analytics API can also be enhanced to support any other form of analytics solution of your own
choosing by deriving the AnalyticsService class.

This allows you to integrate with any 3rd party via native or otherwise by overriding methods in
the AnalyticsService class then invoking:

AnalyticsService.init(new MyAnalyticsServiceSubclass());

Notice that this removes the need to invoke the other init method or setAppsMode(boolean).

14.9. Native Facebook Support

Check out the ShareButton section [https://www.codenameone.com/manual/

components.html#sharebutton-section] it might be enough for most of your needs.

Codename One supports Facebooks Oauth2 [https://www.codenameone.com/javadoc/com/codename1/io/

Oauth2.html] login and Facebooks single sign on for iOS and Android.

14.9.1. Getting Started - Web Setup

To get started first you will need to create a facebook app on the Facebook developer portal at
https://developers.facebook.com/apps/

525

https://www.codenameone.com/manual/components.html#sharebutton-section
https://www.codenameone.com/javadoc/com/codename1/io/Oauth2.html
https://developers.facebook.com/apps/

Figure 421. Create New App

You need to repeat the process for web, Android & iOS (web is used by the simulator):

Figure 422. Pick Platform

For the first platform you need to enter the app name:

Figure 423. Pick app name

And provide some basic details:

Figure 424. Basic details for the app

For iOS we need the bundle ID which is the exact same thing we used in the Google+ login to
identify the iOS app its effectively your package name:

Figure 425. iOS specific basic details

You should end up with something that looks like this:

526

Figure 426. Finished Facebook app

The Android process is pretty similar but in this case we need the activity name too.

The activity name should match the main class name followed by the word Stub
(uppercase s). E.g. for the main class SociallChat we would use SocialChatStub as
the activity name

Figure 427. Android Activity definition

To build the native Android app we must make sure that we setup the keystore correctly for our
application. If you don’t have an Android certificate you can use the visual wizard (in the Android
section in the project preferences the button labeled Generate) or use the command line:

keytool -genkey -keystore Keystore.ks -alias [alias_name] -keyalg RSA -keysize 2048 -validity 15000 -dname "CN=[full
name], OU=[ou], O=[comp], L=[City], S=[State], C=[Country Code]" -storepass [password] -keypass [password]

You can reuse the certificate in all your apps, some developers like having a
different certificate for every app. This is like having one master key for all your
doors, or a huge keyring filled with keys.

With the certificate we need an SHA1 key to further authenticate us to Facebook and we do this
using the keytool command line on Linux/Mac:

keytool -exportcert -alias (your_keystore_alias) -keystore (path_to_your_keystore) | openssl sha1 -binary | openssl
base64

And on Windows:

keytool -exportcert -alias androiddebugkey -keystore %HOMEPATH%\.android\debug.keystore | openssl sha1 -binary | openssl
base64

You can read more about it on the Facebook guide here [https://developers.facebook.com/docs/android/

527

https://developers.facebook.com/docs/android/getting-started

getting-started].

Figure 428. Hash generation process, notice the command lines are listed as part of the web wizard

Lastly you need to publish the Facebook app by flipping the switch in the apps "Status & Review"
page as such:

Figure 429. Without flipping the switch the app won’t "appear"

14.9.2. IDE Setup

We now need to set some important build hints in the project so it will work correctly. To set the
build hints just right click the project select project properties and in the Codename One section
pick the second tab. Add this entry into the table:

facebook.appId=...

The app ID will be visible in your Facebook app page in the top left position.

14.9.3. The Code

To bind your mobile app into the Facebook app you can use the following code:

528

Login fb = FacebookConnect.getInstance();

fb.setClientId("9999999");
fb.setRedirectURI("http://www.youruri.com/");
fb.setClientSecret("-------");

// Sets a LoginCallback listener
fb.setCallback(new LoginCallback() {
 public void loginSuccessful() {
 // we can now start fetching stuff from Facebook!
 }

 public void loginFailed(String errorMessage) {}
});

// trigger the login if not already logged in
if(!fb.isUserLoggedIn()){
 fb.doLogin();
} else {
 // get the token and now you can query the Facebook API
 String token = fb.getAccessToken().getToken();
 // ...
}

All of these values are from the web version of the app!
They are only used in the simulator and on "unsupported" platforms as a fallback.
Android and iOS will use the native login

14.9.4. Facebook Publish Permissions

In order to post something to Facebook you need to request a write permission, you can only do
write operations within the callback which is invoked when the user approves the permission.

You can prompt the user for publish permissions by using this code on a logged in FacebookConnect
[https://www.codenameone.com/javadoc/com/codename1/social/FacebookConnect.html]:

FacebookConnect.getInstance()askPublishPermissions(new LoginCallback() {
 public void loginSuccessful() {
 // do something...
 }
 public void loginFailed(String errorMessage) {
 // show error or just ignore
 }
});

Notice that this won’t always prompt the user, but its required to verify that your
token is valid for writing.

529

https://www.codenameone.com/javadoc/com/codename1/social/FacebookConnect.html

14.10. Google Sign-In
Google Login is a bit of a moving target, as they are regularly creating new APIs and deprecating
old ones. Codename One 3.7 and earlier used the Google+ API for sign-in, which is now deprecated.
While this API still works, it is no longer useful on iOS as it redirects to Safari to perform login, and
Apple no longer allows this practice.

The new, approved API is called Google Sign-In. Rather than using Safari to handle login (on iOS), it
uses an embedded web view, which is permitted by Apple.

The process involves four parts:

1. Section 14.10.1, “iOS Setup Instructions”

2. Section 14.10.2, “Android Setup Instructions”

3. Section 14.10.3, “OAuth Setup (Simulator and REST API Access)”

4. Section 14.10.5, “The Code”

OAuth Setup is required for using Google Sign-In in the simulator, and for accessing other Google
APIs in Android.

14.10.1. iOS Setup Instructions

Short Version

Go to the Google Developer Portal [https://developers.google.com/mobile/add], follow the steps to create
an App, and enable Google Sign-In, and download the GoogleService-Info.plist file. Then copy this
file into your project’s native/ios directory.

Long Version

Point your browser to this page [https://developers.google.com/mobile/add].

Figure 430. Set up mobile app form on Google

Click on the "Getting Started" button.

530

https://developers.google.com/mobile/add
https://developers.google.com/mobile/add

Figure 431. Getting started button

Then click "iOS App"

Figure 432. Pick a platform

Now enter an app name and the bundle ID for your app on the form below. The app name doesn’t
necessary need to match your app’s name, but the bundle ID should match the package name of
your app.

Figure 433. Create or Choose App

Select your country, and then click the "Choose and Configure Services" button.

Figure 434. Choose and Configure Services

You’ll be presented with the following screen

531

Figure 435. Choose and Configure Services form

Click on "Google Sign-In".

Then press the "Enable Google Sign-In" button that appears.

Figure 436. Enable Google Sign-In

You should then be presented with another button to "Generate Configuration Files" as shown
below

Figure 437. Generate Configuration Files

Finally you will be presented with a button to "Download GoogleServices-Info.plist".

Figure 438. Download GoogleService-Info.plist file

Press this button to download the GoogleService-Info.plist file. Then copy this into the "native/ios"
directory of your Codename One project.

Figure 439. Project file structure after placing the GoogleService-Info.plist into the native/ios directory

At this point, your app should be able to use Google Sign-In. Notice that we don’t require any build
hints. Only that the GoogleService-Info.plist file is added to the project’s native/ios directory.

532

14.10.2. Android Setup Instructions

Short Version

Go to the Google Developer Portal [https://developers.google.com/mobile/add], follow the steps to create
an App, and enable Google Sign-In, and download the google-services.json file. Then copy this file
into your project’s native/android directory.

Long Version

Point your browser to this page [https://developers.google.com/mobile/add].

Figure 440. Set up mobile app form on Google

Click on the "Getting Started" button.

Then click "Android App"

Now enter an app name and the platform for your app on the form below. The app name doesn’t
necessary need to match your app’s name, but the package name should match the package name
of your app.

Figure 441. Create or Choose App

Select your country, and then click the "Choose and Configure Services" button.

533

https://developers.google.com/mobile/add
https://developers.google.com/mobile/add

Figure 442. Choose and Configure Services

Click on "Google Sign-In"

Then you’ll be presented with a field to enter the Android Signing Certificate SHA-1.

Figure 443. Android Signing Certifiate SHA-1

The value that you enter here should be obtained from the certificate that you are using to build
your app. You an use the keytool app that is distributed with the JDK to extract this value

$ keytool -exportcert -alias myAlias -keystore /path/to/my-keystore.keystore -list -v

The snippet above assumes that your keystore is located at /path/to/my-keystore.keystore, and the
certificate alias is "myAlias". You’ll be prompted to enter the password for your keystore, then the
output will look something like:

534

Alias name: myAlias
Creation date: 22-Jan-2014
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=My Own Company Corp., OU=, O=, L=Vancouver, ST=British Columbia, C=CA
Issuer: CN=My Own Company Corp., OU=, O=, L=Vancouver, ST=British Columbia, C=CA
Serial number: 56b2fd42
Valid from: Wed Jan 22 12:23:50 PST 2014 until: Tue Feb 16 12:23:50 PST 2055
Certificate fingerprints:
 MD5: 98:F9:34:5B:B5:1A:14:2D:3C:5D:F4:92:D2:73:30:6B
 SHA1: 76:BA:AA:11:A9:22:42:24:93:82:6D:33:7E:48:BC:AF:45:4D:79:B0
 SHA256: 3D:04:33:67:6A:13:FF:4F:EE:E8:C9:7D:D2:CC:DF:70:33:E1:90:44:BF:22:B6:96:11:C7:00:67:8D:CD:53:BC
 Signature algorithm name: SHA256withRSA
 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: C2 A0 48 AA 60 BA DD E3 0C 3F 00 B4 2C D5 92 A5 ..H.`.......D...
0010: 31 16 EF A2 1...
]
]

You will be interested in SHA1 fingerprint. In the snippet above, the SHA1 fingerprint is:

76:BA:AA:11:A9:22:42:24:93:82:6D:33:7E:48:BC:AF:45:4D:79:B0

You would paste this value into the "Android Signing Certificate SHA-1" field in the web form.

After pasting that in, you’ll see a new button with label "Enable Google Sign-in"

Figure 444. Enable Google Sign-In

Press this button and you’ll be presented with another button to "Generate Configuration Files" as
shown below

Figure 445. Generate Configuration Files

Finally you will be presented with a button to "Download google-services.json".

Figure 446. Download google-services.json file

535

Press this button to download the google-services.json file. Then copy this into the "native/android"
directory of your Codename One project.

Figure 447. Project file structure after placing the GoogleService-Info.plist into the native/android directory

At this point, your app should be able to use Google Sign-In. Notice that we don’t require any build
hints. Only that the google-services.json file is added to the project’s native/android directory.

If you want to access additional information about the logged in user using
Google’s REST APIs, you will require an OAuth2.0 client ID of type Web Application
for this project as well. See Section 14.10.3, “OAuth Setup (Simulator and REST API
Access)” for details.

14.10.3. OAuth Setup (Simulator and REST API Access)

Getting Google Sign-In to work in the Codename One simulator requires an additional step after
you’ve set up iOS and/or Android apps. The Simulator can’t use the native Google Sign-In APIs, so it
uses the standard Web Application OAuth2.0 API. In addition, the Android App requires a Web
Application OAuth2.0 client ID to access additional Google REST APIs.

If you’ve set up the Google Sign-In API for either Android or iOS, then Google will have already
automatically generated a Web Application OAuth2.0 client ID for you. You just need to provide the
ClientID and ClientSecret to the GoogleConnect instance (in your java code).

Client ID, Client Secret and Redirect URL

1. Log into the Google Cloud Platform API console [https://console.cloud.google.com/apis].

2. Select your app from the drop-down-menu in the top bar

3. Click on "Credentials" in the left menu. You’ll see a screen like this

4. Under the "OAuth2.0 Client IDs", find the row with "Web application" listed in the type column

5. Click the "Edit icon for that row.

6. Make note of the "Client ID" and "Client Secret" on this page, as you’ll need to add them to your
Java source in the next step.

7. In the "Authorized redirect URIs" section, you will need to enter the URL to the page that the
user will be sent to after a successful login. This page will only appear in the simulator for a
split second, as Codename One’s BrowserComponent will intercept this request to obtain the
access token upon successful login. You can use any URL you like here, but it must match the
value you give to GoogleConnect.setRedirectURL() in Section 14.10.5, “The Code”.

536

https://console.cloud.google.com/apis

14.10.4. Javascript Setup Instructions

The Javascript port can use the same OAuth2.0 credentials as the simulator does. It doesn’t require
your Client Secret or redirect URL. It only requires your Client ID, which you can specify using the
GoogleConnect.setClientID() method.

14.10.5. The Code

Login gc = GoogleConnect.getInstance();
gc.setClientId("*****************.apps.googleusercontent.com");
gc.setRedirectURI("https://yourURL.com/");
gc.setClientSecret("-------------------");

// Sets a LoginCallback listener
gc.setCallback(new LoginCallback() {
 public void loginSuccessful() {
 // we can now start fetching stuff from Google+!
 }

 public void loginFailed(String errorMessage) {}
});

// trigger the login if not already logged in
if(!gc.isUserLoggedIn()){
 gc.doLogin();
} else {
 // get the token and now you can query the Google API
 String token = gc.getAccessToken().getToken();
 // NOTE: On Android, this token will be null unless you provide valid
 // client ID and secrets.
}

The client ID and client secret values here are the ones from your OAuth2.0 Web
Application.

The Client ID and Client Secret values are used on both the Simulator and on
Android. On simulator these values are required for login to work at all. On
Android these values are required to obtain an access token to query the Google
API further using its various REST APIs. If you do not include these values on
Android, login will still work, but gc.getAccessToken().getToken() will return null.

537

14.11. Lead Component
Codename One has two basic ways to create new components:

1. Subclass a Component override paint, implement event callbacks etc.

2. Compose multiple components into a new component, usually by subclassing a Container.

Components such as Tabs [https://www.codenameone.com/javadoc/com/codename1/ui/Tabs.html] subclass
Container which make a lot of sense for that component since it is physically a Container.

However, components like MultiButton [https://www.codenameone.com/javadoc/com/codename1/

components/MultiButton.html], SpanButton [https://www.codenameone.com/javadoc/com/codename1/

components/SpanButton.html] & SpanLabel [https://www.codenameone.com/javadoc/com/codename1/

components/SpanLabel.html] don’t necessarily seem like the right candidate for compositing but they
are all Container subclasses.

Using a Container provides us a lot of flexibility in terms of layout & functionality for a specific
component. MultiButton is a great example of that. It’s a Container internally that is composed of 5
labels and a Button.

Codename One makes the MultiButton "feel" like a single button thru the use of
setLeadComponent(Component) which turns the button into the "leader" of the component.

When a Container hierarchy is placed under a leader all events within the hierarchy are sent to the
leader, so if a label within the lead component receives a pointer pressed event this event will
really be sent to the leader.

E.g. in the case of the MultiButton the internal button will receive that event and send the action
performed event, change the state etc.

This creates some potential issues for instance in MultiButton:

myMultiButton.addActionListener((e) -> {
 if(e.getComponent() == myMultiButton) {
 // this won't occur since the source component is really a button!
 }
 if(e.getActualComponent() == myMultiButton) {
 // this will happen...
 }
});

The leader also determines the style state, so all the elements being lead are in the same state. E.g. if
the the button is pressed all elements will display their pressed states, notice that they will do so
with their own styles but they will each pick the pressed version of that style so a Label UIID within
a lead component in the pressed state would return the Pressed state for a Label not for the Button.

This is very convenient when you need to construct more elaborate UI’s and the cool thing about it
is that you can do this entirely in the designer which allows assembling containers and defining the
lead component inside the hierarchy.

538

https://www.codenameone.com/javadoc/com/codename1/ui/Tabs.html
https://www.codenameone.com/javadoc/com/codename1/components/MultiButton.html
https://www.codenameone.com/javadoc/com/codename1/components/SpanButton.html
https://www.codenameone.com/javadoc/com/codename1/components/SpanLabel.html

E.g. the SpanButton class is very similar to this code:

public class SpanButton extends Container {
 private Button actualButton;
 private TextArea text;

 public SpanButton(String txt) {
 setUIID("Button");
 setLayout(new BorderLayout());
 text = new TextArea(getUIManager().localize(txt, txt));
 text.setUIID("Button");
 text.setEditable(false);
 text.setFocusable(false);
 actualButton = new Button();
 addComponent(BorderLayout.WEST, actualButton);
 addComponent(BorderLayout.CENTER, text);
 setLeadComponent(actualButton);
 }

 public void setText(String t) {
 text.setText(getUIManager().localize(t, t));
 }

 public void setIcon(Image i) {
 actualButton.setIcon(i);
 }

 public String getText() {
 return text.getText();
 }

 public Image getIcon() {
 return actualButton.getIcon();
 }

 public void addActionListener(ActionListener l) {
 actualButton.addActionListener(l);
 }

 public void removeActionListener(ActionListener l) {
 actualButton.removeActionListener(l);
 }

}

14.11.1. Blocking Lead Behavior

The Component class has two methods that allow us to exclude a component from lead behavior:

539

setBlockLead(boolean) & isBlockLead().

Effectively when you have a Component within the lead hierarchy that you would like to treat
differently from the rest you can use this method to exclude it from the lead component behavior
while keeping the rest in line…

This should have no effect if the component isn’t a part of a lead component.

The sample below is based on the Accordion component which uses a lead component internally.

Form f = new Form("Accordion", new BorderLayout());
Accordion accr = new Accordion();
f.getToolbar().addMaterialCommandToRightBar("", FontImage.MATERIAL_ADD, e -> addEntry(accr));
addEntry(accr);
f.add(BorderLayout.CENTER, accr);
f.show();

void addEntry(Accordion accr) {
 TextArea t = new TextArea("New Entry");
 Button delete = new Button();
 FontImage.setMaterialIcon(delete, FontImage.MATERIAL_DELETE);
 Label title = new Label(t.getText());
 t.addActionListener(ee -> title.setText(t.getText()));
 delete.addActionListener(ee -> {
 accr.removeContent(t);
 accr.animateLayout(200);
 });
 delete.setBlockLead(true);
 delete.setUIID("Label");
 Container header = BorderLayout.center(title).
 add(BorderLayout.EAST, delete);
 accr.addContent(header, t);
 accr.animateLayout(200);
}

This allows us to add/edit entries but it also allows the delete button above to actually work
separately. Without a call to setBlockLead(true) the delete button would cat as the rest of the
accordion title.

Figure 448. Accordion with delete button entries that work despite the surrounding lead

540

14.12. Pull To Refresh
Pull to refresh is the common UI paradigm that Twitter popularized where the user can pull down
the form/container to receive an update. Adding this to Codename One couldn’t be simpler!

Just invoke addPullToRefresh(Runnable) on a scrollable container (or form) and the runnable
method will be invoked when the refresh operation occurs.

 Pull to refresh is implicitly implements in the InifiniteContainer

Form hi = new Form("Pull To Refresh", BoxLayout.y());
hi.getContentPane().addPullToRefresh(() -> {
 hi.add("Pulled at " + L10NManager.getInstance().formatDateTimeShort(new Date()));
});
hi.show();

Figure 449. Pull to refresh demo

14.13. Running 3rd Party Apps Using Display’s execute
The Display [https://www.codenameone.com/javadoc/com/codename1/ui/Display.html] class’s execute method
allows us to invoke a URL which is bound to a particular application.

This works rather well assuming the application is installed. E.g. this list [http://wiki.akosma.com/

IPhone_URL_Schemes] contains a set of valid URL’s that can be used on iOS to run common
applications and use builtin functionality.

Some URL’s might not be supported if an app isn’t installed, on Android there isn’t much that can be
done but iOS has a canOpenURL method for Objective-C.

On iOS you can use the Display.canExecute() method which returns a Boolean instead of a boolean
which allows us to support 3 result states:

1. Boolean.TRUE - the URL can be executed

2. Boolean.FALSE - the URL isn’t supported or the app is missing

3. null - we have no idea whether the URL will work on this platform.

541

https://www.codenameone.com/javadoc/com/codename1/ui/Display.html
http://wiki.akosma.com/IPhone_URL_Schemes

The sample below launches a "godfather" search on IMDB only when this is sure to work (only on
iOS currently). We can actually try to search in the case of null as well but this sample plays it safe
by using the http link which is sure to work:

Boolean can = Display.getInstance().canExecute("imdb:///find?q=godfather");
if(can != null && can) {
 Display.getInstance().execute("imdb:///find?q=godfather");
} else {
 Display.getInstance().execute("http://www.imdb.com");
}

14.14. Automatic Build Hint Configuration
We try to make Codename One "seamless", this expresses itself in small details such as the
automatic detection of permissions on Android etc. The build servers go a long way in setting up
the environment as intuitive. But it’s not enough, build hints are often confusing and obscure. It’s
hard to abstract the mess that is native mobile OS’s and the odd policies from Apple/Google…

A good example for a common problem developers face is location code that doesn’t work in iOS.
This is due to the ios.locationUsageDescription build hint that’s required. The reason that build hint
was added is a requirement by Apple to provide a description for every app that uses the location
service.

To solve this sort of used case we have two API’s in Display:

/**
 * Returns the build hints for the simulator, this will only work in the debug environment and it's
 * designed to allow extensions/API's to verify user settings/build hints exist
 * @return map of the build hints that isn't modified without the codename1.arg. prefix
 */
public Map<String, String> getProjectBuildHints() {}

/**
 * Sets a build hint into the settings while overwriting any previous value. This will only work in the
 * debug environment and it's designed to allow extensions/API's to verify user settings/build hints exist.
 * Important: this will throw an exception outside of the simulator!
 * @param key the build hint without the codename1.arg. prefix
 * @param value the value for the hint
 */
public void setProjectBuildHint(String key, String value) {}

Both of these allow you to detect if a build hint is set and if not (or if it’s set incorrectly) set its
value…

So if you will use the location API from the simulator and you didn’t define
ios.locationUsageDescription Codename One will implicitly define a string there. The cool thing is
that you will now see that string in your settings and you would be able to customize it easily.

However, this gets way better than just that trivial example!

542

The real value is for 3rd party cn1lib authors. E.g. Google Maps or Parse. They can inspect the build
hints in the simulator and show an error in case of a misconfiguration. They can even show a setup
UI. Demos that need special keys in place can force the developer to set them up properly before
continuing.

14.15. Easy Thread
Working with threads is usually ranked as one of the least intuitive and painful tasks in
programming. This is such an error prone task that some platforms/languages took the route of
avoiding threads entirely. I needed to convert some code to work on a separate thread but I still
wanted the ability to communicate and transfer data from that thread.

This is possible in Java but non-trivial, the thing is that this is relatively easy to do in Codename One
with tools such as callSerially I can let arbitrary code run on the EDT. Why not offer that to any
random thread?

That’s why I created EasyThread which takes some of the concepts of Codeame One’s threading and
makes them more accessible to an arbitrary thread. This way you can move things like resource
loading into a separate thread and easily synchronize the data back into the EDT as needed…

Easy thread can be created like this:

EasyThread e = EasyThread.start("ThreadName");

You can just send a task to the thread using:

e.run(() -> doThisOnTheThread());

But it gets better, say you want to return a value:

e.run((success) -> success.onSuccess(doThisOnTheThread()), (myResult) -> onEDTGotResult(myRsult));

Lets break that down… We ran the thread with the success callback on the new thread then the
callback got invoked on the EDT as a result. So this code (success) →
success.onSuccess(doThisOnTheThread()) ran off the EDT in the thread and when we invoked the
onSuccess callback it sent it asynchronously to the EDT here: (myResult) → onEDTGotResult(myRsult).

These asynchronous calls make things a bit painful to wade thru so instead I chose to wrap them in
a simplified synchronous version:

EasyThread e = EasyThread.start("Hi");
int result = e.run(() -> {
 System.out.println("This is a thread");
 return 3;
});

543

There are a few other variants like runAndWait and there is a kill() method which stops a thread
and releases its resources.

14.16. Mouse Cursor
Codename one can change the mouse cursor when hovering over specific areas to indicate
resizability, movability etc. For obvious reasons this feature is only available in the desktop and
JavaScript ports as the other ports rely mostly on touch interaction. The feature is off by default and
needs to be enabled on a Form by using Form.setEnableCursors(true);. If you are writing a custom
component that can use cursors such as SplitPane you can use:

@Override
protected void initComponent() {
 super.initComponent();
 getComponentForm().setEnableCursors(true);
}

Once this is enabled you can set the cursor over a specific region using cmp.setCursor() which
accepts one of the cursor constants defined in Component.

14.17. Working With GIT
Working with GIT for storing Codename One projects isn’t exactly a feature but since it is so
ubiquitous we think it’s important to have a common guideline.

When we first started committing to git we used something like this for netbeans projects:

*.jar
nbproject/private/
build/
dist/
lib/CodenameOne_SRC.zip

Removing the jars, build, private folder etc. makes a lot of sense but there are a few nuances that
are missing here…

14.17.1. cn1lib’s

You will notice we excluded the jars which are stored under lib and we exclude the Codename One
source zip. But I didn’t exclude cn1libs… That was an omission since the original project we
committed didn’t have cn1libs. But should we commit a binary file to git?

I don’t know. Generally git isn’t very good with binaries but cn1libs make sense. In another project
that did have a cn1lib I did this:

544

*.jar
nbproject/private/
build/
dist/
lib/CodenameOne_SRC.zip
lib/impl/
native/internal_tmp/

The important lines are lib/impl/ and native/internal_tmp/. Technically cn1libs are just zips. When
you do a refresh libs they unzip into the right directories under lib/impl and native/internal_tmp.
By excluding these directories we can remove duplicates that can result in conflicts.

14.17.2. Resource Files

Committing the res file is a matter of personal choice. It is committed in the git ignore files above
but you can remove it. The res file is at risk of corruption and in that case having a history we can
refer to, matters a lot.

But the resource file is a bit of a problematic file. As a binary file if we have a team working with it
the conflicts can be a major blocker. This was far worse with the old GUI builder, that was one of
the big motivations of moving into the new GUI builder which works better for teams.

Still, if you want to keep an eye of every change in the resource file you can switch on the File →
XML Team Mode which should be on by default. This mode creates a file hierarchy under the res
directory to match the res file you opened. E.g. if you have a file named src/theme.res it will create
a matching res/theme.xml and also nest all the images and resources you use in the res directory.

That’s very useful as you can edit the files directly and keep track of every file in git. However, this
has two big drawbacks:

• It’s flaky - while this mode works it never reached the stability of the regular res file mode

• It conflicts - the simulator/device are oblivious to this mode. So if you fetch an update you also
need to update the res file and you might still have conflicts related to that file

Ultimately both of these issues shouldn’t be a deal breaker. Even though this mode is a bit flaky it’s
better than the alternative as you can literally "see" the content of the resource file. You can easily
revert and reapply your changes to the res file when merging from git, it’s tedious but again not a
deal breaker.

14.17.3. Eclipse Version

Building on the gitignore we have for NetBeans the eclipse version should look like this:

545

.DS_Store
*.jar
build/
dist/
lib/impl/
native/internal_tmp/
.metadata
bin/
tmp/
*.tmp
*.bak
*.swp
*.zip
*~.nib
local.properties
.settings/
.loadpath
.recommenders
.externalToolBuilders/
*.launch
*.pydevproject
.cproject
.factorypath
.buildpath
.project
.classpath

14.17.4. IntelliJ/IDEA

546

.DS_Store
*.jar
build/
dist/
lib/impl/
native/internal_tmp/
*.zip
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/dictionaries
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.xml
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
.idea/**/gradle.xml
.idea/**/libraries
*.iws
/out/
atlassian-ide-plugin.xml

547

548

15. Performance, Size & Debugging

15.1. Reducing Resource File Size
It’s easy to lose track of size/performance when you are working within the comforts of a visual
tool like the Codename One Designer. When optimizing resource files you need to keep in mind one
thing: it’s all about image sizes.

Images will take up 95-99% of the resource file size; everything else pales in
comparison.

Like every optimization the first rule is to reduce the size of the biggest images which will provide
your biggest improvements, for this purpose we introduced the ability to see image sizes in
kilobytes. To launch that feature use the menu item Images → Image Sizes (KB) in the designer.

Figure 450. Image sizes window that allows us to find the biggest impact on our RAM/Storage

This produces a list of images sorted by size with their sizes. Often the top entries will be multi-
images, which include HD resolution values that can be pretty large. These very high-resolution
images take up a significant amount of space!

Just going to the multi-images, selecting the unnecessary resolutions & deleting these images can
saves significant amounts of space:

Figure 451. Removing unused DPI’s

 You can see the size in KB at the top right side in the designers image viewer

Applications using the old GUI builder can use the Images → Delete Unused Images menu option
(it’s also under the Images menu). This tool allows detecting and deleting images that aren’t used

549

within the theme/GUI.

If you have a very large image that is opaque you might want to consider converting it to JPEG and
replacing the built in PNG’s. Notice that JPEG’s work on all supported devices and are typically
smaller.

Figure 452. Convert a MultiImage to use JPEGs instead of PNGs

You can use the excellent OptiPng [http://optipng.sourceforge.net/] tool to optimize image files right
from the Codename One designer. To use this feature you need to install OptiPng then select Images
→ Launch OptiPng from the menu. Once you do that the tool will automatically optimize all your
PNG’s.

When faced with size issues make sure to check the size of your res file, if your JAR file is large
open it with a tool such as 7-zip and sort elements by size. Start reviewing which element justifies
the size overhead.

15.2. Improving Performance
There are quite a few things you can do as a developer in order to improve the performance and
memory footprint of a Codename One application. This sometimes depends on specific device
behaviors but some of the tips here are true for all devices.

The simulator contains some tools to measure performance overhead of a specific component and
also detect EDT blocking logic. Other than that follow these guidelines to create more performance
code:

• Avoid round rect borders - they have a huge overhead on all platforms. Use image borders
instead (counter intuitively they are MUCH faster)

• Avoid Gradients - they perform poorly on most OS’s. Use a background image instead

• Use larger images when tiling or building image borders, using a 1 pixel (or event a few pixels)
wide or high image and tiling it repeatedly can be very expensive

• Shrink resource file sizes - Otherwise data might get collected by the garbage collector and
reloading data might be expensive

• Check that you don’t have too many image lock misses - this is discussed in the graphics
section

• On some platforms mutable images are slow - mutable images are images you can draw on
(using getGraphics()). On some platforms they perform quite badly (e.g. iOS) and should

550

http://optipng.sourceforge.net/

generally be avoided. You can check if mutable images are fast in a platform using
Display.areMutableImagesFast()

• * Make components either transparent or opaque * - a translucent component must paint it’s
parent every time. This can be expensive. An opaque component might have margins that
would require that we paint the parent so there is often overdraw in such cases (overdraw
means the same pixel being painted twice).

15.3. Performance Monitor
The Performance Monitor tool can be accessible via the Simulator → Performance Monitor menu
option in the simulator. This launches the following UI that can help you improve application
performance:

Figure 453. Main tab of the performance monitor: Logs and timings

The first tab of the performance monitor includes a table of the drawn components. Each entry
includes the number of times it was drawn and the slowest/fastest and average drawing time.

This is useful if a Form is slow. You might be able to pinpoint it to a specific component using this
tool.

The Log on the bottom includes debug related information. E.g. it warns about the usage of mutable
images which might be slow on some platforms. This also displays warnings when an unlocked
image is drawn etc.

551

Figure 454. Rendering tree

The rendering tree view allows us to inspect the hierarchy painting. You can press the refresh
button which will trigger the painting of the current Form. Every graphics operation is logged and so
is the stack to it.

You can then inspect the hierarchy and see what was drawn by the various components. You can
click the "stack" buttons to see the specific stack trace that lead to that specific drawing operation.

This is a remarkably powerful debugging tool as you can literally see "overdraw" within this tool.
E.g if you see fillRect or similar API’s invoked in the parent and then again and again in the
children this could indicate a problem.

 Android devices have a very nice overdraw debugging tool

15.4. Network Speed

Figure 455. Network speed tool

This feature is actually more useful for general debugging however it’s sometimes useful to
simulate a slow/disconnected network to see how this affects performance.

For this purpose the Codename One simulator allows you to slow down networking or even fake a
disconnected network to see how your application handles such cases.

552

15.5. Debugging Codename One Sources
When you debug your app with our source code you can place breakpoints deep within Codename
One and gain unique insight. You can also use the profilers and profile into Codename One to gain
similar performance specific insight.

When you run into a bug or a missing feature you can push that feature/fix back to Codename One
[https://www.codenameone.com/] using a pull request. Github makes that process trivial and in this new
video and slides below we show you how. The steps to use the code are:

1. Signup for Github

2. Fork http://github.com/codenameone/CodenameOne and http://github.com/codenameone/
codenameone-skins (also star and watch the projects for good measure).

3. Clone the git URL’s from the projects into the IDE using the Team → Git → Clone menu option.
Notice that you must deselect projects in the IDE for the menu to appear.

4. Download the cn1-binaries project from github here [https://github.com/codenameone/cn1-binaries/

archive/master.zip].

5. Unzip the cn1-binaries project and make sure the directory has the name cn1-binaries. Verify
that cn1-binaries, CodenameOne and codenameone-skins are within the same parent directory.
.In your own project remove the jars both in the build & run libraries section. Replace the build
libraries with the CodenameOne/CodenameOne project. Replace the runtime libraries with the
CodenameOne/Ports/JavaSEPort project.

This allows you to run the existing Codename One project with the Codename One source code and
debug into Codename One. You can now also commit, push and send a pull request with the
changes.

15.6. Device Testing Framework/Unit Testing
Codename One includes a built in testing framework and test recorder tool as part of the simulator.
This allows developers to build both functional and unit test execution on top of Codename One. It
even enables sending tests for execution on the device (pro-only feature).

To get started with the testing framework, launch the application and open the test recorder in the
simulator menu.

553

https://www.codenameone.com/
http://github.com/codenameone/CodenameOne
http://github.com/codenameone/codenameone-skins
http://github.com/codenameone/codenameone-skins
https://github.com/codenameone/cn1-binaries/archive/master.zip

Figure 456. The test recorder tool in the simulator

Once you press record a test will be generate for you as you use the application.

Figure 457. Test recording in progress, when done just press the save icon

You can build tests using the Codename One testing package to manipulate the Codename One UI
programmatically and perform various assertions.

Unlike frameworks such as JUnit which assign a method per test, the Codename One test
framework uses a class per test. This allows the framework to avoid reflection and thus allows it to
work properly on the device.

15.7. EDT Error Handler and sendLog
Handling errors or exceptions in a deployed product is pretty difficult, most users would just throw
away your app and some would give it a negative rating without providing you with the
opportunity to actually fix the bug that might have happened.

Figure 458. Default error dialog

554

Google improved on this a bit by allowing users to submit stack traces for failures on Android
devices but this requires the users approval for sending personal data which you might not need if
you only want to receive the stack trace and maybe some basic application state (without violating
user privacy).

For quite some time Codename One had a very powerful feature that allows you to both catch and
report such errors, the error reporting feature uses the Codename One cloud which is exclusive for
pro/enterprise users. Normally in Codename One we catch all exceptions on the EDT (which is
where most exceptions occur) and just display an error to the user as you can see in the picture.
Unfortunately this isn’t very helpful to us as developers who really want to see the stack;
furthermore we might prefer the user doesn’t see an error message at all!

Codename One allows us to grab all exceptions that occur on the EDT and handle them using the
method addEdtErrorHandler in the Display [https://www.codenameone.com/javadoc/com/codename1/ui/

Display.html] class. Adding this to the Log’s ability to report errors directly to us and we can get a
very powerful tool that will send us an email with information when a crash occurs!

This can be accomplished with a single line of code:

Log.bindCrashProtection(true);

We normally place this in the init(Object) method so all future on-device errors are emailed to
you. Internally this method uses the Display.getInstance().addEdtErrorHandler() API to bind error
listeners to the EDT. When an exception is thrown there it is swallowed (using
ActionEvent.consume()). The Log data is then sent using Log.sendLog().

To truly benefit from this feature we need to use the Log class for all logging and exception handling
instead of API’s such as System.out.

To log standard printouts you can use the Log.p(String) method and to log exceptions with their
stack trace you can use Log.e(Throwable).

15.8. Kitchen Sink Case Study
Performance is one of those vague subjects that is often taught by example.

During our debugging of the contacts demo that is a part of the new kitchen sink demo we noticed
its performance was sub par. We assumed this was due to the implementation of getAllContacts &
that there is nothing to do. While debugging another issue we noticed an anomaly during the
loading of the contacts.

This led to the discovery that we are loading the same resource file over and over again for every
single contact in the list!

In the new Contacts demo we have a share button for each contact, the code for constructing a
ShareButton looks like this:

555

https://www.codenameone.com/javadoc/com/codename1/ui/Display.html

public ShareButton() {
 setUIID("ShareButton");
 FontImage.setMaterialIcon(this, FontImage.MATERIAL_SHARE);
 addActionListener(this);
 shareServices.addElement(new SMSShare());
 shareServices.addElement(new EmailShare());
 shareServices.addElement(new FacebookShare());
}

This seems reasonable until you realize that the constructors for SMSShare, EmailShare &
FacebookShare load the icons for each of those…

These icons are in a shared resource file that we load and don’t properly cache. The initial
workaround was to cache this resource but a better solution was to convert this code:

public SMSShare() {
 super("SMS", Resources.getSystemResource().getImage("sms.png"));
}

Into this code:

public SMSShare() {
 super("SMS", null);
}

@Override
public Image getIcon() {
 Image i = super.getIcon();
 if(i == null) {
 i = Resources.getSystemResource().getImage("sms.png");
 setIcon(i);
 }
 return i;
}

This way the resource uses lazy loading as needed.

This small change boosted the loading performance and probably the general performance due to
less memory fragmentation.

The lesson that we should learn every day is to never assume about performance…

15.8.1. Scroll Performance - Threads aren’t magic

Another performance pitfall in this same demo came during scrolling. Scrolling was janky
(uneven/unsmooth) right after loading finished would recover after a couple of minutes.

556

This relates to the images of the contacts.

To hasten the loading of contacts we load them all without images. We then launch a thread that
iterates the contacts and loads an individual image for a contact. Then sets that image to the contact
and replaces the placeholder image.

This performed well in the simulator but didn’t do too well even on powerful mobile phones. We
assumed this wouldn’t be a problem because we used Util.sleep() to yield CPU time but that
wasn’t enough.

Often when we see performance penalty the response is: "move it to a separate thread". The
problem is that this separate thread needs to compete for the same system resources and merge its
changes back into the EDT. When we perform something intensive we need to make sure that the
CPU isn’t needed right now…

In this and past cases we solved this using a class member indicating the last time a user interacted
with the UI.

Here we defined:

private long lastScroll;

Then we did this within the background loading thread:

// don't do anything while we are scrolling or animating
long idle = System.currentTimeMillis() - lastScroll;
while(idle < 1500 || contactsDemo.getAnimationManager().isAnimating() || scrollY != contactsDemo.getScrollY()) {
 scrollY = contactsDemo.getScrollY();
 Util.sleep(Math.min(1500, Math.max(100, 2000 - ((int)idle))));
 idle = System.currentTimeMillis() - lastScroll;
}

This effectively sleeps when the user interacts with the UI and only loads the images if the user
hasn’t touched the UI in a while.

Notice that we also check if the scroll changes, this allows us to notice cases like the animation of
scroll winding down.

All we need to do now is update the lastScroll variable whenever user interaction is in place. This
works for user touches:

parentForm.addPointerDraggedListener(e -> lastScroll = System.currentTimeMillis());

This works for general scrolling:

557

contactsDemo.addScrollListener(new ScrollListener() {
 int initial = -1;
 @Override
 public void scrollChanged(int scrollX, int scrollY, int oldscrollX, int oldscrollY) {
 // scrolling is sensitive on devices...
 if(initial < 0) {
 initial = scrollY;
 }
 lastScroll = System.currentTimeMillis();
 ...
 }
});

 Due to technical constraints we can’t use a lambda in this specific case…

558

16. Advanced Topics/Under the Hood

16.1. Sending Arguments To The Build Server
When sending a build to the server we can provide additional parameters to the build, which are
incorporated into the build process on the server to "hint" on multiple different build time options.

These hints are often referred to as "build hints" or "build arguments", they are effectively very
much like souped up compiler flags that you can use to tune the build server’s behavior. This is
useful for fast iteration on new functionality without building plugin UI for every change. This is
also useful for exposing very low level behavior such as customizing the Android manifest XML or
the iOS plist.

You can set these hints by right clicking the project in the IDE and selecting Codename One →
Codename One Settings → Build Hints. The hints use the key=value style of data.

Figure 459. The build hints UI in Codename One Settings

You can set the build hints in the codenameone_settings.properties file directly notice that when you
do that all settings need to start with the codename1.arg. prefix. When editing the properties file
directly we would need to define something like android.debug=true as
codename1.arg.android.debug=true.

Here is the current list of supported arguments, notice that build hints are added all the time so
consult the discussion forum if you don’t find what you need here:

Table 10. Build hints

Name Description

android.debug true/false defaults to true - indicates whether to
include the debug version in the build

android.release true/false defaults to true - indicates whether to
include the release version in the build

android.installLocation Maps to android:installLocation manifest entry
defaults to auto. Can also be set to internalOnly
or preferExternal.

559

Name Description

android.gradle Deprecated, this mode is no longer supported.
true/false defaults to false prior to 3.3 and true
after. Uses Gradle instead of Ant to build the
Android app

android.xapplication defaults to an empty string. Allows developers of
native Android code to add text within the
application block to define things such as
widgets, services etc.

android.permission.PERMISSION_NAME true/false Whether to include a particular
permission. Use of these build hints is preferred
to android.xpermissions since they avoid possible
conflicts with libraries. See Android’s
Manifest.permission docs
[https://developer.android.com/reference/android/

Manifest.permission.html] for a full list of
permissions.

android.permission.PERMISSION_NAME.maxSd
kVersion

Will be translated to the maxSdkVersion attribute
of the <uses-permission> tag for the
corresponding
android.permission.PERMISSION_NAME build hint.
(Optional)

android.permission.PERMISSION_NAME.require
d

true/false Will be translated to the required
attribute of the <uses-permission> tag for the
corresponding
android.permission.PERMISSION_NAME build hint.
(Optional)

android.xpermissions additional permissions for the Android manifest

android.xintent_filter Allows adding an intent filter to the main
android activity

android.activity.launchMode Allows explicitly setting the android:launchMode
attribute of the main activity in android. Default
is "singleTop", but for some applications you
may need to change this behaviour. In
particular, apps that are meant to open a file
type will need to set this to "singleTask". See
Android docs for the activity element
[https://developer.android.com/guide/topics/manifest/

activity-element.html] for more information about
the android:launchMode attribute.

android.licenseKey The license key for the Android app, this is
required if you use in-app-purchase on Android

android.stack_size Size in bytes for the Android stack thread

560

https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/guide/topics/manifest/activity-element.html

Name Description

android.statusbar_hidden true/false defaults to false. When set to true
hides the status bar on Android devices.

android.facebook_permissions Permissions for Facebook used in the Android
build target, applicable only if Facebook native
integration is used.

android.googleAdUnitId Allows integrating admob/google play ads, this is
effectively identical to google.adUnitId but only
applies to Android

android.googleAdUnitTestDevice Device key used to mark a specific Android
device as a test device for Google Play ads
defaults to
C6783E2486F0931D9D09FABC65094FDF

android.includeGPlayServices Deprecated, please android.playService.*!
Indicates whether Goolge Play Services should
be included into the build, defaults to false but
that might change based on the functionality of
the application and other build hints. Adding
Google Play Services support allows us to use a
more refined location implementation and
invoke some Google specific functionality from
native code.

android.playService.plus,
android.playService.auth,
android.playService.base,
android.playService.identity,
android.playService.indexing,
android.playService.appInvite,
android.playService.analytics,
android.playService.cast,
android.playService.gcm,
android.playService.drive,
android.playService.fitness,
android.playService.location,
android.playService.maps,
android.playService.ads,
android.playService.vision,
android.playService.nearby,
android.playService.panorama,
android.playService.games,
android.playService.safetynet,
android.playService.wallet,
android.playService.wearable

Allows including only a specific play services
library portion. Notice that this setting conflicts
with the deprecated
android.includeGPlayServices and only works
with the gradle build (which is on by default but
can be toggled using android.gradle).

If none of the services are defined to true then
plus, auth, base, analytics, gcm, location, maps &
ads will be set to true. If one or more of the
android.playService entries are defined to
something then all entries will default to false.

561

Name Description

android.playServicesVersion The version number of play services to build
against. Experimental. Use with caution as
building against versions other than the server
default may introduce incompatibilities with
some Codename One APIs.

xxx.minPlayServicesVersion This is a special case build hint. You can use any
prefix to the build hint and the convention is to
use your cn1lib name. It’s identical to
android.minPlayServicesVersion with the
exception that the "highest version wins". That
way if your cn1lib requires play services 9+ and
uses: myLib.minPlayServicesVersion=9.0.0 and
another library has
otherLib.minPlayServicesVersion=10.0.0 then
play services will be 10.0.0

android.multidex Boolean true/false defaults to false. Multidex
allows Android binaries to reference more than
65536 methods. This slows builds a bit so we
have it off by default but if you get a build error
mentioning this limit you should turn this on.

android.headphoneCallback Boolean true/false defaults to false. When set to
true it assumes the main class has two methods:
headphonesConnected & headphonesDisconnected
which it invokes appropriately as needed

android.gpsPermission Indicates whether the GPS permission should be
requested, it is auto-detected by default if you
use the location API. However, some code might
want to explicitly define it

android.asyncPaint Boolean true/false defaults to true. Toggles the
Android pipeline between the legacy pipeline
(false) and new pipeline (true)

android.stringsXml Allows injecting additional entries into the
strings.xml file using a value that includes
something like this`<string
name="key1">value1</string><string
name="key2">value2</string>`

android.supportV4 Boolean true/false defaults to false but that can
change based on usage (e.g. push implicitly
activates this). Indicates whether the android
support v4 library should be included in the
build

562

Name Description

android.style Allows injecting additional data into the
styles.xml file right before the closing resources
tag

android.cusom_layout1 Applies to any number of layouts as long as they
are in sequence (e.g. android.cusom_layout2,
android.cusom_layout3 etc.). Will write the
content of the argument as a layout xml file and
give it the name cusom_layout1.xml onwards.
This can be used by native code to work with
XML files

android.keyboardOpen Boolean true/false defaults to true. Toggles the
new async keyboard mode that leaves the
keyboard open while we move between text
components

android.versionCode Allows overriding the auto generated version
number with a custom internal version number
specifically used for the xml attribute
android:versionCode

android.captureRecord Indicates whether the RECORD_AUDIO permission
should be requested. Can be enabled or any other
value to disable this option

android.nonconsumable Comma delimited string of items that are non-
consumable in the in-app-purchase API

android.removeBasePermissions Boolean true/false defaults to false. Disables the
builtin permissions specifically INTERNET
permission (i.e. no networking…)

android.blockExternalStoragePermission Boolean true/false defaults to false. Disables the
external storage (SD card) permission

android.min_sdk_version The minimum SDK required to run this app, the
default value changes based on functionality but
can be as low as 7. This corresponds to the XML
attribute android:minSdkVersion.

android.mockLocation Boolean true/false defaults to true. Toggles the
mock location permission which is on by
default, this allows easier debugging of Android
device location based services

android.smallScreens Boolean true/false defaults to true. Corresponds
to the android:smallScreens XML attribute and
allows disabling the support for very small
phones

android.xapplication_attr Allows injecting additional attributes into the
application` tag in the Android XML

563

Name Description

android.xactivity Allows injecting additional attributes into the
activity tag in the Android XML

android.streamMode The mode in which the volume key should
behave, defaults to OS default. Allows setting it
to music for music playback apps

android.pushVibratePattern Comma delimited long values to describe the
push pattern of vibrate used for the setVibrate
native method

android.enableProguard Boolean true/false defaults to true. Allows
disabling the proguard obfuscation even on
release builds, notice that this isn’t
recommended

android.proguardKeep Arguments for the keep option in proguard
allowing us to keep a pattern of files e.g. -keep
class com.mypackage.ProblemClass { *; }

android.shrinkResources Boolean true/false defaults to false. Used only in
conjunction with android.enableProguard.
Strips out unused resources to reduce apk size.
Since 7.0

android.sharedUserId Allows adding a manifest attribute for the
sharedUserId option

android.sharedUserLabel Allows adding a manifest attribute for the
sharedUserLabel option

android.targetSDKVersion Indicates the Android SDK used to compile the
Android build currently defaults to 21. Notice
that not all targets will work since the source
might have some limitations and not all SDK
targets are installed on the build servers.

android.useAndroidX Use Android X instead of support libraries. This
will also run a find/replace on all source files to
replace support libraries and artifacts with
AndroidX equivalents.

android.theme Light or Dark defaults to Light. On Android 4+
the default Holo theme is used to render the
native widgets in some cases and this indicates
whether holo light or holo dark is used.
Currently this doesn’t affect the Codename One
theme but that might change in the future.

android.web_loading_hidden true/false defaults to false - set to true to hide the
progress indicator that appears when loading a
web page on Android.

564

Name Description

block_server_registration true/false flag defaults to false. By default
Codename One applications register with our
server, setting this to true blocks them from
sending information to our cloud. We keep this
data for statistical purposes and intend to
provide additional installation stats in the
future.

facebook.appId The application ID for an app that requires
native Facebook login integration, this defaults
to null which means native Facebook support
shouldn’t be in the app

gcm.sender_id The Android/chrome push identifier, see the
push section for more details

android.background_push_handling Deliver push messages on Android when the app
is minimized by setting this to "true". Default
behaviour is to deliver the message only if the
app is in the foreground when received, or after
the user taps on the notification to open the app,
if the app was in the background when the
message was received.

ios.associatedDomains Comma-delimited list of domains associated
with this app. Since 6.0. Note that each domain
should be prefixed by a supported prefix. E.g.
"applinks:" or "webcredentials:". See Apple’s
documentation on Associated domains
[https://developer.apple.com/documentation/security/
password_autofill/
setting_up_an_app_s_associated_domains?

language=objc] for more information.

ios.bitcode true/false defaults to false. Enables bitcode
support for the build.

ios.debug.archs Can be set to "arm64" to force iOS debug builds
to be 64 bit. By default, debug builds are 32 bit in
order to shorten build-times and maintain
compatibility with older devices.

ios.distributionMethod Specifies distribution type for debug iOS builds.
This is generally used for enterprise or ad-hoc
builds (using values "enterprise" and "ad-hoc"
respectively).

ios.debug.distributionMethod Specifies distribution type for debug iOS builds
only. This is generally used for enterprise or ad-
hoc builds (using values "enterprise" and "ad-
hoc" respectively).

565

https://developer.apple.com/documentation/security/password_autofill/setting_up_an_app_s_associated_domains?language=objc
https://developer.apple.com/documentation/security/password_autofill/setting_up_an_app_s_associated_domains?language=objc

Name Description

ios.release.distributionMethod Specifies distribution type for release iOS builds
only. This is generally used for enterprise or ad-
hoc builds (using values "enterprise" and "ad-
hoc" respectively).

ios.keyboardOpen Flips between iOS keyboard open mode and
auto-fold keyboard mode. Defaults to true which
means the keyboard will remain open and not
fold automatically when editing moves to
another field.

ios.urlScheme Allows intercepting a URL call using the syntax
<string>urlPrefix<string>

ios.useAVKit Use AVKit for video components on iOS rather
than MPMoviePlayerController on iOS versions 8
through 12. iOS 13 will always use AVKit, and
iOS 7 and lower will always use
MPMoviePlayerController. Default value false

ios.teamId Specifies the team ID associated with the iOS
provisioning profile and certificate. Use
ios.debug.teamId and ios.release.teamId to
specify different team IDs for debug and release
builds respectively.

ios.debug.teamId Specifies the team ID associated with the iOS
debug provisioning profile and certificate.

ios.release.teamId Specifies the team ID associated with the iOS
release provisioning profile and certificate.

ios.project_type one of ios, ipad, iphone (defaults to ios).
Indicates whether the resulting binary is
targeted to the iphone only or ipad only. Notice
that the IDE plugin has a "Project Type" combo
box you should use under the iOS section.

ios.rpmalloc true/false Use rpmalloc [https://github.com/

rampantpixels/rpmalloc] instead of malloc/free for
memory allocation in ParparVM. This will cause
the deployment target to be changed to a
minimum of iOS 8.0.

ios.statusbar_hidden true/false defaults to false. Hides the iOS status
bar if set to true.

566

https://github.com/rampantpixels/rpmalloc

Name Description

ios.newStorageLocation true/false defaults to false but defined on new
projects as true by default. This changes the
storage directory on iOS from using caches to
using the documents directory which is more
correct but might break compatibility. This is
described in this issue [https://github.com/

codenameone/CodenameOne/issues/1480]

ios.prerendered_icon true/false defaults to false. The iOS build process
adapts the submitted icon for iOS conventions
(adding an overlay) that might not be
appropriate on some icons. Setting this to true
leaves the icon unchanged (only scaled).

ios.app_groups Space-delimited list of app groups that this app
belongs to as described in Apple’s
documentation [https://developer.apple.com/library/
content/documentation/Miscellaneous/Reference/
EntitlementKeyReference/Chapters/
EnablingAppSandbox.html#//apple_ref/doc/uid/

TP40011195-CH4-SW19]. These are added to the
entitlements file with key
com.apple.security.application-groups.

ios.keychainAccessGroup Space-delimited list of keychain access groups
that this app has access to as described in
Apple’s documentation [https://developer.apple.com/
library/content/documentation/Security/Conceptual/
keychainServConcepts/02concepts/concepts.html#//

apple_ref/doc/uid/TP30000897-CH204-SW11]. These are
added to the entitlements file with the key
keychain-access-groups.

ios.application_exits true/false (defaults to false). Indicates whether
the application should exit immediately on
home button press. The default is to exit, leaving
the application running is only partially tested at
the moment.

ios.blockScreenshotsOnEnterBackground true/false (defaults to false). Indicates that app
should prevent iOS from taking screenshots
when app enters background. Described here
[https://shannah.github.io/cn1-recipes/#

_hiding_sensitive_data_when_entering_background].

567

https://github.com/codenameone/CodenameOne/issues/1480
https://developer.apple.com/library/content/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW19
https://developer.apple.com/library/content/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW19
https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/02concepts/concepts.html#//apple_ref/doc/uid/TP30000897-CH204-SW11
https://shannah.github.io/cn1-recipes/#_hiding_sensitive_data_when_entering_background

Name Description

ios.applicationQueriesSchemes Comma separated list of url schemes that
canExecute will respect on iOS. If the url scheme
isn’t mentioned here canExecute will return false
starting with iOS 9. Notice that this collides with
ios.plistInject when used with the
<key>LSApplicationQueriesSchemes</key>… value
so you should use one or the other. E.g. to enable
canExecute for a url like myurl://xys you can use:
myurl,myotherurl

ios.themeMode default/legacy/modern/auto (defaults to default).
Default means you don’t define a theme mode.
Currently this is equivalent to legacy. In the
future we will switch this to be equivalent to
auto. legacy - this will behave like iOS 6
regardless of the device you are running on.
modern - this will behave like iOS 7 regardless of
the device you are running on. auto - this will
behave like iOS 6 on older devices and iOS 7 on
newer devices.

ios.interface_orientation UIInterfaceOrientationPortrait by default.
Indicates the orientation, one or more of
(separated by colon :):
UIInterfaceOrientationPortrait,
UIInterfaceOrientationPortraitUpsideDown,
UIInterfaceOrientationLandscapeLeft,
UIInterfaceOrientationLandscapeRight. Notice
that the IDE plugin has an "Interface
Orientation" combo box you should use under
the iOS section.

ios.xcode_version The version of xcode used on the server.
Defaults to 4.5; currently accepts 5.0 as an option
and nothing else.

ios.multitasking Set to true to enable iOS multitasking and split-
screen support. This only works if
ios.xcode_verson=9.2.

java.version Valid values include 5 or 8. Indicates the JVM
version that should be used for server
compilation, this is defined by default for newly
created apps based on the Java 8 mode selection

568

Name Description

javascript.inject_proxy true/false (defaults to true) By default, the build
server will configure the .war version of your
app to use the bundled proxy servlet for HTTP
requests (to get around same-origin restrictions
on network requests). Setting this to false
prevents this, causing the application to make
network requests without a proxy.

javascript.inject.beforeHead Content to be injected into the index.html file at
the beginning of the <head> tag.

javascript.inject.afterHead Content to be injected into the index.html file at
the end of the <head> tag.

javascript.minifying true/false (defaults to true). By default the
javascript code is minified to reduce file size.
You may optionally disable minification by
setting javascript.minifying to false.

javascript.proxy.url The URL to the proxy servlet that should be used
for making network requests. If this is omitted,
the .war version of the app will be set to use the
bundled proxy servlet, and the .zip version of
the app will be set to use no proxy. If
javascript.inject_proxy is false, this build-hint
will be ignored.

javascript.sourceFilesCopied true/false (defaults to false). Setting this flag to
true will cause available java source files to be
included in the resulting .zip and .war files.
These may be used by Chrome during
debugging.

javascript.stopOnErrors true/false (defaults to true). Cause javascript
build to fail if there are warnings during the
build. In some cases build warnings won’t affect
the running of the app. E.g. if the Javascript port
is missing a method that the app depends on, but
it isn’t used in most of the app. Or if there is
multithreaded code detected in static initializers,
but that code-path isn’t used by the app. Setting
this to false may allow you to get past some
build errors, but it might just result in runtime
errors later on, which are much more difficult to
debug. *This build hint is only available in
Codename One 3.4 and later.

javascript.teavm.version (Optional) The version of TeaVM to use for the
build. Use caution, only use this property if you
know what you are doing!

569

Name Description

rim.askPermissions true/false defaults to true. Indicates whether the
user is prompted for permissions on Blackberry
devices.

google.adUnitId Allows integrating Admob/Google Play ads into
the application see this
[https://www.codenameone.com/blog/adding-google-play-

ads.html]

rim.ignor_legacy true/false defaults to false. When set to true the
Blackberry build targets only 5.0 devices and
newer and doesn’t build the 4.x version.
rim.nativeBrowser true/false defaults to false.
Enables the native blackberry browser on OS 5
or higher. It is disabled by default since it might
casue crashes on some cases.

rim.obfuscation true/false defaults to false. Obfuscate the JAR
before invoking the rimc compiler.

ios.plistInject entries to inject into the iOS plist file during
build.

ios.includePush true/false (defaults to false). Whether to include
the push capabilities in the iOS build. Notice that
the IDE plugin has an "Include Push" check box
you should use under the iOS section.

ios.newPipeline Boolean true/false defaults to true. Allows
toggling the OpenGL ES 2.0 drawing pipeline off
to the older OGL ES 1.0 pipeline.

ios.headphoneCallback Boolean true/false defaults to false. When set to
true it assumes the main class has two methods:
headphonesConnected & headphonesDisconnected
which it invokes appropriately as needed

ios.facebook_permissions Permissions for Facebook used in the Android
build target, applicable only if Facebook native
integration is used.

ios.applicationDidEnterBackground Objective-C code that can be injected into the iOS
callback method (message)
applicationDidEnterBackground.

ios.enableAutoplayVideo Boolean true/false defaults to false. Makes videos
"auto-play" when loaded on iOS

ios.googleAdUnitId Allows integrating admob/google play ads, this is
effectively identical to google.adUnitId but only
applies to iOS

570

https://www.codenameone.com/blog/adding-google-play-ads.html

Name Description

ios.viewDidLoad Objective-C code that can be injected into the iOS
callback method (message) viewDidLoad

ios.googleAdUnitIdPadding Indicates the amount of padding to pass to the
Google ads placed at the bottom of the screen
with google.adUnitId

ios.enableBadgeClear Boolean true/false defaults to true. Clears the
badge value with every load of the app, this is
useful if the app doesn’t manually keep track of
number values for the badge

ios.glAppDelegateHeader Objective-C code that can be injected into the iOS
app delegate at the top of the file. E.g. if you
need to include headers or make special imports
for other injected code

ios.glAppDelegateBody Objective-C code that can be injected into the iOS
app delegate within the body of the file before
the end. This only makes sence for methods that
aren’t already declared in the class

ios.beforeFinishLaunching Objective-C code that can be injected into the iOS
app delegate at the top of the body of the
didFinishLaunchingWithOptions callback
method

ios.afterFinishLaunching Objective-C code that can be injected into the iOS
app delegate at the bottom of the body of the
didFinishLaunchingWithOptions callback
method

ios.locationUsageDescription This flag is required for iOS 8 and newer if you
are using the location API. It needs to include a
description of the reason for which you need
access to the users location

571

Name Description

ios.NSXXXUsageDescription iOS privacy flags for using certain APIs. Starting
with Xcode 8, you are required to add usage
description strings for certain APIs. Find a full
list of the available keys in Apple’s docs
[https://developer.apple.com/library/content/
documentation/General/Reference/

InfoPlistKeyReference/Articles/CocoaKeys.html]. Some
relevant ones include
ios.NSCameraUsageDescription,
ios.NSContactsUsageDescription,
ios.NSLocationAlwaysUsageDescription,
NSLocationUsageDescription,
ios.NSMicrophoneUsageDescription,
ios.NSPhotoLibraryAddUsageDescription,
ios.NSSpeechRecognitionUsageDescription,
ios.NSSiriUsageDescription

ios.add_libs A semicolon separated list of libraries that
should be linked to the app in order to build it

ios.pods A comma separated list of Cocoa Pods
[https://cocoapods.org/] that should be linked to the
app in order to build it. E.g. AFNetworking ~> 2.6,
ORStackView ~> 3.0, SwiftyJSON ~> 2.3

ios.pods.platform Sets the Cocoapods 'platform' for the Cocoapods.
Some Cocoapods require a minimum platform
level. E.g. ios.pods.platform=7.0.

ios.deployment_target Sets the deployment target for iOS builds. This is
the minimum version of iOS required by a
device to install the app. E.g.
ios.deployment_target=8.0. Default is '6.0'. Note:
This build hint interacts with the ios.rpmalloc
build hint. If ios.deployment_target is 8.0 or
higher, ParparVM will use rpmalloc
[https://github.com/rampantpixels/rpmalloc] by
default. You can disable this default and revert
back to using malloc/free by setting the
ios.rpmalloc=false build hint.

ios.bundleVersion Indicates the version number of the bundle, this
is useful if you want to create a minor version
number change for the beta testing support

ios.objC Added the -ObjC compile flag to the project files
which some native libraries require

572

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html
https://cocoapods.org/
https://github.com/rampantpixels/rpmalloc

Name Description

ios.testFlight Boolean true/false defaults to false and works
only for pro accounts. Enables the testflight
support in the release binaries for easy beta
testing. Notice that the IDE plugin has a "Test
Flight" check box you should use under the iOS
section.

ios.generateSplashScreens Boolean true/false defaults to false as of 5.0.
Enable legacy generation of splash screen
images for use when launching the app. These
have been replaced now by the new launch
storyboards.

desktop.width Width in pixels for the form in desktop builds,
will be doubled for retina grade displays.
Defaults to 800.

desktop.height Height in pixels for the form in desktop builds,
will be doubled for retina grade displays.
Defaults to 600.

desktop.adaptToRetina Boolean true/false defaults to true. When set to
true some values will ve implicitly doubled to
deal with retina displays and icons etc. will use
higher DPI’s

desktop.resizable Boolean true/false defaults to true. Indicates
whether the UI in the desktop build is resizable

desktop.fontSizes Indicates the sizes in pixels for the system fonts
as a comma delimited string containing 3
numbers for small,medium,large fonts.

desktop.theme Name of the theme res file to use as the "native"
theme. By default this is native indicating iOS
theme on Mac and Windows Metro on Windows.
If its something else then the app will try to load
the file /themeName.res.

desktop.themeMac Same as desktop.theme but specific to Mac OS

desktop.themeWin Same as desktop.theme but specific to Windows

desktop.windowsOutput Can be exe or msi depending on desired results

windows.extensions Content to be embedded into the <Extensions>
section of the Package.appxmanifest file for
windows (UWP) builds.

573

Name Description

win.vm32bit true/false (defaults to false). Forces windows
desktop builds to use the Win32 JVM instead of
the 64 bit VM making them compatible with
older Windows Machines. This is off by default
at the moment because of a bug in JDK 8 update
112 that might cause this to fail for some cases

noExtraResources true/false (defaults to false). Blocks codename
one from injecting its own resources when set to
true, the only effect this has is in slightly
reducing archive size. This might have adverse
effects on some features of Codename One so it
isn’t recommended.

j2me.iconSize Defaults to 48x48. The size of the icon in the
format of width x height (without the spacing).

16.2. Offline Build

 Offline build is an enterprise feature

At this time Codename One supports iOS & Android targets for offline builds. We require an
Enterprise grade subscription as explained in the sidebar.

If you signup for Enterprise and cancel you can still do the offline build. You won’t
be able to update the builder though

Why only Enterprise?

There are several reasons, the technical one is that offline builds are no panacea. Things fail.
The support effort for offline builds is huge, as evidence despite the fact that all of our code is
open source very few people bothered trying to compile it because of the complexities.

We don’t think building offline is convenient and we always recommended avoiding it. When
we build our own apps we use the cloud just like everyone else because it’s surprisingly
faster and more convenient…

However, some government and regulated industries have issues with SaaS delivered
solutions and thus must use offline build. These organizations also require enterprise grade
support for most cases and so it makes sense to bundle as an enterprise only solution.

16.2.1. Prerequisites for iOS Builds

You need the following installed tools/versions for Codename One’s offline build process:

• Mac ideally with El Capitan, newer should work

574

• Xcode 7+ (but not 8+ at this time)

• Oracle’s JDK 8

• Cocoapods - in the terminal type sudo gem install cocoapods --pre.

• xcodeproj - in the terminal type sudo gem install xcodeproj

16.2.2. Prerequisites for Android Builds

Android builds need the following:

• Android Studio

• Oracle’s JDK 8

• Gradle version 2.11

16.2.3. Installation

To build offline you need to install the offline builder code which is a stripped down version of the
build servers. When you install a version of the offline builder it maps to the time in which you
downloaded it…

That means that features like versioned builds won’t work. You can download/keep multiple offline
builders and toggle between them which is similar in scope.

E.g. if you installed an offline builder then installed a newer version and the newer version has a
bug you can revert to the old version. Notice that the older version might not have features that
exist in a newer version.

Since installation requires an enterprise account, you might need to re-login in the
Codename One Settings UI

To install an offline builder open the Codename One Settings UI by right clicking the project and
selecting Codename One → Codname One Settings.

Figure 460. Open Codename One settings

Even though the settings are a part of a project, the offline build settings are global
and apply to all the projects…

Once the Codename One settings UI launches select the Offline Builds entry:

575

Figure 461. Offline build entry

This should launch the settings UI which would be blank the first time around:

Figure 462. Offline builds setting UI

When you are in this form you can press the download button to download the current version
from the build server. If there is no update nothing will happen. If there is the latest version will
download and tag with a version number/date.

You can see/change the selected version in this UI. This allows building against an older version.
You can also delete older builds to save space.

16.2.4. Building

Offline building is almost like building with the cloud. In the right click menu you can select one of
the offline build targets as such:

Figure 463. The offline build targets

Once selected build generates a project under the build/and or build/iphone respectively.

Open these directories in Android Studio or xcode to run/build in the native IDE to the device or
native emulator/simulator.

Build deletes previous offline builds, if you want to keep the sources of a build you
need to move it to a different directory!

To get this to work with Android Studio you will need one more step. You will need to configure
Android studio to use your local version of gradle 2.11 by following these steps:

• Open the Android Studio preferences

576

Figure 464. Android Studio Preferences

• Select Build, Execution, Deployment → Build Tools → Gradle

• Select the Use Local gradle distribution

• Press the … and pick your local gradle 2.11 install

Figure 465. Local gradle config

16.2.5. FAQ

Should I use the Offline Builder?

Probably not.

Cloud build is far more convenient, simple. Doesn’t require any installs (other than the plugin) and
is much faster.

We built this tool for developers who work in situations that prohibit cloud build. E.g. government,
banking etc. where regulation is restrictive.

Can I Move/Backup my Builders?

No.

We protect all the builders to avoid abuse. If you backup and restore on a new system the builders
might stop working even if you are a paying enterprise customer.

Can I install the builders for all our developers?

Our licensing terms require a parallel developer seat for the Codename One developers in your
company. If you have 5 Codename One developers they must all have an enterprise developer

577

account to comply.

E.g. You can’t have one enterprise account and 4 basic accounts.

The reason behind this is simple, in the past we saw a lot of funneling from developers who built
such a licensing structure.

What Happens if I Cancel?

If you cancel your enterprise subscription all your existing installed offline builders should work as
before but you won’t be able to update them or get support for this.

When are Versions Released?

We will try to keep this in the same release pace as library updates i.e. once a week typically on a
Friday.

Are Version Numbers Sequential?

They grow but we sometimes skip versions. Versions map to our cloud deployment versioning
scheme and we might skip versions in some cases.

Why is this Feature Limited to Enterprise Subscribers?

This is a complex tool to support & maintain. SaaS has a well defined business model where we can
reduce prices and maintenance costs.

Offline builds are more like a shrinkwrap business model in which case our pricing needs to align
itself to shrinkwrap pricing models for long term sustainability.

The main use case this product tries to address is government and highly regulated industries who
are in effect enterprise users.

How Different is the Code From Cloud Builds?

We use the same code as we do in the cloud build process with minor modifications in the process.
Since the cloud servers are setup by us they work differently but should align reasonably well.

16.3. Android Permissions
One of the annoying tasks when programming native Android applications is tuning all the
required permissions to match your codes requirements, Codename One aims to simplify this. The
build server automatically introspects the classes sent to it as part of the build and injects the right
set of permissions required by the app.

However, sometimes developers might find the permissions that come up a bit confusing and might
not understand why a specific permission came up. This maps Android permissions to the
methods/classes in Codename One that would trigger them. Notice that this list isn’t exhaustive as
the API is rather large:

578

android.permission.WRITE_EXTERNAL_STORAGE - this permission appears by default for Codename One
applications, since the FileSystemStorage API (which is used extensively) might have some
dependencies on it. You can explicitly disable it using the build hint
android.blockExternalStoragePermission=true, notice that this is something we don’t test and it
might fail on devices.

android.permission.INTERNET - this is a hardcoded permission in Codename One, the ability to
connect to the network is coded into all Codename One applications.

android.hardware.camera & android.permission.RECORD_AUDIO - are triggered by
com.codename1.Capture

android.permission.RECORD_AUDIO - is triggered by usage of MediaManager.createMediaRecorder() &
Display.createMediaRecorder()

android.permission.READ_PHONE_STATE - is triggered by com.codename1.ads package,
com.codename1.components.Ads, com.codename1.components.ShareButton, com.codename1.media,
com.codename1.push, Display.getUdid() & Display.getMsisdn(). This permission is required for media
in order to suspend audio playback when you get a phone call.

android.hardware.location, android.hardware.location.gps,
android.permission.ACCESS_FINE_LOCATION, android.permission.ACCESS_MOCK_LOCATION &
android.permission.ACCESS_COARSE_LOCATION - map to com.codename1.maps & com.codename1.location.

package.permission.C2D_MESSAGE, com.google.android.c2dm.permission.RECEIVE,
android.permission.RECEIVE_BOOT_COMPLETED - are requested by the com.codename1.push package

android.permission.READ_CONTACTS - triggers by the package com.codename1.contacts &
Display.getAllContacts().

android.permission.VIBRATE - is triggered by Display.vibrate() and Display.notifyStatusBar()

android.permission.SEND_SMS - is triggered by Display.sendSMS()

android.permission.WAKE_LOCK - is triggered by Display.lockScreen() &
Display.setScreenSaverEnabled()

android.permission.WRITE_CONTACTS - is triggered by Display.createContact(),
Display.deleteContact(), ContactsManager.createContact() & ContactsManager.deleteContact()

16.3.1. Permissions Under Marshmallow (Android 6+)

Starting with Marshmallow (Android 6+ API level 23) Android shifted to a permissions system that
prompts users for permission the first time an API is used e.g. when accessing contacts the user will
receive a prompt whether to allow contacts access.

Permission can be denied and a user can later on revoke/grant a permission via
external settings UI

This is really great as it allows apps to be installed with a single click and no permission prompt
during install which can increase conversion rates!

579

Enabling Permissions

Codenmae One compiles Android targets with SDK level 23 but not with target level 23!

This means that by default the new permission mode is still off and you won’t see any of the effects
mentioned below.

This will probably change to the default in the future but at the moment the target
SDK defaults to 21

To activate this functionality you will need to set the target SDK to level 23 by using the
android.targetSDKVersion=23 build hint.

Permission Prompts

To test this API see the following simple contacts app:

Form f = new Form("Contacts", BoxLayout.y());
f.add(new InfiniteProgress());
Display.getInstance().invokeAndBlock(() -> {
 Contact[] ct = Display.getInstance().getAllContacts(true, true, false, true, true, false);
 Display.getInstance().callSerially(() -> {
 f.removeAll();
 for(Contact c : ct) {
 MultiButton mb = new MultiButton(c.getDisplayName());
 mb.setTextLine2(c.getPrimaryPhoneNumber());
 f.add(mb);
 }
 f.revalidate();
 });
});

f.show();

When we try to install this app without changing anything on an Android 6 device we see this UI:

Figure 466. Install UI when using the old permissions system

When we set android.targetSDKVersion=23 in the build hints and try to install again the UI looks like

580

this:

Figure 467. Install UI when using the new permissions system

When we launch the UI under the old permissions system we see the contacts instantly. In the new
system we are presented with this UI:

Figure 468. Native permission prompt first time

If we accept and allow all is good and the app loads as usual but if we deny then Codename One
gives the user another chance to request the permission. Notice that in this case you can customize
the prompt string as explained below.

Figure 469. Codename One permission prompt

581

If we select don’t ask then you will get a blank screen since the contacts will return as a 0 length
array. This makes sense as the user is aware he denied permission and the app will still function as
expected on a device where no contacts are available. However, if the user realizes his mistake he
can double back and ask to re-prompt for permission in which case he will see this native prompt:

Figure 470. Native permission prompt second time

Notice that denying this second request will not trigger another Codename One prompt.

Code Changes

There are no explicit code changes needed for this functionality to "just work". The respective API’s
will work just like they always worked and will prompt the user seamlessly for permissions.

Some behaviors that never occurred on Android but were perfectly legal in the
past might start occurring with the switch to the new API. E.g. the location
manager might be null and your app must always be ready to deal with such a
situation

When permission is requested a user will be seamlessly prompted/warned, Codename One has
builtin text to control such prompts but you might want to customize the text. You can customize
permission text via the Display properties e.g. to customize the text of the contacts permission we
can do something such as:

Display.getInstance().setProperty("android.permission.READ_CONTACTS", "MyCoolChatApp needs access to your contacts so we
can show you which of your friends already have MyCoolChatApp installed");

This is optional as there is a default value defined. You can define this once in the init(Object)
method but for some extreme cases permission might be needed for different things e.g. you might
ask for this permission with one reason at one point in the app and with a different reason at
another point in the app.

The following permission keys are supported: "android.permission.READ_PHONE_STATE"
android.permission.WRITE_EXTERNAL_STORAGE, android.permission.ACCESS_FINE_LOCATION,
android.permission.SEND_SMS, android.permission.READ_CONTACTS, android.permission.WRITE_CONTACTS,
android.permission.RECORD_AUDIO.

582

Simulating Prompts

You can simulate permission prompts by checking that option in the simulator menu.

Figure 471. Simulate permission prompts menu item in the simulator

This will produce a dialog to the user whenever this happens in Android and will try to act in a
similar way to the device. Notice that you can test it in the iOS simulator too.

AndroidNativeUtil’s checkForPermission

If you write Android native code using native interfaces you are probably familiar with the
AndroidNativeUtil class from the com.codename1.impl.android package.

This class provides access to many low level capabilities you would need as a developer writing
native code. Since native code might need to request a permission we introduced the same
underlying logic we used namely: checkForPermission.

To get a permission you can use this code as such:

if(!AndroidNativeUtil.checkForPermission(
 Manifest.permission.READ_PHONE_STATE, "
 This should be the description shown to the user...")){
 // you didn't get the permission, you might want to return here
}
// you have the permission, do what you need

This will prompt the user with the native UI and later on with the fallback option as described
above. Notice that the checkForPermission method is a blocking method and it will return when
there is a final conclusion on the subject. It uses invokeAndBlock and can be safely invoked on the
event dispatch thread without concern.

16.4. On Device Debugging
Codename One supports debugging applications on devices by using the natively generated project.
All paid subscription levels include the ability to check an Include Source flag in the settings that
returns a native OS project. You can debug that project in the respective native IDE.

In iOS this is usually strait forward, just open the project with xcode and run it optionally disabling
bitcode. Unzip the .bz2 file and open the .xcworkspace file if it’s available otherwise open the
.xcodeproj file inside the dist directory.

583

Only the .xcworkspace if it is there, it is activated by the CocoaPods build pipeline
so it won’t always be there

With Android Studio this is sometimes as very easy task as it is possible to actually open the gradle
project in Android Studio and just run it. However, due to the fragile nature of the gradle project
this stopped working for some builds and has been "flaky".

16.4.1. Android Studio Debugging (Easy Way)

By default you should be able to open the gradle project in Android Studio and just run it. To get
this to work open the Android Studio Setting and select gradle 2.11.

Figure 472. Gradle settings UI in Android Studio (notice you need gradle 2.11 and not 2.8 as pictured here)

If this works for you then you can ignore the section below.

16.4.2. Android Studio Debugging the Hard Way

In some cases the gradle project might not work or this might fail with a change from Google.

Here are steps that should work for everyone:

1. Check the include source flag in the IDE and send a build

2. Download the sources.zip result from the build server

3. Launch Android Studio and create a new project

4. Make sure to use the same package and app name as you did in the Codename One project,
select to not create an activity

5. Unzip the sources.zip file and copy the main directory from its src directory to the Android
Studio projects src directory make sure to overwrite files/directories.

6. Copy its libs directory on top of the existing libs

7. Copy the source gradle dependencies content to the destination gradle file

8. Connect your device and press the Debug button for the IDE

 You might need to copy additional gradle file meta-data such as multi-dexing etc.

You might not need to repeat the whole thing with every build. E.g. it might be practical to only

584

copy the userSources.jar from the libs directory to get the latest version of your code. You can copy
the src/main directory to get the latest up to date Android port.

16.5. Native Interfaces
Sometimes you may wish to use an API that is unsupported by Codename One or integrate with a
3rd party library/framework that isn’t supported. These are achievable tasks when writing native
code and Codename One lets you encapsulate such native code using native interfaces.

16.5.1. Introduction

Notice that when we say "native" we do not mean C/C++ always but rather the platforms "native"
environment. So in the case of Android the Java code will be invoked with full access to the Android
API, in case of iOS an Objective-C message would be sent and so forth.

You can still access C code under Android either by using JNI from the Android
native code or by using a library

Native interfaces are designed to only allow primitive types, Strings, arrays of primitive types
(single dimension only) & PeerComponent [https://www.codenameone.com/javadoc/com/codename1/ui/

PeerComponent.html] values. Any other type of parameter/return type is prohibited. However, once in
the native layer the native code can act freely and query the Java layer for additional information.

The reason for the limits is the disparity between the platforms. Mapping a Java
Object to an Objective-C NSObject is possible but leads to odd edge cases and
complexity e.g. GC vs. ARC in a disparate object graph

Furthermore, native methods should avoid features such as overloading, varargs (or any Java 5+
feature for that matter) to allow portability for languages that do not support such features.

Do not rely on pass by reference/value behavior since they vary between
platforms

Implementing a native layer effectively means:

1. Creating an interface that extends NativeInterface [https://www.codenameone.com/javadoc/com/

codename1/system/NativeInterface.html] and only defines methods with the arguments/return values
declared in the previous paragraph.

2. Creating the proper native implementation hierarchy based on the call conventions for every
platform within the native directory

E.g. to create a simple hello world interface do something like:

585

https://www.codenameone.com/javadoc/com/codename1/ui/PeerComponent.html
https://www.codenameone.com/javadoc/com/codename1/system/NativeInterface.html

package com.mycompany.myapp;
import com.codename1.system.NativeInterface;
public interface MyNative extends NativeInterface {
 String helloWorld(String hi);
}

We now need to right click the class in the IDE and select the Generate Native Access menu item:

Figure 473. Generating the native code

Figure 474. Once generated we are prompted that the native code is in the "native" directory

We can now look int the native directory in the project root (in NetBeans you can see that in the
Files tab) and you can see something that looks like this:

Figure 475. Native directory structure containing stubs for the various platforms

These are effectively stubs you can edit to implement the methods in native code.

586

If you re-run the Generate Native Access tool you will get this dialog, if you answer
yes all the files will be overwritten, if you answer no only files you
deleted/renamed will be recreated

Figure 476. Running "Generate Native Access" when some/all of the native files exist already

For now lets leave the stubs and come back to them soon. From the Codename One Java code we
can call the implementation of this native interface using:

MyNative my = NativeLookup.create(MyNative.class);
if(my != null && my.isSupported()) {
 Log.p(my.helloWorld("Hi"));
}

Notice that for this to work you must implement the native code on all supported platforms.

We’ll start with Android which should be familiar and intuitive to many developers, this is how the
generated file under the native/android directory looks:

package com.mycompany.myapp;

public class MyNativeImpl {
 public String helloWorld(String param) {
 return null;
 }

 public boolean isSupported() {
 return false;
 }

}

The stub implementation always returns false, null or 0 by default. The isSupported also defaults to
false thus allowing us to implement a NativeInterface on some platforms and leave the rest out
without really knowing anything about these platforms.

We can implement the Android version using code similar to this:

587

package com.mycompany.myapp;

import android.util.Log; ①

public class MyNativeImpl { ②
 ③
 public String helloWorld(String param) {
 Log.d("MyApp", param);
 return "Tada";
 }

 public boolean isSupported() { ④
 return true;
 }
}

① Notice that we are using the Android native android.util.Log class which isn’t accessible from
standard Codename One code

② The impl class doesn’t physically implement the MyNative interface!
This is intentional and due to the PeerComponent functionality mentioned below. You don’t need
to add an implements clause.

③ Notice that there is no constructor and the class is public. It is crucial that the system will be able
to allocate the class without obstruction. You can use a constructor but it can’t have any
arguments and you shouldn’t rely on semantics of construction.

④ We implemented the native method and that we set isSupported to true.

The IDE won’t provide completion suggestions and will claim that there are errors
in the code!
Codename One doesn’t include the native platforms in its bundle e.g. the full
Android SDK or the full xcode Objective-C runtime. However, since the native code
is compiled on the servers (where these runteims are present) this shouldn’t be a
problem

When implementing a non-trivial native interface, send a server build with the
"Include Source" option checked. Implement the native interface in the native IDE
then copy and paste the native code back into Codename One

The implementation of this interface is nearly identical for Android, J2ME & Java SE.

Use the Android Main Thread (Native EDT)

iOS, Android & pretty much any modern OS has an EDT like thread that handles events etc. The
problem is that they differ in their nuanced behavior. E.g. Android will usually respect calls off of
the EDT and iOS will often crash. Some OS’s enforce EDT access rigidly and will throw an exception
when you violate that…

Normally you don’t need to know about these things, hidden functionality within our

588

implementation bridges between our EDT and the native EDT to provide consistent cross platform
behavior. But when you write native code you need awareness.

Why not Implicitly call Native Interfaces on the Native EDT?

Calling into the native EDT includes overhead and it might not be necessary for some features
(e.g. IO, polling etc.). Furthermore, some calls might work well with asynchronous calls while
others might need synchronous results and we can’t know in advance which ones you would
need.

How do we Access the Native EDT?

Within your native code in Android do something like:

com.codename1.impl.android.AndroidNativeUtil.getActivity().runOnUiThread(new Runnable() {
 public void run() {
 // your native code here...
 }
});

This will execute the block within run() asynchronously on the native Android UI thread. If you
need synchronous execution we have a special method for Codename One:

com.codename1.impl.android.AndroidImplementation.runOnUiThreadAndBlock(new Runnable() {
 public void run() {
 // your native code here...
 }
});

This blocks in a way that’s OK with the Codename One EDT which is unique to our Android port.

Gradle Dependencies

Integrating a native OS library isn’t hard but it sometimes requires some juggling. Most instructions
target developers working with xcode or Android Studio & you need to twist your head around
them. In Android the steps for integration in most modern libraries include a gradle dependency.

E.g. we published a library that added support for Intercom [https://www.codenameone.com/blog/

intercom-support.html]. The native Android integration instructions for the library looked like this:

Add the following dependency to your app’s build.gradle file:

dependencies {
 compile 'io.intercom.android:intercom-sdk:3.+'
}

589

https://www.codenameone.com/blog/intercom-support.html

Which instantly raises the question: "How in the world do I do that in Codename One"?

Well, it’s actually pretty simple. You can add the build hint:

android.gradleDep=compile 'io.intercom.android:intercom-sdk:3.+'

This would "work" but there is a catch…

You might need to define the specific version of the Android SDK used and specific version of
Google play services version used. Intercom is pretty sensitive about those and demanded that we
also add:

android.playServices=9.8.0
android.sdkVersion=25

Once those were defined the native code for the Android implementation became trivial to write
and the library was easy as there were no jars to include.

16.5.2. Objective-C (iOS)

When generating the Objective-C code the "Generate Native Sources" tool produces two files:
com_mycompany_myapp_MyNativeImpl.h & com_mycompany_myapp_MyNativeImpl.m.

The .m files are the Objective-C equivalent of .c files and .h files contain the header/include
information. In this case the com_mycompany_myapp_MyNativeImpl.h contains:

#import <Foundation/Foundation.h>

@interface com_mycompany_myapp_MyNativeImpl : NSObject {
}

-(NSString*)helloWorld:(NSString*)param;
-(BOOL)isSupported;
@end

And com_mycompany_myapp_MyNativeImpl.m contains:

590

#import "com_mycompany_myapp_MyNativeImpl.h"

@implementation com_mycompany_myapp_MyNativeImpl

-(NSString*)helloWorld:(NSString*)param{
 return nil;
}

-(BOOL)isSupported{
 return NO;
}

@end

Objective-C relies on argument names as part of the message (method) signature.
So -(NSString*)helloWorld:(NSString*)param isn’t the same as
-(NSString*)helloWorld:(NSString*)iChangedThisName!
Don’t change argument names in the Objective-C native interface!

Here is a simple implementation similar to above:

#import "com_mycompany_myapp_MyNativeImpl.h"

@implementation com_mycompany_myapp_MyNativeImpl

-(NSString*)helloWorld:(NSString*)param{
 NSLog(@"MyApp: %@", param);
 return @"Tada";
}

-(BOOL)isSupported{
 return YES;
}

@end

Using the iOS Main Thread (Native EDT)

iOS has a native thread you should use for all calls just like Android. Check out the Native EDT on
Android section above for reference.

On iOS this is pretty similar to Android (if you consider objective-c to be similar). This is used for
asynchronous invocation:

591

dispatch_async(dispatch_get_main_queue(), ^{
 // your native code here...
});

You can use this for synchronous invocation, notice the lack of the a in the dispatch call:

dispatch_sync(dispatch_get_main_queue(), ^{
 // your native code here...
});

The problem with the synchronous call is that it will block the caller thread, if the caller thread is
the EDT this can cause performance issues and even a deadlock. It’s important to be very cautious
with this call!

Use Cocoapods For Dependencies

Cocoapods are the iOS equivalent of gradle dependencies.

CocoaPods allow us to add a native library dependency to iOS far more easily than Gradle. By
default we target iOS 7.0 or newer which is supported by Intercom only for older versions of the
library. Annoyingly CocoaPods might seem to work but some specific API’s won’t work since it fell
back to an older version… To solve this you have to explicitly define the build hint
ios.pods.platform=8.0 to force iOS 8 or newer. You might need to force it to even newer versions as
some libraries force an iOS 9 minimum etc.

Including intercom itself required a single build hint: ios.pods=Intercom which you can obviously
extend by using commas to include multiple libraries. You can search the cocoapods website
[https://cocoapods.org/] for supported 3rd party libraries which includes everything you would expect.
One important advantage when working with CocoaPods is the faster build time as the upload to
the Codename One website is smaller and the bandwidth we have to CocoaPods is faster. Another
advantage is the ability to keep up with the latest developments from the library providers.

16.5.3. Javascript

Native interfaces in Javascript look a little different than the other platforms since Javascript
doesn’t natively support threads or classes. The native implementation should be placed in a file
with name matching the name of the package and the class name combined where the "." elements
are replaced by underscores.

The default generated stubs for the JavaScript build look like this com_mycompany_myapp_MyNative:

592

https://cocoapods.org/

(function(exports){

var o = {};

 o.helloWorld__java_lang_String = function(param1, callback) {
 callback.error(new Error("Not implemented yet"));
 };

 o.isSupported_ = function(callback) {
 callback.complete(false);
 };

exports.com_mycompany_myapp_MyNative= o;

})(cn1_get_native_interfaces());

A simple implementation looks like this.

(function(exports){

var o = {};

 o.helloWorld__java_lang_String = function(param1, callback) {
 callback.complete("Hello World!!!");
 }

 o.isSupported_ = function(callback) {
 callback.complete(true);
 };

exports.com_my_code_MyNative = o;

})(cn1_get_native_interfaces());

Notice that we use the complete() method of the provided callback to pass the return value rather
than using the return statement. This is to work around the fact that Javascript doesn’t natively
support threads. The Java thread that is calling your native interface will block until your method
calls callback.complete(). This allows you to use asynchronous APIs inside your native method
while still allowing Codename One to work use your native interface via a synchronous API.

Make sure you call either callback.complete() or callback.error() in your method
at some point, or you will cause a deadlock in your app (code calling your native
method will just sit and "wait" forever for your method to return a value).

The naming conventions for the methods themselves are modeled after the naming conventions
shown in the previous examples:

<method-name>__<param-1-type>_<param-2-type>_…<param-n-type>

593

Where <method-name> is the name of the method in Java, and the `<param-X-type>`s are a string
representing the parameter type. The general rule for these strings are:

1. Primitive types are mapped to their type name. (E.g. int to "int", double to "double", etc…).

2. Reference types are mapped to their fully-qualified class name with '.' replaced with
underscores. E.g. java.lang.String would be "java_lang_String".

3. Array parameters are marked by their scalar type name followed by an underscore and
"1ARRAY". E.g. int[] would be "int_1ARRAY" and String[] would be "java_lang_String_1ARRAY".

JavaScript Examples

Java API:

public void print(String str);

becomes

o.print__java_lang_String = function(param1, callback) {
 console.log(param1);
 callback.complete();
}

Java API:

public int add(int a, int b);

becomes

o.add__int_int = function(param1, param2, callback) {
 callback.complete(param1 + param2);
}

public int add(int[] a);

becomes

594

o.add__int_1ARRAY = function(param1, callback) {
 var c = 0, len = param1.length;
 for (var i =0; i<len; i++) {
 c += param1[i];
 }
 callback.complete(c);
}

16.5.4. Native GUI Components

PeerComponent [https://www.codenameone.com/javadoc/com/codename1/ui/PeerComponent.html] return
values are automatically translated to the platform native peer as an expected return value. E.g. for
a NativeInterface method such as this:

public PeerComponent` createPeer();

Android native implementation would use:

public View createPeer() {
 return null;
}

The iphone would need to return a pointer to a view e.g.:

- (UIView*)createPeer;

Not all platforms support native peers. Specifically JavaSE doesn’t support them
due to the way the JavaSE native interfaces are mapped to their implementation.
Note that this won’t limit the code from running on an unsupported platform. Only
that specific method won’t work.

Javascript would expect a DOM Element (e.g. a <div> tag to be returned.). E.g.

o.createHelloComponent_ = function(callback) {
 var c = jQuery('<div>Hello World</div>')
 .css({'background-color' : 'yellow', 'border' : '1px solid blue'});
 callback.complete(c.get(0));
};

Notice that if you want to use a native library (jar, .a file etc.) just places it within the appropriate
native directory and it will be packaged into the final executable. You would only be able to
reference it from the native code and not from the Codename One code, which means you will need
to build native interfaces to access it.

595

https://www.codenameone.com/javadoc/com/codename1/ui/PeerComponent.html

This is discussed further below.

16.5.5. Type Mapping & Rules

Several rules govern the creation of NativeInterfaces and we only briefly covered some of them.

• The implementation class must have a default public constructor or no constructor at all

• Native methods can’t throw exceptions, checked or otherwise

• A native method can’t have the name init as this is a reserved method in Objective-C

• Only the supported types listed below can be used

• Native implementations can’t rely on pass by reference/value semantics as those might change
between platforms

• hashCode, equals & toString are reserved and won’t be mapped to native code

Table 11. NativeInterface Supported Types

Java Android JavaSE Obj-C C# byte

byte byte char sbyte boolean boolean

boolean BOOL bool char char char

int char short short short short

short int int int int int

long long long long long long float

float float float float double double

double double double String String String

NSString* String byte[] byte[] byte[] NSSData*

sbyte[] boolean[] boolean[] boolean[] NSData* bool[]

char[] char[] char[] NSData char[] short[]

short[] short[] NSData* short[] int[] int[]

int[] NSData* int[] long[] long[] long[]

NSData* long[] float[] float[] float[] NSData*

float[] double[] double[] double[] NSData* double[]

JavaScript is excluded from the table above as it isn’t a type safe language and thus
has no such type mapping

 PeerComponent on iOS is void* but UIView is expected as a result

The examples below demonstrate the signatures for this method on all platforms:

596

Listing 22. NativeInterface definition

public void test(byte b, boolean boo, char c, short s,
 int i, long l, float f, double d, String ss,
 byte[] ba, boolean[] booa, char[] ca, short[] sa, int[] ia,
 long[] la, float[] fa, double[] da,
 PeerComponent cmp);

Listing 23. Android Version

public void test(byte param, boolean param1, char param2,
 short param3, int param4, long param5, float param6,
 double param7, String param8, byte[] param9,
 boolean[] param10, char[] param11, short[] param12,
 int[] param13, long[] param14, float[] param15,
 double[] param16, android.view.View param17) {
}

Listing 24. iOS Version

-(void)test:(char)param param1:(BOOL)param1
 param2:(int)param2 param3:(short)param3 param4:(int)param4
 param5:(long long)param5 param6:(float)param6
 param7:(double)param7 param8:(NSString*)param8
 param9:(NSData*)param9 param10:(NSData*)param10
 param11:(NSData*)param11 param12:(NSData*)param12
 param13:(NSData*)param13 param14:(NSData*)param14
 param15:(NSData*)param15 param16:(NSData*)param16
 param17:(void*)param17;
}

We had to break lines for the print version, the JavaScript version is a really long
method name that literally broke the book!

Listing 25. JavaScript Version

o.test__byte_boolean_char_short_int_long_float_double
_java_lang_String_byte_1ARRAY_boolean_1ARRAY_char_1ARRAY
_short_1ARRAY_int_1ARRAY_long_1ARRAY_float_1ARRAY_double
_1ARRAY_com_codename1_ui_PeerComponent = function(param1, param2, param3, param4, param5, param6, param7, param8, param9,
param10, param11, param12, param13, param14, param15, param16, param17, param18, callback) {
 callback.error(new Error("Not implemented yet"));
};

Listing 26. Java SE Version

public void test(byte param, boolean param1, char param2, short param3, int param4, long param5, float param6, double
param7, String param8, byte[] param9, boolean[] param10, char[] param11, short[] param12, int[] param13, long[] param14,
float[] param15, double[] param16, com.codename1.ui.PeerComponent param17) {
}

597

Listing 27. C# Version

public void test(byte param, bool param1, char param2, short param3, int param4, long param5, float param6, double
param7, String param8, byte[] param9, boolean[] param10, char[] param11, short[] param12, int[] param13, long[] param14,
float[] param15, double[] param16, FrameworkElement param17) {
}

16.5.6. Android Native Permissions

Normally permissions in Codename One are seamless. Codename One traverses the bytecode and
automatically assigns permissions to Android applications based on the API’s used by the
developer.

However, when accessing native functionality this just won’t work since native code might require
specialized permissions and we don’t/can’t run any serious analysis on it (it can be just about
anything).

So if you require additional permissions in your Android native code you need to define them in
the build arguments using android.permission.<PERMISSION_NAME>=true for each permission you
want to include. A full list of permissions are listed in Android’s Manifest.permission
documentation [https://developer.android.com/reference/android/Manifest.permission.html].

E.g.

android.permission.ADD_VOICEMAIL=true
android.permission.BATTERY_STATS=true
...

You can specify the maximum SDK version in which the permission is needed using the
android.permission.<PERMISSION_NAME>.maxSdkVersion build hint. You can also specify whether the
permission is required for the app to run using the android.permission.<PERMISSION_NAME>.required
build hint.

E.g.

android.permission.ADD_VOICEMAIL=true
android.permission.BATTERY_STATS=true
android.permission.ADD_VOICEMAIL.required=false
android.permission.ADD_VOICEMAIL.maxSdkVersion=18
...

You can alternatively use the android.xpermissions build hint to inject <uses-permission> tags into
the manifest file. E.g.:

android.xpermissions=<uses-permission android:name="android.permission.READ_CALENDAR" />

598

https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html

You need to include the full XML snippet. You can unify multiple lines into a single
line in the GUI as XML allows that.

16.5.7. Native AndroidNativeUtil

If you do any native interfaces programming in Android you should be familiar with the
AndroidNativeUtil class which allows you to access native device functionality more easily from the
native code. E.g. many Android API’s need access to the Activity which you can get by calling
AndroidNativeUtil.getActivity().

The native util class includes quite a few other features such as:

• runOnUiThreadAndBlock(Runnable) - this is such a common pattern that it was generalized into a
public static method. Its identical to Activity.runOnUiThread but blocks until the runnable
finishes execution.

• addLifecycleListener/removeLifecycleListener - These essentially provide you with a callback to
lifecycle events: onCreate etc. which can be pretty useful for some cases.

• registerViewRenderer - PeerComponent [https://www.codenameone.com/javadoc/com/codename1/ui/

PeerComponent.html]'s are usually shown on top of the UI since they are rendered within their
own thread outside of the EDT cycle. So when we need to show a Dialog
[https://www.codenameone.com/javadoc/com/codename1/ui/Dialog.html] on top of the peer we grab a
screenshot of the peer, hide it and then show the dialog with the image as the background (the
same applies for transitions). Unfortunately some components (specifically the MapView) might
not render properly and require custom code to implement the transferal to a native Bitmap,
this API allows you to do just that.

You can work with AndroidNativeUtil using native code such as this:

import com.codename1.impl.android.AndroidNativeUtil;

class NativeCallsImpl {
 public void nativeMethod() {
 AndroidNativeUtil.getActivity().runOnUiThread(new Runnable() {
 public void run() {
 ...
 }
 });
 }

}

16.5.8. Broadcast Receiver

A common way to implement features in Android is the BroadcastReceiver API. This allows
intercepting operating system events for common use cases.

A good example is intercepting incoming SMS which is specific to Android so we’d need a

599

https://www.codenameone.com/javadoc/com/codename1/ui/PeerComponent.html
https://www.codenameone.com/javadoc/com/codename1/ui/Dialog.html

broardcast receiver to implement that. This is often confusing to developers who sometimes derive
the impl class from broadcast receiver. That’s a mistake…

The solution is to place any native Android class into the native/android directory. It will get
compiled with the rest of the native code and "just works". So you can place this class under
native/android/com/codename1/sms/intercept:

package com.codename1.sms.intercept;

import android.content.*;
import android.os.Bundle;
import android.telephony.*;
import com.codename1.io.Log;

public class SMSListener extends BroadcastReceiver {

 @Override
 public void onReceive(Context cntxt, Intent intent) {
 // based on code from https://stackoverflow.com/questions/39526138/broadcast-receiver-for-receive-sms-is-not-
working-when-declared-in-manifeststat
 if(intent.getAction().equals("android.provider.Telephony.SMS_RECEIVED")) {
 Bundle bundle = intent.getExtras();
 SmsMessage[] msgs = null;
 if (bundle != null){
 try{
 Object[] pdus = (Object[]) bundle.get("pdus");
 msgs = new SmsMessage[pdus.length];
 for(int i=0; i<msgs.length; i++){
 msgs[i] = SmsMessage.createFromPdu((byte[])pdus[i]);
 String msgBody = msgs[i].getMessageBody();
 SMSCallback.smsReceived(msgBody);
 }
 } catch(Exception e) {
 Log.e(e);
 SMSCallback.smsReceiveError(e);
 }
 }
 }
 }
}

The code above is pretty standard native Android code, it’s just a callback in which most of the logic
is similar to the native Android code mentioned in this stackoverflow question
[https://stackoverflow.com/questions/39526138/broadcast-receiver-for-receive-sms-is-not-working-when-declared-in-

manifeststat].

But there is still more you need to do. In order to implement this natively we need to register the
permission and the receiver in the manifest.xml file as explained in that question. This is how their
native manifest looked:

600

https://stackoverflow.com/questions/39526138/broadcast-receiver-for-receive-sms-is-not-working-when-declared-in-manifeststat

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bulsy.smstalk1">
 <uses-permission android:name="android.permission.RECEIVE_SMS" />
 <uses-permission android:name="android.permission.READ_SMS" />
 <uses-permission android:name="android.permission.SEND_SMS"/>
 <uses-permission android:name="android.permission.READ_CONTACTS" />

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name="com.bulsy.smstalk1.SmsListener"
 android:enabled="true"
 android:permission="android.permission.BROADCAST_SMS"
 android:exported="true">
 <intent-filter android:priority="2147483647">//this doesnt work
 <category android:name="android.intent.category.DEFAULT" />
 <action android:name="android.provider.Telephony.SMS_RECEIVED" />
 </intent-filter>
 </receiver>
 </application>
</manifest>

We only need the broadcast permission XML and the permission XML. Both are doable via the build
hints. The former is pretty easy:

android.xpermissions=<uses-permission android:name="android.permission.RECEIVE_SMS" />

The latter isn’t much harder, notice I took multiple lines and made them into a single line for
convenience:

android.xapplication=<receiver android:name="com.codename1.sms.intercept.SMSListener" android:enabled="true"
android:permission="android.permission.BROADCAST_SMS" android:exported="true"> <intent-filter
android:priority="2147483647"><category android:name="android.intent.category.DEFAULT" /> <action
android:name="android.provider.Telephony.SMS_RECEIVED" /> </intent-filter> </receiver>

Here it is formatted nicely:

601

<receiver android:name="com.codename1.sms.intercept.SMSListener"
 android:enabled="true"
 android:permission="android.permission.BROADCAST_SMS"
 android:exported="true">
 <intent-filter android:priority="2147483647">
 <category android:name="android.intent.category.DEFAULT" />
 <action android:name="android.provider.Telephony.SMS_RECEIVED" />
 </intent-filter>
</receiver>

Listening & Permissions

You will notice that these don’t include the actual binding or permission prompts you would expect
for something like this. To do this we need a native interface.

The native sample in stack overflow bound the listener in the activity but here we want the app
code to decide when we should bind the listening:

public interface NativeSMSInterceptor extends NativeInterface {
 public void bindSMSListener();
 public void unbindSMSListener();
}

That’s easy!

Notice that isSupported() returns false for all other OS’s so we won’t need to ask whether this is
"Android" we can just use isSupported().

The implementation is pretty easy too:

602

package com.codename1.sms.intercept;

import android.Manifest;
import android.content.IntentFilter;
import com.codename1.impl.android.AndroidNativeUtil;

public class NativeSMSInterceptorImpl {
 private SMSListener smsListener;
 public void bindSMSListener() {
 if(AndroidNativeUtil.checkForPermission(Manifest.permission.RECEIVE_SMS, "We can automatically enter the SMS code
for you")) { ①
 smsListener = new SMSListener();
 IntentFilter filter = new IntentFilter();
 filter.addAction("android.provider.Telephony.SMS_RECEIVED");
 AndroidNativeUtil.getActivity().registerReceiver(smsListener, filter); ②
 }
 }

 public void unbindSMSListener() {
 AndroidNativeUtil.getActivity().unregisterReceiver(smsListener);
 }

 public boolean isSupported() {
 return true;
 }
}

① This will trigger the permission prompt on Android 6 and newer. Even though the permission is
declared in XML this isn’t enough for 6+. Notice that even when you run on Android 6 you still
need to declare permissions in XML!

② Here we actually bind the listener, this allows us to grab one SMS and not listen in on every SMS
coming thru

16.5.9. Native Code Callbacks

Native interfaces standardize the invocation of native code from Codename One, but it doesn’t
standardize the reverse of callbacks into Codename One Java code. The reverse is naturally more
complicated since its platform specific and more error prone.

A common "trick" for calling back is to just define a static method and then trigger it from native
code. This works nicely for Android, Java SE, Blackberry & Java ME since those platforms use Java
for their "native code". Mapping this to iOS requires some basic understanding of how the iOS VM
works.

For the purpose of this explanation lets pretend we have a class called NativeCallback in the src
hierarchy under the package com.mycompany that has the method: public static void callback().

package com.mycompany;
public class NativeCallback {
 public static void callback() {
 // do stuff
 }
}

603

So if I want to call it from Android or all of the Java based platforms I can just write this in the
"native" code:

com.mycompany.NativeCallback.callback();

I can also pass a argument as we do later on:

com.mycompany.NativeCallback.callback("My Arg");

Accessing Callbacks from Objective-C

If we want to invoke that method from Objective-C we need to do the following.

Add an include statement as such:

#include "com_mycompany_NativeCallback.h"
#include "CodenameOne_GLViewController.h"

Notice that the CodenameOne_GLViewController.h include defines various macros such as
CN1_THREAD_STATE_PASS_SINGLE_ARG.

Then when we want to trigger the method just do:

com_mycompany_NativeCallback_callback__(CN1_THREAD_STATE_PASS_SINGLE_ARG);

For most callbacks you should use the macro
CN1_THREAD_GET_STATE_PASS_SINGLE_ARG instead of CN1_THREAD_STATE_PASS_SINGLE_ARG
also make sure to add `#include "cn1_globals.h" in the file

The VM passes the thread context along method calls to save on API calls (thread context is heavily
used in Java for synchronization, gc and more).

We can easily pass arguments like:

public static void callback(int arg)

Which maps to native as (notice the extra _ before the int):

com_mycompany_NativeCallback_callback___int(CN1_THREAD_GET_STATE_PASS_ARG intValue);

Notice that there is no comma between the CN1_THREAD_GET_STATE_PASS_ARG and the value!

604

Why No Comma?

The comma is included as part of the macro which makes for code that isn’t as readable.

The reason for this dates to the migration from XMLVM [10] to the current ParparVM
implementation. CN1_THREAD_GET_STATE_PASS_ARG is defined as nothing in XMLVM since
it didn’t use that concept. Yet under ParparVM it will include the necessary comma.

A common use case is passing string values to the Java side, or really NSString* which is iOS
equivalent. Assuming a method like this:

public static void callback(String arg)

You would need to convert the NSString* value you already have to a java.lang.String which the
callback expects.

The fromNSString function also needs this special argument so you will need to modify the method
as such:

com_mycompany_NativeCallback_callback___java_lang_String(CN1_THREAD_GET_STATE_PASS_ARG
fromNSString(CN1_THREAD_GET_STATE_PASS_ARG nsStringValue));

And finally you might want to return a value from callback as such:

public static int callback(int arg)

This is tricky since the method name changes to support covariant return types and so the
signature would be:

com_mycompany_NativeCallback_callback___int_R_int(intValue);

The upper case R allows us to differentiate between void callback(int,int) and int callback(int).

Covariant return types are a little known Java 5 feature. E.g. the method Object
getX() can be overriden by MyObject getX(). However, in the VM level they can
both exist side by side.

Accessing Callbacks from Javascript

The mechanism for invoking static callback methods from Javascript (for the Javascript port only) is
similar to Objective-C’s. The this object in your native interface method contains a property named
$GLOBAL$ that provides access to static java methods. This object will contain Javascript mirror
objects for each Java class (though the property name is mangled by replacing "." with
underscores). Each mirror object contains a wrapper method for its underlying class’s static

605

methods where the method name follows the same naming convention as is used for the Javascript
native methods themselves (and very similar to the naming conventions used in Objective-C).

For example, the Google Maps project includes the static callback method:

static void fireMapChangeEvent(int mapId, final int zoom, final double lat, final double lon) { ... }

defined in the com.codename1.googlemaps.MapContainer class.

This method is called from Javascript inside a native interface using the following code:

var fireMapChangeEvent = this.$GLOBAL$.com_codename1_googlemaps_MapContainer.fireMapChangeEvent__int_int_double_double;
google.maps.event.addListener(this.map, 'bounds_changed', function() {
 fireMapChangeEvent(self.mapId, self.map.getZoom(), self.map.getCenter().lat(), self.map.getCenter().lng());
});

In this example we first obtain a reference to the fireMapChangeEvent method, and then call it later.
However, we could have called it directly also.

Your code MUST contain the full string path
this.$GLOBAL$.your_class_name.your_method_name or the build server will not be
able to recognize that your code requires this method. The $GLOBAL$ object is
populated by the build server only with those classes and methods that are used
inside your native methods. If the build server doesn’t recognize that the methods
are being used (via this pattern) it won’t generate the necessary wrappers for your
Javascript code to access the Java methods.

Callbacks of the SMS Receiver

The SMS Broadcast Receiver code from before also used callbacks such as this:

606

package com.codename1.sms.intercept; ①

import com.codename1.util.FailureCallback;
import com.codename1.util.SuccessCallback;
import static com.codename1.ui.CN.*;

/**
 * This is an internal class, it's package protect to hide that
 */
class SMSCallback {
 static SuccessCallback<String> onSuccess;
 static FailureCallback onFail;

 public static void smsReceived(String sms) {
 if(onSuccess != null) {
 SuccessCallback<String> s = onSuccess;
 onSuccess = null;
 onFail = null;
 SMSInterceptor.unbindListener();
 callSerially(() -> s.onSucess(sms)); ②
 }
 }

 public static void smsReceiveError(Exception err) {
 if(onFail != null) {
 FailureCallback f = onFail;
 onFail = null;
 SMSInterceptor.unbindListener();
 onSuccess = null;
 callSerially(() -> f.onError(null, err, 1, err.toString()));
 } else {
 if(onSuccess != null) {
 SMSInterceptor.unbindListener();
 onSuccess = null;
 }
 }
 }
}

① Notice that the package is the same as the native code and the other classes. This allows the
callback class to be package protected so it isn’t exposed via the API (the class doesn’t have the
public modifier)

② We wrap the callback in call serially to match the Codename One convention of using the EDT by
default. The call will probably arrive on the Android native thread so it makes sense to
normalize it and not expose the Android native thread to the user code

Asynchronous Callbacks & Threading

One of the problematic aspects of calling back into Java from Javascript is that Javascript has no

607

notion of multi-threading. Therefore, if the method you are calling uses Java’s threads at all (e.g. It
includes a wait(), notify(), sleep(), callSerially(), etc…) you need to call it asynchronously from
Javascript. You can call a method asynchronously by appending $async to the method name. E.g.
With the Google Maps example above, you would change :

this.$GLOBAL$.com_codename1_googlemaps_MapContainer.fireMapChangeEvent__int_int_double_double;

to

this.$GLOBAL$.com_codename1_googlemaps_MapContainer.fireMapChangeEvent__int_int_double_double$async;

This will cause the call to be wrapped in the appropriate bootstrap code to work properly with
threads - and it is absolutely necessary in cases where the method may use threads of any kind. The
side-effect of calling a method with the $async suffix is that you can’t use return values from the
method.

In most cases you should use the async version of a method when calling it from
your native method. Only use the synchronous (default) version if you are
absolutely sure that the method doesn’t use any threading primitives.

16.6. Libraries - cn1lib
Support for JAR files in Codename One has been a source of confusion so its probably a good idea to
revisit this subject again and clarify all the details.

The first source of confusion is changing the classpath. You should NEVER change the classpath or
add an external JAR via the IDE classpath UI. The reasoning here is very simple, these IDE’s don’t
package the JAR’s into the final executable and even if they did these JAR’s would probably use
features unavailable or inappropriate for the device (e.g. java.io.File etc.).

Figure 477. Don’t change the classpath, this is how it should look for a typical Java 8 Codename One
application

Cn1libs are Codename One’s file format for 3rd party extensions. It’s physicially a zip file
containing other zip files and some meta-data.

608

16.6.1. Why Not Use JAR?

A jar can be compiled with usage of any Java API that might not be supported, it can be compiled
with a Java target version that isn’t tested.

Jars don’t include support for writing native code, you could use JNI in jars (awkwardly) but that
doesn’t match Codename One’s needs for native support (see section above).

Jars don’t support "proper" code completion, a common developer trick is to stick source code into
the jar but that prevents usage with proprietary code. Cn1libs provide full IDE code completion
(with JavaDoc hints) without exposing the sources.

There are two use cases for wanting JAR’s and they both have very different solutions:

1. Modularity

2. Working with an existing JARs

Cn1lib’s address the modularity aspect allowing you to break that down. Existing jars can
sometimes be used native code settings but for the most part you would want to adapt the code to
abide by Codename One restrictions.

16.6.2. How To Use cn1libs?

Codename One has a large repository of 3rd party cn1libs [https://www.codenameone.com/cn1libs.html],
you can install a cn1lib by placing it in the lib directory of your project then right clicking the
project and selecting Codename One → Refresh cn1lib files.

Figure 478. Refresh cn1lib files menu option

Once refreshed the content of the cn1lib will be available to code completion and you could just use
it.

Notice that some cn1libs require additional configurations such as build hints etc.
so make sure to read the developers instructions when integrating a 3rd party
library.

609

https://www.codenameone.com/cn1libs.html

Under the Hood of cn1lib Install

Refresh cn1lib files invokes the ant task refresh-libs. You could automatically trigger a
refresh as part of your build process by invoking that ant task manually.

Technically that task invokes a custom task that unzips the content of the cn1lib into a set of
directories accessible to the build process. Classes and stub sources are installed in
lib/impl/cls & lib/impl/stubs respectively.

The native files are extracted to lib/impl/native. The classpath for the main project and the
ant build process know about these directories and include them within their path.

16.6.3. Creating a Simple cn1lib

Creating a cn1lib is trivial, we will get into more elaborate uses soon enough but for a hello world
cn1lib we can just use this 2 step process:

Figure 479. Select the CodenameOne Library Option

Figure 480. Select the file name/destination. Notice that a Java 8 cn1lib requires Java 8 support in the parent
project!

Once we go thru these steps we can define any source file within the library and it will be
accessible to the users of the library.

16.6.4. Build Hints in cn1libs

Some cn1libs are pretty simple to install, just place them under the lib directory and refresh.
However, many of the more elaborate cn1libs need some pretty complex configurations. This is the
case when native code is involved where we need to add permissions or plist entries for the various
native platforms to get everything to work. This makes the cn1lib’s helpful but less than seamless
which is where we want to go.

Codename One cn1libs include two files that can be placed into the root:

610

codenameone_library_required.properties & codenameone_library_appended.properties.

In these files you can just write a build hint as codename1.arg.ios.plistInject=… for the various
hints.

Notice the usage of the properties syntax for the build hint with the codename1.arg
prefix you would also need to escape reserved characters for properties files.
The best way to discover the right syntax for such build hints is to set them via the
build hints GUI in a regular project and copy/paste them from
codenameone_settings.properties into the cn1lib file.

The obvious question is why do we need two files?

There are two types of build hints: required and appended.

Required build hints can be something like ios.objC=true which we want to always work. E.g. if a
cn1lib defines ios.objC=true and another cn1lib defines ios.objC=false things won’t work since one
cn1lib won’t get what it needs…
In this case we’d want the build to fail so we can remove the faulty cn1lib.

If two cn1libs define ios.objC=true there will be no collision as the value would be
identical

An appended property would be something like
ios.plistInject=<key>UIBackgroundModes</key><array><string>audio</string> </array>

Notice that this can still collide e.g. if a different cn1lib defines its own background mode. However,
there are many valid cases where ios.plistInject can be used for other things. In this case we’ll
append the content of the ios.plistInject into the build hint if it’s not already there.

There are a couple of things you need to keep in mind:

• Properties are merged with every "refresh libs" call not dynamically on the server. This means
it should be pretty simple for the developer to investigate issues in this process.

• Changing flags is problematic - there is no "uninstall" process. Since the data is copied into the
codenameone_settings.properties file. If you need to change a flag later on you might need to
alert users to make changes to their properties essentially negating the value of this feature…
So be very careful when adding properties here.

It’s your responsibility as a library developer to decide which build hint goes into which file!
Codename One can’t automate this process as the whole process of build hints is by definition an ad
hoc process.

The rule of thumb is that a build hint with a numeric or boolean value is always a required
property. If an entry has a string that you can append with another string then its probably an
appended entry.

These build hints are probably of the "required" type:

611

android.debug
android.release
android.installLocation
android.licenseKey
android.stack_size
android.statusbar_hidden
android.googleAdUnitId
android.includeGPlayServices
android.headphoneCallback
android.gpsPermission
android.asyncPaint
android.supportV4
android.theme
android.cusom_layout1
android.versionCode
android.captureRecord
android.removeBasePermissions
android.blockExternalStoragePermission
android.min_sdk_version
android.smallScreens
android.streamMode
android.enableProguard
android.targetSDKVersion
android.web_loading_hidden
facebook.appId
ios.keyboardOpen
ios.project_type
ios.newStorageLocation
ios.prerendered_icon
ios.application_exits
ios.themeMode
ios.xcode_version
javascript.inject_proxy
javascript.minifying
javascript.proxy.url
javascript.sourceFilesCopied
javascript.teavm.version
rim.askPermissions
google.adUnitId
ios.includePush
ios.headphoneCallback
ios.enableAutoplayVideo
ios.googleAdUnitId
ios.googleAdUnitIdPadding
ios.enableBadgeClear
ios.locationUsageDescription
ios.bundleVersion
ios.objC
ios.testFlight
desktop.width
desktop.height

612

desktop.adaptToRetina
desktop.resizable
desktop.fontSizes
desktop.theme
desktop.themeMac
desktop.themeWin
desktop.windowsOutput
noExtraResources
j2me.iconSize
android.permission.<PERMISSION_NAME>

These build hints should probably be appended:

android.xapplication
android.xpermissions
android.xintent_filter
android.facebook_permissions
android.stringsXml
android.style
android.nonconsumable
android.xapplication_attr
android.xactivity
android.pushVibratePattern
android.proguardKeep
android.sharedUserId
android.sharedUserLabel
ios.urlScheme
ios.interface_orientation
ios.plistInject
ios.facebook_permissions
ios.applicationDidEnterBackground
ios.viewDidLoad
ios.glAppDelegateHeader
ios.glAppDelegateBody
ios.beforeFinishLaunching
ios.afterFinishLaunching
ios.add_libs

613

cn1lib Structure/File Format

The cb1lib file format is quite simple, it’s a zip file containing zip files within it with fixed
names to support the various features.

The table below covers the files that can/should be a part of a cn1lib file:

Table 12. cn1lib structure

File Name Required Purpose

main.zip ✓ Contains the bytecode and the library binary
data. This is effectively the portable portion
of the jar

stubs.zip ✓ Stub source files (auto-generated) containing
javadocs to provide code completion

manifest.properties × General properties of the library, this isn’t
used for much at the moment

codenameone_ library_
appended.properties

× Discussed above

codenameone_ library_
required.properties

× Discussed above

nativeios.zip × Native iOS sources if applicable

nativeand.zip × Native Android sources if applicable

nativejavascript.zip × Native JavaScript sources if applicable

nativerim.zip × Native RIM sources if applicable

nativese.zip × Native JavaSE sources if applicable

nativewin.zip × Native Windows sources if applicable

nativeme.zip × Native Java ME sources if applicable

16.7. Integrating Android 3rd Party Libraries & JNI
While its pretty easy to use native interfaces to write Android native code some things aren’t
necessarily as obvious. E.g. if you want to integrate a 3rd party library, specifically one that includes
native C JNI code this process isn’t as straightforward.

If you need to integrate such a library into your native calls you have the following options:

1. The first option (and the easiest one) is to just place a Jar file in the native/android directory.
This will link your binary with the jar file. Just place the jar under the native/android and the
build server will pick it up and will add it to the classpath.
Notice that Android release apps are obfuscated by default which might cause issues with such
libraries if they reference API’s that are unavailable on Android. You can workaround this by
adding a build hint to the proguard obfuscation code that blocs the obfuscation of the

614

problematic classes using the build hint:
android.proguardKeep=-keep class com.mypackage.ProblemClass { *; }`

2. Another option is the aar file is a binary format Google introduced to represent an Android
Library project (similarly to the cn1lib format). One of the problem with the Android Library
projects was the fact that it required the project sources which made it difficult for 3rd party
vendors to publish libraries.
As a result so android introduced the aar file which is a binary format that represents a Library
project. To learn more about arr you can read this [https://developer.android.com/studio/projects/

android-library.html#aar-contents].

You can link an aar file by placing it under the native/android and the build server will link it to
the project.

3. There is another obsolete approach that we are mentioning for legacy purposes (e.g. if you
need to port code written with this legacy option). This predated the aar option from Google…
Not all 3rd party tools can be packaged as a simple jar, some 3rd party tools need to declare
activities add permissions, resources, assets, and/or even add native code (.so files).
To link a Library project to your Codename One project open the Library project in Eclipse or
Android Studio and make sure the project builds, after the project was built successfully remove
the bin directory from the project and zip the whole project.

Rename the extension from .zip to .andlib and place the andlib file under the native/android
directory. The build server will pick it up and will link it to the project.

16.8. Drag & Drop
Unlike other platforms that tried to create overly generic catch all API’s Codename One tried to
make things as simple as possible.

In Codename One only components can be dragged and drop targets are always components. The
logic of actually performing the operation indicated by the drop is the responsibility of the person
implementing the drop.

Some platforms e.g. AWT allow dragging abstract concepts such as mime type
elements. This allows dragging things like a text file into the app, but that use case
isn’t realistic in mobile

The code below allows you to rearrange the items based on a sensible order. Notice it relies on the
default Container drop behavior.

615

https://developer.android.com/studio/projects/android-library.html#aar-contents

Form hi = new Form("Rearrangeable Items", new BorderLayout());
String[] buttons = {"A Game of Thrones", "A Clash Of Kings", "A Storm Of Swords",
 "A Feast For Crows", "A Dance With Dragons", "The Winds of Winter", "A Dream of Spring" };

Container box = new Container(BoxLayout.y());
box.setScrollableY(true);
box.setDropTarget(true);
java.util.List<String> got = Arrays.asList(buttons);
Collections.shuffle(got);
for(String current : got) {
 MultiButton mb = new MultiButton(current);
 box.add(mb);
 mb.setDraggable(true);
}

hi.add(BorderLayout.NORTH, "Arrange The Titles").add(BorderLayout.CENTER, box);
hi.show();

Figure 481. Drag and drop demo

To enable dragging a component it must be flagged as draggable using setDraggable(true), to allow
dropping the component onto another component you must first enable the drop target with
setDropTarget(true) and override some methods (more on that later).

When dragging on top of a child component of a drop target the code recursively searches for a
drop target parent. Dropping a component on the child will automatically find the right drop target,
hence there is no need to make "everything" into a drop target.

You can override these methods in the draggable components:

• getDragImage - this generates an image preview of the component that will be dragged. This
automatically generates a sensible default so you don’t need to override it.

• drawDraggedImage - this method will be invoked to draw the dragged image at a given location, it
might be useful to override it if you want to display some drag related information such an
additional icon based on location etc. (e.g. a move/copy icon).

In the drop target you can override the following methods:

• draggingOver - returns true if a drop operation at this point is permitted. Otherwise releasing the
component will have no effect.

616

• dragEnter/Exit - useful to track and cleanup state related to dragging over a specific component.

• drop - the logic for dropping/moving the component must be implemented here!

16.9. Continuous Integration & Release Engineering
Codename One was essentially built for continuous integration since the build servers are
effectively a building block for such an architecture. However, there are several problems with
that: the first of which is limited server capacity.

If all users would start sending builds with every commit the servers would instantly become
unusable due to the heavy load. To circumvent this CI support is limited only on the Enterprise
level which allows Codename One to stock more servers and cope with the rise in demand related
to the feature.

To integrate with any CI solution just use the standard Ant targets such as build-for-android-device,
build-for-iphone-device etc.

Normally, this would be a problem since the build is sent but since it isn’t blocking you wouldn’t get
the build result and wouldn’t be able to determine if the build passed or failed. To enable this just
edit the build XML and add the attribute automated="true" to the codeNameOne tag in the
appropriate targets.

This will deliver a result.zip file under the dist folder containing the binaries of a successful build.
It will also block until the build is completed. This should be pretty easy to integrate with any CI
system together with our automated testing solutions .

E.g. we can do a synchronous build like this:

<target name="build-for-javascript-sync" depends="clean,copy-javascript-override,copy-libs,jar,clean-override">
 <codeNameOne
 jarFile="${dist.jar}"
 displayName="${codename1.displayName}"
 packageName = "${codename1.packageName}"
 mainClassName = "${codename1.mainName}"
 version="${codename1.version}"
 icon="${codename1.icon}"
 vendor="${codename1.vendor}"
 subtitle="${codename1.secondaryTitle}"
 automated="true"
 targetType="javascript"
 />
</target>

This allows us to build a JavaScript version of the app automatically as part of a release build script.

16.10. Android Lollipop ActionBar Customization
When running on Android Lollipop (5.0 or newer) the native action bar will use the Lollipop design.
This isn’t applicable if you use the Toolbar [https://www.codenameone.com/javadoc/com/codename1/ui/

Toolbar.html] or SideMenuBar [https://www.codenameone.com/javadoc/com/codename1/ui/SideMenuBar.html]

617

https://www.codenameone.com/javadoc/com/codename1/ui/Toolbar.html
https://www.codenameone.com/javadoc/com/codename1/ui/SideMenuBar.html

this will be used only in the task switcher.

To customize the colors of the native ActionBar on Lollipop define a colors.xml file in the
native/android directory of your project. It should look like this:

<resources>
 <color name="colorPrimary">#ff00ff00</color>
 <color name="colorPrimaryDark">#80ff0000</color>
 <color name="colorAccent">#800000ff</color>
</resources>

16.11. Intercepting URL’s On iOS & Android
A common trick in mobile application development, is communication between two unrelated
applications.

In Android we can use intents which are pretty elaborate and can be used via Display.execute,
however what if you would like to expose the functionality of your application to a different
application running on the device. This would allow that application to launch your application.

This isn’t something we builtin to Codename One, however it does expose enough of the platform
capabilities to enable that functionality rather easily on Android.

On Android we need to define an intent filter which we can do using the android.xintent_filter
build hint, this accepts the XML to filter whether a request is relevant to our application:

android.xintent_filter=<intent-filter> <action android:name="android.intent.action.VIEW" /> <category
android:name="android.intent.category.DEFAULT" /> <category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="myapp" /> </intent-filter>

You can read more about it in this stack overflow question [http://stackoverflow.com/questions/11421048/

android-ios-custom-uri-protocol-handling].

To bind the myapp:// URL to your application. As a result typing myapp://x into the Android browser
will launch the application.

16.11.1. Passing Launch Arguments To The App

You can access the value of the URL that launched the app using:

String arg = Display.getInstance().getProperty("AppArg");

This value would be null if the app was launched via the icon.

iOS is practically identical to Android with some small caveats, iOS’s equivalent of the manifest is
the plist.

618

http://stackoverflow.com/questions/11421048/android-ios-custom-uri-protocol-handling

You can inject more data into the plist by using the ios.plistInject build hint.

So the equivalent in the iOS side would be

ios.plistInject=<key>CFBundleURLTypes</key> <array> <dict> <key>CFBundleURLName</key>
<string>com.yourcompany.myapp</string> </dict> <dict> <key>CFBundleURLSchemes</key>
<array> <string>myapp</string> </array> </dict> </array>

However, that can conflict with the Facebook integration if you use FacebookConnect which needs
access to the schemes. To workaround it you can use the build hint ios.urlScheme e.g.:

ios.urlScheme=<string>myapp</string>

16.12. Native Peer Components
Many Codename One developers don’t truly grasp the reason for the separation between peer
(native) components and Codename One components. This is a crucial thing you need to
understand especially if you plan on working with native widgets e.g. Web Browser, native maps,
text input, media and native interfaces (which can return a PeerComponent).

Codename One draws all of its widgets on its own, this is a concept which was modeled in part after
Swing. This allows functionality that can’t be achieved in native widget platforms:

1. The Codename One GUI builder & simulator are almost identical to the device - notice that this
also enables the build cloud, otherwise device specific bugs would overwhelm development and
make the build cloud redundant.

2. Ability to override everything - paint, pointer, key events are all overridable and replaceable.
Developers can also paint over everything e.g. glasspane and layered pane.

3. Consistency - provides identical functionality on all platforms for the most part.

This all contributes to our ease of working with Codename One and maintaining Codename One.
More than 95% of Codename One’s code is in Java hence its really portable and pretty easy to
maintain!

16.12.1. Why does Codename One Need Native Widgets at all?

We need the native device to do input, html rendering etc. these are just too big and too complex
tasks for Codename One to do from scratch.

They are sometimes impossible to perform without the native platform. E.g. the virtual keyboard
input on the devices is tied directly to the native text input. It’s impractical to implement everything
from scratch for all languages, dictionaries etc. The result would be sub-par.

A web browser can’t be implemented in this day and age without a JavaScript JIT and including a
JIT within an iOS app is prohibited by Apple.

619

16.12.2. So what’s the problems with native widgets?

Codename One does pretty much everything on the EDT (Event Dispatch Thread), this provides a lot
of cool features e.g. modal dialogs, invokeAndBlock etc.

However native widgets have to be drawn on the devices native UI thread.
This means that drawing looks something like this:

1. Loop over all Codename One components and paint them.

2. Loop over all native peer components and paint them.

This effectively means that all peer components are drawn on top of the Codename One
components.

 This was also the case in AWT/Swing to one degree or another…

16.12.3. So how do we show dialogs on top of Peer Components?

Codename One grabs a screenshot of the peer, hide it and then we can just show the screenshot.
Since the screenshot is static it can be rendered via the standard UI. Naturally we can’t do that
always since grabbing a screenshot is an expensive process on all platforms and must be performed
on the native device thread.

16.12.4. Why can’t we combine peer component scrolling and Codename
One scrolling?

Since the form title/footer etc. are drawn by Codename One the peer component might paint itself
on top of them. Clipping a peer component is often pretty difficult. Furthermore, if the user drags
his finger within the peer component he might trigger the native scroll within the might collide
with our scrolling?

16.12.5. Native Components In The First Form

There is also another problem that might be counter intuitive. iOS has screenshot images
representing the first form. If your first page is an HTML or a native map (or other peer widget) the
screenshot process on the build server will show fallback code instead of the real thing thus
providing sub-par behavior.

Its impractical to support something like HTML for the screenshot process since it would also look
completely different from the web component running on the device.

You can read more about the screenshot process here [https://www.codenameone.com/

manual/appendix-ios.html#section-ios-screenshots].

16.13. Integrating 3rd Party Native SDKs
The following is a description of the procedure that was used to create the Codename One
FreshDesk library [http://shannah.github.io/cn1-freshdesk/]. This process can be easily adapted to wrap

620

https://www.codenameone.com/manual/appendix-ios.html#section-ios-screenshots
http://shannah.github.io/cn1-freshdesk/
http://shannah.github.io/cn1-freshdesk/

any native SDK on Android and iOS.

16.13.1. Step 1 : Review the FreshDesk SDKs

Before we begin, we’ll need to review the Android and iOS SDKs.

1. FreshDesk Android SDK: Integration Guide [http://developer.freshdesk.com/mobihelp/android/

integration_guide/] | API Docs [http://developer.freshdesk.com/mobihelp/android/api/reference/com/freshdesk/

mobihelp/package-summary.html]

2. FreshDesk iOS SDK: Integration Guide [http://developer.freshdesk.com/mobihelp/ios/integration_guide/]
| API Docs [http://developer.freshdesk.com/mobihelp/ios/api/]

In reviewing the SDKs, we are looking for answers to two questions:

1. What should my Codename One FreshDesk API look like?

2. What will be involved in integrating the native SDK in my app or lib?

16.13.2. Step 2: Designing the Codename One Public API

When designing the Codename One API, we should begin by looking at the Javadocs
[http://developer.freshdesk.com/mobihelp/android/api/reference/com/freshdesk/mobihelp/package-summary.html]
for the native Android SDK. If the class hierarchy doesn’t look too elaborate, we may decide to
model our Codename One public API fairly closely on the Android API. On the other hand, if we
only need a small part of the SDK’s functionality, we may choose to create my abstractions around
just the functionality that we need.

In the case of the FreshDesk SDK, it looks like most of the functionality is handled by one central
class Mobihelp, with a few other POJO classes for passing data to and from the service. This is a good
candidate for a comprehensive Codename One API.

Before proceeding, we also need to look at the iOS API to see if there are any features that aren’t
included. While naming conventions in the iOS API are a little different than those in the Android
API, it looks like they are functionally the same.

Therefore, I choose to create a class hierarchy and API that closely mirrors the Android SDK.

16.13.3. Step 3: The Architecture and Internal APIs

A Codename One library that wraps a native SDK, will generally consist of the following:

1. Public Java API, consisting of pure Java classes that are intended to be used by the outside
world.

2. Native Interface(s). The Native Interface(s) act as a conduit for the public Java API to
communicate to the native SDK. Parameters in native interface methods are limited to primitive
types, arrays of primitive types, and Strings, as are return values.

3. Native code. Each platform must include an implementation of the Native Interface(s). These
implementations are written in the native language of the platform (e.g. Java for Android, and
Objective-C for iOS).

621

http://developer.freshdesk.com/mobihelp/android/integration_guide/
http://developer.freshdesk.com/mobihelp/android/api/reference/com/freshdesk/mobihelp/package-summary.html
http://developer.freshdesk.com/mobihelp/ios/integration_guide/
http://developer.freshdesk.com/mobihelp/ios/api/
http://developer.freshdesk.com/mobihelp/android/api/reference/com/freshdesk/mobihelp/package-summary.html

4. Native dependencies. Any 3rd party libraries required for the native code to work, need to be
included for each platform. On android, this may mean bundling .jar files, .aar files, or .andlib
files. On iOS, this may mean bundling .h files, .a files, .framework, and .bundle files.

5. Build hints. Some libraries will require you to add some extra build hints to your project. E.g.
On Android you may need to add permissions to the manifest, or define services in the
<Application> section of the manifest. On iOS, this may mean specifying additional core
frameworks for inclusion, or adding build flags for compilation.

The following diagram shows the dependencies in a native library:

Figure 482. Relationship between native & Codename One API UML Diagram

In the specific case of our FreshDesk API, the public API and classes will look like:

Figure 483. Freshdesk API Integration

622

Things to Notice

1. The public API consists of the main class (Mobihelp [https://github.com/shannah/cn1-freshdesk/blob/

master/cn1-freshdesk-demo/src/com/codename1/freshdesk/Mobihelp.java]), and a few supporting classes
(FeedbackRequest [https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/

codename1/freshdesk/FeedbackRequest.java], FeedbackType [https://github.com/shannah/cn1-freshdesk/blob/

master/cn1-freshdesk-demo/src/com/codename1/freshdesk/FeedbackType.java], MobihelpConfig
[https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/codename1/freshdesk/

MobihelpConfig.java], MobihelpCallbackStatus [https://github.com/shannah/cn1-freshdesk/blob/master/cn1-

freshdesk-demo/src/com/codename1/freshdesk/MobihelpCallbackStatus.java]), which were copied almost
directly from the Android SDK.

2. The only way for the public API to communicate with the native SDK is via the MobihelpNative
[https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/codename1/freshdesk/

MobihelpNative.java] interface.

3. We introduced the MobihelpNativeCallback [https://github.com/shannah/cn1-freshdesk/blob/master/cn1-

freshdesk-demo/src/com/codename1/freshdesk/MobihelpNativeCallback.java] class to facilitate native code
calling back into the public API. This was necessary for a few methods that used asynchronous
callbacks.

16.13.4. Step 4: Implement the Public API and Native Interface

We have already looked at the final product of the public API in the previous step, but let’s back up
and walk through the process step-by-step.

I wanted to model my API closely around the Android API, and the central class that includes all of
the functionality of the SDK is the com.freshdesk.mobihelp.Mobihelp class
[http://developer.freshdesk.com/mobihelp/android/api/reference/com/freshdesk/mobihelp/Mobihelp.html], so we
begin there.

We’ll start by creating our own package (com.codename1.freshdesk) and our own Mobihelp class
inside it.

Adapting Method Signatures

The Context parameter

In a first glance at the com.freshdesk.mobihelp.Mobihelp API [http://developer.freshdesk.com/mobihelp/

android/api/reference/com/freshdesk/mobihelp/Mobihelp.html] we see that many of the methods take a
parameter of type android.content.Context [http://developer.android.com/reference/android/content/

Context.html]. This class is part of the core Android SDK, and will not be accessible to any pure
Codename One APIs. Therefore, our public API cannot include any such references. Luckily, we’ll be
able to access a suitable context in the native layer, so we’ll just omit this parameter from our
public API, and inject them in our native implementation.

Hence, the method signature public static final void setUserFullName (Context context, String
name) will simply become public static final void setUserFullName (String name) in our public
API.

623

https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/codename1/freshdesk/Mobihelp.java
https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/codename1/freshdesk/FeedbackRequest.java
https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/codename1/freshdesk/FeedbackType.java
https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/codename1/freshdesk/MobihelpConfig.java
https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/codename1/freshdesk/MobihelpCallbackStatus.java
https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/codename1/freshdesk/MobihelpNative.java
https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/codename1/freshdesk/MobihelpNativeCallback.java
http://developer.freshdesk.com/mobihelp/android/api/reference/com/freshdesk/mobihelp/Mobihelp.html
http://developer.freshdesk.com/mobihelp/android/api/reference/com/freshdesk/mobihelp/Mobihelp.html
http://developer.android.com/reference/android/content/Context.html

Non-Primitive Parameters

Although our public API isn’t constrained by the same rules as our Native Interfaces with respect to
parameter and return types, we need to be cognizant of the fact that parameters we pass to our
public API will ultimately be funnelled through our native interface. Therefore, we should pay
attention to any parameters or return types that can’t be passed directly to a native interface, and
start forming a strategy for them. E.g. consider the following method signature from the Android
Mobihelp class:

public static final void showSolutions (Context activityContext, ArrayList<String> tags)

We’ve already decided to just omit the Context parameter in our API, so that’s a non-issue. But what
about the ArrayList<String> tags parameter? Passing this to our public API is no problem, but when
we implement the public API, how will we pass this ArrayList to our native interface, since native
interfaces don’t allow us to arrays of strings as parameters?

I generally use one of three strategies in such cases:

1. Encode the parameter as either a single String (e.g. using JSON or some other easily parseable
format) or a byte[] array (in some known format that can easily be parsed in native code).

2. Store the parameter on the Codename One side and pass some ID or token that can be used on
the native side to retrieve the value.

3. If the data structure can be expressed as a finite number of primitive values, then simply design
the native interface method to take the individual values as parameters instead of a single
object. E.g. If there is a User [https://www.codenameone.com/javadoc/com/codename1/facebook/User.html]
class with properties name and phoneNumber, the native interface can just have name and
phoneNumber parameters rather than a single `user parameter.

In this case, because an array of strings is such a simple data structure, I decided to use a variation
on strategy number 1: Merge the array into a single string with a delimiter.

In any case, we don’t have to come up with the specifics right now, as we are still on the public API,
but it will pay dividends later if we think this through ahead of time.

Callbacks

It is quite often the case that native code needs to call back into Codename One code when an event
occurs. This may be connected directly to an API method call (e.g. as the result of an asynchronous
method invocation), or due to something initiated by the operating system or the native SDK on its
own (e.g. a push notification, a location event, etc..).

Native code will have access to both the Codename One API and any native APIs in your app, but on
some platforms, accessing the Codename One API may be a little tricky. E.g. on iOS you’ll be calling
from Objective-C back into Java which requires knowledge of Codename One’s java-to-objective C
conversion process. In general, I have found that the easiest way to facilitate callbacks is to provide
abstractions that involve static java methods (in Codename One space) that accept and return
primitive types.

624

https://www.codenameone.com/javadoc/com/codename1/facebook/User.html

In the case of our Mobihelp class, the following method hints at the need to have a "callback plan":

public static final void getUnreadCountAsync (Context context, UnreadUpdatesCallback callback)

The interface definition for UnreadUpdatesCallback is:

public interface UnreadUpdatesCallback {
 //This method is called once the unread updates count is available.
 void onResult(MobihelpCallbackStatus status, Integer count);

}

I.e. If we were to implement this method (which I plan to do), we need to have a way for the native
code to call the callback.onResult() method of the passed parameter.

So we have two issues that will need to be solved here:

1. How to pass the callback object through the native interface.

2. How to call the callback.onResult() method from native code at the right time.

For the first issue, we’ll use strategy #2 that we mentioned previously: (Store the parameter on the
Codename One side and pass some ID or token that can be used on the native side to retrieve the
value).

For the second issue, we’ll create a static method that can take the token generated to solve the first
issue, and call the stored callback object’s onResult() method. We abstract both sides of this process
using the MobihelpNativeCallback class [https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-

demo/src/com/codename1/freshdesk/MobihelpNativeCallback.java].

625

https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/codename1/freshdesk/MobihelpNativeCallback.java
https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/src/com/codename1/freshdesk/MobihelpNativeCallback.java

public class MobihelpNativeCallback {
 private static int nextId = 0;
 private static Map<Integer,UnreadUpdatesCallback> callbacks = new HashMap<Integer,UnreadUpdatesCallback>();

 static int registerUnreadUpdatesCallback(UnreadUpdatesCallback callback) {
 callbacks.put(nextId, callback);
 return nextId++;
 }

 public static void fireUnreadUpdatesCallback(int callbackId, final int status, final int count) {
 final UnreadUpdatesCallback cb = callbacks.get(callbackId);
 if (cb != null) {
 callbacks.remove(callbackId);
 Display.getInstance().callSerially(new Runnable() {

 public void run() {
 MobihelpCallbackStatus status2 = MobihelpCallbackStatus.values()[status];
 cb.onResult(status2, count);
 }

 });
 }
 }

}

Things to notice here:

1. This class uses a static Map<Integer,UnreadUpdatesCallback> member to keep track of all
callbacks, mapping a unique integer ID to each callback.

2. The registerUnreadUpdatesCallback() method takes an UnreadUpdatesCallback object, places it in
the callbacks map, and returns the integer token that can be used to fire the callback later. This
method would be called by the public API inside the getUnreadCountAsync() method
implementation to convert the callback into an integer, which can then be passed to the native
API.

3. The fireUnreadUpdatesCallback() method would be called later from native code. Its first
parameter is the token for the callback to call.

4. We wrap the onResult() call inside a Display.callSerially() invocation to ensure that the
callback is called on the EDT. This is a general convention that is used throughout Codename
One, and you’d be well-advised to follow it. Event handlers should be run on the EDT unless
there is a good reason not to - and in that case your documentation and naming conventions
should make this clear to avoid accidentally stepping into multithreading hell!

Initialization

Most Native SDKs include some sort of initialization method where you pass your developer and
application credentials to the API. When I filled in FreshDesk’s web-based form to create a new
application, it generated an application ID, an app "secret", and a "domain". The SDK requires me to
pass all three of these values to its init() method via the MobihelpConfig class.

Note, however, that FreshDesk (and most other service provides that have native SDKs) requires me
to create different Apps for each platform. This means that my App ID and App secret will be

626

different on iOS than they will be on Android.

Therefore our public API needs to enable us to provide multiple credentials in the same app, and
our API needs to know to use the correct credentials depending on the device that the app is
running on.

There are many solutions to this problem, but the one I chose was to provide two different init()
methods:

public final static void initIOS(MobihelpConfig config)

and

public final static void initAndroid(MobihelpConfig config)

Then I can set up the API with code like:

MobihelpConfig config = new MobihelpConfig();
config.setAppSecret("xxxxxxx");
config.setAppId("freshdeskdemo-2-xxxxxx");
config.setDomain("codenameonetest1.freshdesk.com");
Mobihelp.initIOS(config);

config = new MobihelpConfig();
config.setAppSecret("yyyyyyyy");
config.setAppId("freshdeskdemo-1-yyyyyyyy");
config.setDomain("https://codenameonetest1.freshdesk.com");
Mobihelp.initAndroid(config);

The Resulting Public API

public class Mobihelp {

 private static char[] separators = new char[]{',','|','/','@','#','%','!','^','&','*','=','+','*','<'};
 private static MobihelpNative peer;

 public static boolean isSupported() {

 }

 public static void setPeer(MobihelpNative peer) {

 }

 //Attach the given custom data (key-value pair) to the conversations/tickets.
 public final static void addCustomData(String key, String value) {
 ...
 }
 //Attach the given custom data (key-value pair) to the conversations/tickets with the ability to flag sensitive data.
 public final static void addCustomData(String key, String value, boolean isSensitive) {
 ...
 }

627

 //Clear all breadcrumb data.
 public final static void clearBreadCrumbs() {
 ...
 }
 //Clear all custom data.
 public final static void clearCustomData() {
 ...
 }
 //Clears User information.
 public final static void clearUserData() {
 ...
 }
 //Retrieve the number of unread items across all the conversations for the user synchronously i.e.
 public final static int getUnreadCount() {
 ...
 }

 //Retrieve the number of unread items across all the conversations for the user asynchronously, count is delivered to
the supplied UnreadUpdatesCallback instance Note : This may return 0 or stale value when there is no network connectivity
etc
 public final static void getUnreadCountAsync(UnreadUpdatesCallback callback) {
 ...
 }
 //Initialize the Mobihelp support section with necessary app configuration.
 public final static void initAndroid(MobihelpConfig config) {
 ...
 }

 public final static void initIOS(MobihelpConfig config) {
 ...
 }

 //Attaches the given text as a breadcrumb to the conversations/tickets.
 public final static void leaveBreadCrumb(String crumbText) {
 ...
 }
 //Set the email of the user to be reported on the Freshdesk Portal
 public final static void setUserEmail(String email) {
 ...
 }

 //Set the name of the user to be reported on the Freshdesk Portal.
 public final static void setUserFullName(String name) {
 ...
 }

 //Display the App Rating dialog with option to Rate, Leave feedback etc
 public static void showAppRateDialog() {
 ...
 }
 //Directly launch Conversation list screen from anywhere within the application
 public final static void showConversations() {
 ...
 }
 //Directly launch Feedback Screen from anywhere within the application.
 public final static void showFeedback(FeedbackRequest feedbackRequest) {
 ...
 }
 //Directly launch Feedback Screen from anywhere within the application.
 public final static void showFeedback() {
 ...
 }
 //Displays the Support landing page (Solution Article List Activity) where only solutions tagged with the given tags
are displayed.
 public final static void showSolutions(ArrayList<String> tags) {
 ...

628

 }

 private static String findUnusedSeparator(ArrayList<String> tags) {
 ...

 }

 //Displays the Support landing page (Solution Article List Activity) from where users can do the following
 //View solutions,
 //Search solutions,
 public final static void showSolutions() {
 ...
 }
 //Displays the Integrated Support landing page where only solutions tagged with the given tags are displayed.
 public final static void showSupport(ArrayList<String> tags) {
 ...
 }

 //Displays the Integrated Support landing page (Solution Article List Activity) from where users can do the following
 //View solutions,
 //Search solutions,
 // Start a new conversation,
 //View existing conversations update/ unread count etc
 public final static void showSupport() {
 ...
 }

}

The Native Interface

The final native interface is nearly identical to our public API, except in cases where the public API
included non-primitive parameters.

public interface MobihelpNative extends NativeInterface {

 /**
 * @return the appId
 */
 public String config_getAppId();

 /**
 * @param appId the appId to set
 */
 public void config_setAppId(String appId);

 /**
 * @return the appSecret
 */
 public String config_getAppSecret();

 /**
 * @param appSecret the appSecret to set
 */
 public void config_setAppSecret(String appSecret);
 /**
 * @return the domain
 */
 public String config_getDomain();
 /**
 * @param domain the domain to set
 */
 public void config_setDomain(String domain) ;

629

 /**
 * @return the feedbackType
 */
 public int config_getFeedbackType() ;

 /**
 * @param feedbackType the feedbackType to set
 */
 public void config_setFeedbackType(int feedbackType);

 /**
 * @return the launchCountForReviewPrompt
 */
 public int config_getLaunchCountForReviewPrompt() ;
 /**
 * @param launchCountForReviewPrompt the launchCountForReviewPrompt to set
 */
 public void config_setLaunchCountForReviewPrompt(int launchCountForReviewPrompt);
 /**
 * @return the prefetchSolutions
 */
 public boolean config_isPrefetchSolutions();
 /**
 * @param prefetchSolutions the prefetchOptions to set
 */
 public void config_setPrefetchSolutions(boolean prefetchSolutions);
 /**
 * @return the autoReplyEnabled
 */
 public boolean config_isAutoReplyEnabled();

 /**
 * @param autoReplyEnabled the autoReplyEnabled to set
 */
 public void config_setAutoReplyEnabled(boolean autoReplyEnabled) ;

 /**
 * @return the enhancedPrivacyModeEnabled
 */
 public boolean config_isEnhancedPrivacyModeEnabled() ;

 /**
 * @param enhancedPrivacyModeEnabled the enhancedPrivacyModeEnabled to set
 */
 public void config_setEnhancedPrivacyModeEnabled(boolean enhancedPrivacyModeEnabled) ;

 //Attach the given custom data (key-value pair) to the conversations/tickets.
 public void addCustomData(String key, String value);
 //Attach the given custom data (key-value pair) to the conversations/tickets with the ability to flag sensitive data.
 public void addCustomDataWithSensitivity(String key, String value, boolean isSensitive);
 //Clear all breadcrumb data.
 public void clearBreadCrumbs() ;
 //Clear all custom data.
 public void clearCustomData();
 //Clears User information.
 public void clearUserData();
 //Retrieve the number of unread items across all the conversations for the user synchronously i.e.
 public int getUnreadCount();

 //Retrieve the number of unread items across all the conversations for the user asynchronously, count is delivered to
the supplied UnreadUpdatesCallback instance Note : This may return 0 or stale value when there is no network connectivity
etc
 public void getUnreadCountAsync(int callbackId);

630

 public void initNative();

 //Attaches the given text as a breadcrumb to the conversations/tickets.
 public void leaveBreadCrumb(String crumbText);
 //Set the email of the user to be reported on the Freshdesk Portal

 public void setUserEmail(String email);

 //Set the name of the user to be reported on the Freshdesk Portal.
 public void setUserFullName(String name);

 //Display the App Rating dialog with option to Rate, Leave feedback etc
 public void showAppRateDialog();
 //Directly launch Conversation list screen from anywhere within the application
 public void showConversations();

 //Directly launch Feedback Screen from anywhere within the application.
 public void showFeedbackWithArgs(String subject, String description);
 //Directly launch Feedback Screen from anywhere within the application.
 public void showFeedback();

 //Displays the Support landing page (Solution Article List Activity) where only solutions tagged with the given tags
are displayed.
 public void showSolutionsWithTags(String tags, String separator);

 //Displays the Support landing page (Solution Article List Activity) from where users can do the following
 //View solutions,
 //Search solutions,
 public void showSolutions();
 //Displays the Integrated Support landing page where only solutions tagged with the given tags are displayed.
 public void showSupportWithTags(String tags, String separator);

 //Displays the Integrated Support landing page (Solution Article List Activity) from where users can do the following
 //View solutions,
 //Search solutions,
 // Start a new conversation,
 //View existing conversations update/ unread count etc
 public void showSupport();
}

Notice also, that the native interface includes a set of methods with names prefixed with config__.
This is just a naming conventions I used to identify methods that map to the MobihelpConfig class. I
could have used a separate native interface for these, but decided to keep all the native stuff in one
class for simplicity and maintainability.

Connecting the Public API to the Native Interface

So we have a public API, and we have a native interface. The idea is that the public API should be a
thin wrapper around the native interface to smooth out rough edges that are likely to exist due to
the strict set of rules involved in native interfaces. We’ll, therefore, use delegation inside the
Mobihelp class to provide it a reference to an instance of MobihelpNative:

public class Mobihelp {
 private static MobihelpNative peer;
 //...
}

We’ll initialize this peer inside the init() method of the Mobihelp class. Notice, though that init() is

631

private since we have provided abstractions for the Android and iOS apps separately:

 //Initialize the Mobihelp support section with necessary app configuration.
 public final static void initAndroid(MobihelpConfig config) {
 if ("and".equals(Display.getInstance().getPlatformName())) {
 init(config);
 }
 }

 public final static void initIOS(MobihelpConfig config) {
 if ("ios".equals(Display.getInstance().getPlatformName())) {
 init(config);
 }
 }

 private static void init(MobihelpConfig config) {
 peer = (MobihelpNative)NativeLookup.create(MobihelpNative.class);
 peer.config_setAppId(config.getAppId());
 peer.config_setAppSecret(config.getAppSecret());
 peer.config_setAutoReplyEnabled(config.isAutoReplyEnabled());
 peer.config_setDomain(config.getDomain());
 peer.config_setEnhancedPrivacyModeEnabled(config.isEnhancedPrivacyModeEnabled());
 if (config.getFeedbackType() != null) {
 peer.config_setFeedbackType(config.getFeedbackType().ordinal());
 }
 peer.config_setLaunchCountForReviewPrompt(config.getLaunchCountForReviewPrompt());
 peer.config_setPrefetchSolutions(config.isPrefetchSolutions());
 peer.initNative();

 }

Things to Notice:

1. The initAndroid() and initIOS() methods include a check to see if they are running on the
correct platform. Ultimately they both call init().

2. The init() method, uses the NativeLookup [https://www.codenameone.com/javadoc/com/codename1/

system/NativeLookup.html] class to instantiate our native interface.

Implementing the Glue Between Public API and Native Interface

For most of the methods in the Mobihelp class, we can see that the public API will just be a thin
wrapper around the native interface. E.g. the public API implementation of setUserFullName(String)
is:

public final static void setUserFullName(String name) {
 peer.setUserFullName(name);
}

For some other methods, the public API needs to break apart the parameters into a form that the

632

https://www.codenameone.com/javadoc/com/codename1/system/NativeLookup.html

native interface can accept. E.g. the init() method, shown above, takes a MobihelpConfig object as a
parameter, but it passed the properties of the config object individually into the native interface.

Another example, is the showSupport(ArrayList<String> tags) method. The corresponding native
interface method that is wraps is showSupport(String tags, `String separator)` - i.e it needs to
merge all tags into a single delimited string, and pass then to the native interface along with the
delimiter used. The implementation is:

public final static void showSupport(ArrayList<String> tags) {
 String separator = findUnusedSeparator(tags);
 StringBuilder sb = new StringBuilder();
 for (String tag : tags) {
 sb.append(tag).append(separator);
 }
 peer.showSupportWithTags(sb.toString().substring(0, sb.length()-separator.length()), separator);
}

The only other non-trivial wrapper is the getUnreadCountAsync() method that we discussed before:

 public final static void getUnreadCountAsync(UnreadUpdatesCallback callback) {
 int callbackId = MobihelpNativeCallback.registerUnreadUpdatesCallback(callback);
 peer.getUnreadCountAsync(callbackId);
 }

16.13.5. Step 5: Implementing the Native Interface in Android

Now that we have set up our public API and our native interface, it is time to work on the native
side of things. You can generate stubs for all platforms in your IDE (Netbeans in my case), by right
clicking on the MobihelpNative class in the project explorer and selecting "Generate Native Access".

Figure 484. Generate Native Access Menu Item

This will generate a separate directory for each platform inside your project’s native directory:

Figure 485. Native generated sources directory view

Inside the android directory, this generates a com/codename1/freshdesk/MobihelpNativeImpl class with
stubs for each method.

633

Our implementation will be a thin wrapper around the native Android SDK. See the source here
[https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/native/android/com/codename1/

freshdesk/MobihelpNativeImpl.java].

Some highlights:

1. Context : The native API requires us to pass a context object as a parameter on many methods.
This should be the context for the current activity. It will allow the FreshDesk API to know
where to return to after it has done its thing. Codename One provides a class called
AndroidNativeUtil that allows us to retrieve the app’s Activity (which includes the Context). We’ll
wrap this with a convenience method in our class as follows:

private static Context context() {
 return com.codename1.impl.android.AndroidNativeUtil.getActivity().getApplicationContext();
}

This will enable us to easily wrap the freshdesk native API. E.g.:

public void clearUserData() {
 com.freshdesk.mobihelp.Mobihelp.clearUserData(context());
}

2. runOnUiThread() - Many of the calls to the FreshDesk API may have been made from the
Codename One EDT. However, Android has its own event dispatch thread that should be used
for interacting with native Android UI. Therefore, any API calls that look like they initiate some
sort of native Android UI process should be wrapped inside Android’s runOnUiThread() method
which is similar to Codename One’s Display.callSerially() method. E.g. see the showSolutions()
method:

 public void showSolutions() {
 activity().runOnUiThread(new Runnable() {
 public void run() {
 com.freshdesk.mobihelp.Mobihelp.showSolutions(context());
 }
 });

 }

(Note here that the activity() method is another convenience method to retrieve the app’s
current Activity from the AndroidNativeUtil class).

3. Callbacks. We discussed, in detail, the mechanisms we put in place to enable our native code to
perform callbacks into Codename One. You can see the native side of this by viewing the
getUnreadCountAsync() method implementation:

634

https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/native/android/com/codename1/freshdesk/MobihelpNativeImpl.java

 public void getUnreadCountAsync(final int callbackId) {
 activity().runOnUiThread(new Runnable() {
 public void run() {
 com.freshdesk.mobihelp.Mobihelp.getUnreadCountAsync(context(), new
com.freshdesk.mobihelp.UnreadUpdatesCallback() {
 public void onResult(com.freshdesk.mobihelp.MobihelpCallbackStatus status, Integer count) {
 MobihelpNativeCallback.fireUnreadUpdatesCallback(callbackId, status.ordinal(), count);
 }
 });
 }
 });

 }

16.13.6. Step 6: Bundling the Native SDKs

The last step (at least on the Android side) is to bundle the FreshDesk SDK. For Android, there are a
few different scenarios you’ll run into for embedding SDKs:

1. The SDK includes only Java classes - NO XML UI files, assets, or resources that aren’t included
inside a simple .jar file. In this case, you can just place the .jar file inside your project’s
native/android directory.

2. The SDK includes some XML UI files, resources, and assets. In this case, the SDK is generally
distributed as an Android project folder that can be imported into an Eclipse or Android studio
workspace. In general, in this case, you would need to zip the entire directory and change the
extension of the resulting .zip file to ".andlib", and place this in your project’s native/android
directory.

3. The SDK is distributed as an .aar file - In this case you can just copy the .aar file into your
native/android directory.

The FreshDesk SDK

The FreshDesk (aka Mobihelp) SDK is distributed as a project folder (i.e. scenario 2 from the above
list). Therefore, our procedure is to download the SDK (download link [https://s3.amazonaws.com/

assets.mobihelp.freshpo.com/sdk/mobihelp_sdk_android.zip]), and rename it from mobihelp_sdk_android.zip
to mobihelp_sdk_android.andlib, and copy it into our native/android directory.

Dependencies

Unfortunately, in this case there’s a catch. The Mobihelp SDK includes a dependency:

Mobihelp SDK depends on AppCompat-v7 (Revision 19.0+) Library. You will
need to update project.properties to point to the Appcompat library.

If we look inside the project.properties file (inside the Mobihelp SDK directory--- i.e. you’d need to
extract it from the zip to view its contents), you’ll see the dependency listed:

android.library.reference.1=../appcompat_v7

635

https://s3.amazonaws.com/assets.mobihelp.freshpo.com/sdk/mobihelp_sdk_android.zip

I.e. it is expecting to find the appcompat_v7 library located in the same parent directory as the
Mobihelp SDK project. After a little bit of research (if you’re not yet familiar with the Android
AppCompat support library), we find that the AppCompat_v7 library is part of the Android Support
library, which can can installed into your local Android SDK using Android SDK Manager.
Installation processed specified here [https://developer.android.com/tools/support-library/setup.html].

After installing the support library, you need to retrieve it from your Android SDK. You can find
that .aar file inside the
ANDROID_HOME/sdk/extras/android/m2repository/com/android/support/appcompat-v7/19.1.0/ directory
(for version 19.1.0). The contents of that directory on my system are:

appcompat-v7-19.1.0.aar appcompat-v7-19.1.0.pom
appcompat-v7-19.1.0.aar.md5 appcompat-v7-19.1.0.pom.md5
appcompat-v7-19.1.0.aar.sha1 appcompat-v7-19.1.0.pom.sha1

There are two files of interest here:

1. appcompat-v7-19.1.0.aar - This is the actual library that we need to include in our project to
satisfy the Mobisdk dependency.

2. appcompat-v7-19.1.0.pom - This is the Maven XML file for the library. It will show us any
dependencies that the appcompat library has. We will also need to include these dependencies:

 <dependencies>
 <dependency>
 <groupId>com.android.support</groupId>
 <artifactId>support-v4</artifactId>
 <version>19.1.0</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>

i.e. We need to include the support-v4 library version 19.1.0 in our project. This is also part of
the Android Support library. If we back up a couple of directories to:
ANDROID_HOME/sdk/extras/android/m2repository/com/android/support, we’ll see it listed there:

appcompat-v7 palette-v7
cardview-v7 recyclerview-v7
gridlayout-v7 support-annotations
leanback-v17 support-v13
mediarouter-v7 support-v4
multidex test
multidex-instrumentation

+ And if we look inside the appropriate version directory of support-v4 (in
ANDROID_HOME/sdk/extras/android/m2repository/com/android/support/support-v4/19.1.0), we see:

636

https://developer.android.com/tools/support-library/setup.html

support-v4-19.1.0-javadoc.jar support-v4-19.1.0.jar
support-v4-19.1.0-javadoc.jar.md5 support-v4-19.1.0.jar.md5
support-v4-19.1.0-javadoc.jar.sha1 support-v4-19.1.0.jar.sha1
support-v4-19.1.0-sources.jar support-v4-19.1.0.pom
support-v4-19.1.0-sources.jar.md5 support-v4-19.1.0.pom.md5
support-v4-19.1.0-sources.jar.sha1 support-v4-19.1.0.pom.sha1

Looks like this library is pure Java classes, so we only need to include the support-v4-19.1.0.jar
file into our project. Checking the .pom file we see that there are no additional dependencies we
need to add.

So, to summarize our findings, we need to include the following files in our native/android
directory:

1. appcompat-v7-19.1.0.aar

2. support-v4-19.1.0.jar

And since our Mobihelp SDK lists the appcompat_v7 dependency path as "../appcompat_v7" in its
project.properties file, we are going to rename appcompat-v7-19.1.0.aar to appcompat_v7.aar.

When all is said and done, our native/android directory should contain the following:

appcompat_v7.aar mobihelp.andlib
com support-v4-19.1.0.jar

16.13.7. Step 7 : Injecting Android Manifest and Proguard Config

The final step on the Android side is to inject necessary permissions and services into the project’s
AndroidManifest.xml file.

We can find the manifest file injections required by opening the AndroidManifest.xml file from the
MobiHelp SDK project. Its contents are as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.freshdesk.mobihelp"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="10" />

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.READ_LOGS" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <application>
 <activity

637

 android:name="com.freshdesk.mobihelp.activity.SolutionArticleListActivity"
 android:configChanges="orientation|screenSize"
 android:theme="@style/Theme.Mobihelp"
 android:windowSoftInputMode="adjustPan" >
 </activity>
 <activity
 android:name="com.freshdesk.mobihelp.activity.FeedbackActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:theme="@style/Theme.Mobihelp"
 android:windowSoftInputMode="adjustResize|stateVisible" >
 </activity>
 <activity
 android:name="com.freshdesk.mobihelp.activity.InterstitialActivity"
 android:configChanges="orientation|screenSize"
 android:theme="@style/Theme.AppCompat">
 </activity>
 <activity
 android:name="com.freshdesk.mobihelp.activity.TicketListActivity"
 android:parentActivityName="com.freshdesk.mobihelp.activity.SolutionArticleListActivity"
 android:theme="@style/Theme.Mobihelp" >

 <!-- Parent activity meta-data to support 4.0 and lower -->
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.freshdesk.mobihelp.activity.SolutionArticleListActivity" />
 </activity>
 <activity
 android:name="com.freshdesk.mobihelp.activity.SolutionArticleActivity"
 android:parentActivityName="com.freshdesk.mobihelp.activity.SolutionArticleListActivity"
 android:theme="@style/Theme.Mobihelp"
 android:configChanges="orientation|screenSize|keyboard|keyboardHidden" >

 <!-- Parent activity meta-data to support 4.0 and lower -->
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.freshdesk.mobihelp.activity.SolutionArticleListActivity" />
 </activity>
 <activity
 android:name="com.freshdesk.mobihelp.activity.ConversationActivity"
 android:parentActivityName="com.freshdesk.mobihelp.activity.SolutionArticleListActivity"
 android:theme="@style/Theme.Mobihelp"
 android:windowSoftInputMode="adjustResize|stateHidden" >

 <!-- Parent activity meta-data to support 4.0 and lower -->
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.freshdesk.mobihelp.activity.SolutionArticleListActivity" />
 </activity>
 <activity
 android:name="com.freshdesk.mobihelp.activity.AttachmentHandlerActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:parentActivityName="com.freshdesk.mobihelp.activity.SolutionArticleListActivity"
 android:theme="@style/Theme.Mobihelp" >

 <!-- Parent activity meta-data to support 4.0 and lower -->
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"

638

 android:value="com.freshdesk.mobihelp.activity.SolutionArticleListActivity" />
 </activity>

 <service android:name="com.freshdesk.mobihelp.service.MobihelpService" />

 <receiver android:name="com.freshdesk.mobihelp.receiver.ConnectivityReceiver" >
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
 </receiver>
 </application>

</manifest>

We’ll need to add the <uses-permission> tags and all of the contents of the <application> tag to our
manifest file. Codename One provides the following build hints for these:

1. android.xpermissions - For your <uses-permission> directives. Add a build hint with name
android.xpermissions, and for the value, paste the actual <uses-permission> XML tag.

2. android.xapplication - For the contents of your <application> tag.

Proguard Config

For the release build, we’ll also need to inject some proguard configuration so that important
classes don’t get stripped out at build time. The FreshDesk SDK instructions state:

If you use Proguard, please make sure you have the following included in
your project’s proguard-project.txt

-keep class android.support.v4.** { *; }
-keep class android.support.v7.** { *; }

In addition, if you look at the proguard-project.txt file inside the Mobihelp SDK, you’ll see the rules:

-keep public class * extends android.app.Service
-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.app.Activity
-keep public class * extends android.preference.Preference
-keep public class com.freshdesk.mobihelp.exception.MobihelpComponentNotFoundException

-keepclassmembers class * implements android.os.Parcelable {
 public static final android.os.Parcelable$Creator *;
}

We’ll want to merge this and then paste them into the build hint android.proguardKeep of our
project.

639

Troubleshooting Android Stuff

If, after doing all this, your project fails to build, you can enable the "Include Source" option of the
build server, then download the source project, open it in Eclipse or Android Studio, and debug
from there.

16.14. Part 2: Implementing the iOS Native Code
Part 1 of this tutorial focused on the Android native integration. Now we’ll shift our focus to the iOS
implementation.

After selecting "Generate Native Interfaces" for our "MobihelpNative" class, you’ll find a native/ios
directory in your project with the following files:

1. com_codename1_freshdesk_MobihelpNativeImpl.h [https://github.com/shannah/cn1-freshdesk/blob/master/

cn1-freshdesk-demo/native/ios/com_codename1_freshdesk_MobihelpNativeImpl.h]

2. com_codename1_freshdesk_MobihelpNativeImpl.m [https://github.com/shannah/cn1-freshdesk/blob/master/

cn1-freshdesk-demo/native/ios/com_codename1_freshdesk_MobihelpNativeImpl.m]

These files contain stub implementations corresponding to our MobihelpNative class.

We make use of the API docs [http://developer.freshdesk.com/mobihelp/ios/api/] to see how the native SDK
needs to be wrapped. The method names aren’t the same. E.g. instead of a method showFeedback(), it
has a message -presentFeedback:

We more-or-less just follow the iOS integration guide [http://developer.freshdesk.com/mobihelp/ios/

integration_guide/#getting-started] for wrapping the API. Some key points include:

1. Remember to import the Mobihelp.h file in your header file:

#import "Mobihelp.h"

2. Similar to our use of runOnUiThread() in Android, we will wrap all of our API calls in either
dispatch_async() or dispatch_sync() calls to ensure that we are interacting with the Mobihelp
API on the app’s main thread rather than the Codename One EDT.

3. Some methods/messages in the Mobihelp SDK require us to pass a UIViewController as a
parameter. In Codename One, the entire application uses a single UIViewController:
CodenameOne_GLViewController. You can obtain a reference to this using the
[CodenameOne_GLViewController instance] message. We need to import its header file:

#import "CodenameOne_GLViewController.h"

As an example, let’s look at the showFeedback() method:

640

https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/native/ios/com_codename1_freshdesk_MobihelpNativeImpl.h
https://github.com/shannah/cn1-freshdesk/blob/master/cn1-freshdesk-demo/native/ios/com_codename1_freshdesk_MobihelpNativeImpl.m
http://developer.freshdesk.com/mobihelp/ios/api/
http://developer.freshdesk.com/mobihelp/ios/integration_guide/#getting-started

-(void)showFeedback{

 dispatch_async(dispatch_get_main_queue(), ^{
 [[Mobihelp sharedInstance] presentFeedback:[CodenameOne_GLViewController instance]];
 });
}

16.14.1. Using the MobihelpNativeCallback

We described earlier how we created a static method on the MobihelpNativeCallback class so that
native code could easily fire a callback method. Now let’s take a look at how this looks from the iOS
side of the fence. Here is the implementation of getUnreadCountAsync():

-(void)getUnreadCountAsync:(int)param{
 dispatch_async(dispatch_get_main_queue(), ^{
 [[Mobihelp sharedInstance]
 unreadCountWithCompletion:^(NSInteger count){
 com_codename1_freshdesk_MobihelpNativeCallback_fireUnreadUpdatesCallback___int_int_int(
 CN1_THREAD_GET_STATE_PASS_ARG param, 3 /*SUCCESS*/, count);
 }];
 });
}

In our case the iOS SDK version of this method is +unreadCountWithCompletion: which takes a block
(which is like an anonymous function) as a parameter.

The callback to our Codename One function occurs on this line:

com_codename1_freshdesk_MobihelpNativeCallback_fireUnreadUpdatesCallback___int_int_int(
 CN1_THREAD_GET_STATE_PASS_ARG param, 3 /*SUCCESS*/, count);

Some things worth mentioning here:

1. The method name is the result of taking the FQN
(MobihelpNativeCallback.fireUpdateUnreadUpdatesCallback(int, int, int) in the package
com.codename1.freshdesk) and replacing all . characters with underscores, suffixing two
underscores after the end of the method name, then appending _int once for each of the int
arguments.

2. We also need to import the header file for this class:

#import "com_codename1_freshdesk_MobihelpNativeCallback.h"

16.14.2. Bundling Native iOS SDK

Now that we have implemented our iOS native interface, we need to bundle the Mobihelp iOS SDK

641

into our project. There are a few different scenarios you may face when looking to include a native
SDK:

1. The SDK includes .bundle resource files. In this case, just copy the .bundle file(s) into your
native/ios directory.

2. The SDK includes .h header files. In this case, just copy the .h file(s) into your native/ios
directory.

3. The SDK includes .a files. In this case, just copy the .a file(s) into your native/ios directory.

4. The SDK includes .framework files. In this case, you’ll need to zip up the framework, and copy it
into your native/ios directory. E.g. If the framework is named, MyFramework.framework, then
the zip file should be named MyFramework.framework.zip, and should be located at
native/ios/MyFramework.framework.zip.

The FreshDesk SDK doesn’t include any .framework files, so we don’t need to worry about that last
scenario. We simply download the iOS SDK [https://s3.amazonaws.com/assets.mobihelp.freshpo.com/sdk/

mobihelp_sdk_ios.zip], copy the libFDMobihelpSDK.a, Mobihelp.h. MHModel.bundle, MHResources.bundle,
and MHLocalization/en.proj/MHLocalizable.strings into native/ios.

16.14.3. Troubleshooting iOS

If you run into problems with the build, you can select "Include Sources" in the build server to
download the resulting Xcode Project. You can then debug the Xcode project locally, make changes
to your iOS native implementation files, and copy them back into your project once it is building
properly.

16.14.4. Adding Required Core Libraries and Frameworks

The iOS integration guide for the FreshDesk SDK lists the following core frameworks as
dependencies:

Figure 486. IOS link options

We can add these dependencies to our project using the ios.add_libs build hint. E.g.

Figure 487. iOS’s "add libs" build hint

I.e. we just list the framework names separated by semicolons. Notice that my list in the above
image doesn’t include all of the frameworks that they list because many of the frameworks are
already included by default (I obtained the default list by simply building the project with "include
sources" checked, then looked at the frameworks that were included).

642

https://s3.amazonaws.com/assets.mobihelp.freshpo.com/sdk/mobihelp_sdk_ios.zip

16.15. Part 3 : Packaging as a cn1lib
During the initial development, I generally find it easier to use a regular Codename One project so
that I can run and test as I go. But once it is stabilized, and I want to distribute the library to other
developers, I will transfer it over to a Codename One library project. This general process involves:

1. Create a Codename One Library project.

2. Copy the .java files from my original project into the library project.

3. Copy the native directory from the original project into the library project.

4. Copy the relevant build hints from the original project’s codenameone_settings.properties file
into the library project’s codenameone_library_appended.properties file.

In the case of the FreshDesk .cn1lib, I modified the original project’s build script to generate and
build a library project automatically. But that is beyond the scope of this tutorial.

16.16. Building Your Own Layout Manager
A Layout [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/Layout.html] contains all the
logic for positioning Codename One components. It essentially traverses a Codename One
Container [https://www.codenameone.com/javadoc/com/codename1/ui/Container.html] and positions
components absolutely based on internal logic.

When we build the layout we need to take margin into consideration and make sure to add it into
the position/size calculations. Building a layout manager involves two simple methods:
layoutContainer & getPreferredSize.

layoutContainer is invoked whenever Codename One decides the container needs rearranging,
Codename One tries to avoid calling this method and only invokes it at the last possible moment.
Since this method is generally very expensive (imagine the recursion with nested layouts).
Codename One just marks a flag indicating layout is "dirty" when something important changes
and tries to avoid "reflows".

getPreferredSize allows the layout to determine the size desired for the container. This might be a
difficult call to make for some layout managers that try to provide both flexibility and simplicity.

Most of FlowLayout bugs stem from the fact that this method is just impossible to implement
correctly & efficiently for all the use cases of a deeply nested FlowLayout. The size of the final layout
won’t necessarily match the requested size (it probably won’t) but the requested size is taken into
consideration, especially when scrolling and also when sizing parent containers.

This is a layout manager that just arranges components in a center column aligned to the middle.
We then show the proper usage of margin to create a stair like effect with this layout manager:

643

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/Layout.html
https://www.codenameone.com/javadoc/com/codename1/ui/Container.html

class CenterLayout extends Layout {
 public void layoutContainer(Container parent) {
 int components = parent.getComponentCount();
 Style parentStyle = parent.getStyle();
 int centerPos = parent.getLayoutWidth() / 2 + parentStyle.getMargin(Component.LEFT);
 int y = parentStyle.getMargin(Component.TOP);
 boolean rtl = parent.isRTL();
 for (int iter = 0; iter < components; iter++) {
 Component current = parent.getComponentAt(iter);
 Dimension d = current.getPreferredSize();
 Style currentStyle = current.getStyle();
 int marginRight = currentStyle.getMarginRight(rtl);
 int marginLeft = currentStyle.getMarginLeft(rtl);
 int marginTop = currentStyle.getMarginTop();
 int marginBottom = currentStyle.getMarginBottom();
 current.setSize(d);
 int actualWidth = d.getWidth() + marginLeft + marginRight;
 current.setX(centerPos - actualWidth / 2 + marginLeft);
 y += marginTop;
 current.setY(y);
 y += d.getHeight() + marginBottom;
 }
 }

 public Dimension getPreferredSize(Container parent) {
 int components = parent.getComponentCount();
 Style parentStyle = parent.getStyle();
 int height = parentStyle.getMargin(Component.TOP) + parentStyle.getMargin(Component.BOTTOM);
 int marginX = parentStyle.getMargin(Component.RIGHT) + parentStyle.getMargin(Component.LEFT);
 int width = marginX;
 for (int iter = 0; iter < components; iter++) {
 Component current = parent.getComponentAt(iter);
 Dimension d = current.getPreferredSize();
 Style currentStyle = current.getStyle();
 width = Math.max(d.getWidth() + marginX + currentStyle.getMargin(Component.RIGHT)
 + currentStyle.getMargin(Component.LEFT), width);
 height += currentStyle.getMargin(Component.TOP) + d.getHeight()
 + currentStyle.getMargin(Component.BOTTOM);
 }
 Dimension size = new Dimension(width, height);
 return size;
 }
}

Form hi = new Form("Center Layout", new CenterLayout());
for(int iter = 1 ; iter < 10 ; iter++) {
 Label l = new Label("Label: " + iter);
 l.getUnselectedStyle().setMarginLeft(iter * 3);
 l.getUnselectedStyle().setMarginRight(0);
 hi.add(l);
}
hi.add(new Label("Really Wide Label Text!!!"));
hi.show();

644

Figure 488. Center layout staircase effect with margin

16.16.1. Porting a Swing/AWT Layout Manager

The GridBagLayout [https://www.codenameone.com/javadoc/com/codename1/ui/layouts/GridBagLayout.html]
was ported to Codename One relatively easily considering the complexity of that specific layout
manager. Here are some tips you should take into account when porting a Swing/AWT layout
manager:

1. Codename One doesn’t have Insets, we added some support for them in order to port GridBag
but components in Codename One have a margin they need to consider instead of the Insets
(the padding is in the preferred size and is thus hidden from the layout manager).

2. AWT layout managers also synchronize a lot on the AWT thread. This is no longer necessary
since Codename One is single threaded, like Swing.

3. AWT considers the top left position of the Container to be 0,0 whereas Codename One considers
the position based on its parent Container. The top left position in Codename One is getX(),
getY().

Other than those things it’s mostly just fixing method and import statements, which are slightly
different. Pretty trivial stuff.

16.17. Port a Language to Codename One
As you may have already read, we have just added support for Kotlin in Codename One. This is
something that you can achieve without the help of Codename One. You could port a 3rd party
language like Scala, Ruby, Python etc. to Codename One.

16.17.1. What is a JVM Language?

A JVM Language is any programming language that can be compiled to byte-codes that will run on
the JVM (Java Virtual Machine). Java was the original JVM language, but many others have sprung
up over the years. Kotlin [https://kotlinlang.org/], Scala [https://www.scala-lang.org/], Groovy [http://groovy-

lang.org/], and JRuby [http://jruby.org/] come to mind as well-established and mature languages, but
there are many others [https://en.wikipedia.org/wiki/List_of_JVM_languages].

645

https://www.codenameone.com/javadoc/com/codename1/ui/layouts/GridBagLayout.html
https://kotlinlang.org/
https://www.scala-lang.org/
http://groovy-lang.org/
http://jruby.org/
https://en.wikipedia.org/wiki/List_of_JVM_languages

16.17.2. How Hard is it to Port a JVM Language to Codename One?

The difficulty of porting a particular language to Codename One will vary depending on such
factors as:

1. Does it require a runtime library?

a. How complex is the runtime library? (E.g. Does it require classes that aren’t currently
offered in Codename One’s subset of the java standard libraries?)

2. Does it need reflection?

a. Codename One doesn’t support reflection because it would result in a very large application
size. If a JVM language requires reflection just to get off the ground then adding it to
Codename one would be tricky.

3. Does it perform any runtime byte-code manipulation?

a. Some dynamic languages may perform byte-code manipulation at runtime. This is
problematic on iOS (and possibly other platforms) which prohibits such runtime behavior.

Step 1: Assess the Language

The more similar a language, and its build outputs are to Java, the easier it will be to port
(probably). Most JVM languages have two parts:

1. A compiler, which compiles source files to JVM byte-code (usually as .class files).

2. A runtime library.

Currently I’m only aware of one language (other than Java) that doesn’t require a runtime library,
and that is Mirah [http://www.mirah.org/].

Codename One also supports Mirah [https://www.codenameone.com/blog/mirah-for-

codename-one.html]

Assessing the Byte-Code

The first thing I do is take a look at the byte-code that is produced by the compiler. I use javap to
print out a nice version.

Consider this sample Kotlin class:

646

http://www.mirah.org/
https://www.codenameone.com/blog/mirah-for-codename-one.html

package com.codename1.hellokotlin2

import com.codename1.ui.Button
import com.codename1.ui.Form
import com.codename1.ui.Label
import com.codename1.ui.layouts.BoxLayout

/**
 * Created by shannah on 2017-07-10.
 */
class KotlinForm : Form {

 constructor() : super("Hello Kotlin", BoxLayout.y()) {
 val label = Label("Hello Kotlin")
 val clickMe = Button("Click Me")
 clickMe.addActionListener {
 label.setText("You Clicked Me");
 revalidate();
 }

 add(label).add(clickMe);

 }

}

Let’s take a look at the bytecode that Kotlin produced for this class:

$ javap -v com/codename1/hellokotlin2/KotlinForm.class

 Last modified 10-Jul-2017; size 1456 bytes
 MD5 checksum 1cb00f6e63b918bb5a9f146ca8b0b78e
 Compiled from "KotlinForm.kt"
public final class com.codename1.hellokotlin2.KotlinForm extends com.codename1.ui.Form
 SourceFile: "KotlinForm.kt"
 InnerClasses:
 static final #31; //class com/codename1/hellokotlin2/KotlinForm$1
 RuntimeVisibleAnnotations:
 0: #56(#57=[I#58,I#58,I#59],#60=[I#58,I#61,I#58],#62=I#58,#63=[s#64],#65=[s#55,s#66,s#6,s#67])
 minor version: 0
 major version: 50
 flags: ACC_PUBLIC, ACC_FINAL, ACC_SUPER
Constant pool:
 #1 = Utf8 com/codename1/hellokotlin2/KotlinForm
 #2 = Class #1 // com/codename1/hellokotlin2/KotlinForm
 #3 = Utf8 com/codename1/ui/Form
 #4 = Class #3 // com/codename1/ui/Form
 #5 = Utf8 <init>
 #6 = Utf8 ()V
 #7 = Utf8 Hello Kotlin
 #8 = String #7 // Hello Kotlin
 #9 = Utf8 com/codename1/ui/layouts/BoxLayout

647

 #10 = Class #9 // com/codename1/ui/layouts/BoxLayout
 #11 = Utf8 y
 #12 = Utf8 ()Lcom/codename1/ui/layouts/BoxLayout;
 #13 = NameAndType #11:#12 // y:()Lcom/codename1/ui/layouts/BoxLayout;
 #14 = Methodref #10.#13 // com/codename1/ui/layouts/BoxLayout.y:()Lcom/codename1/ui/layouts/BoxLayout;
 #15 = Utf8 com/codename1/ui/layouts/Layout
 #16 = Class #15 // com/codename1/ui/layouts/Layout
 #17 = Utf8 (Ljava/lang/String;Lcom/codename1/ui/layouts/Layout;)V
 #18 = NameAndType #5:#17 // "<init>":(Ljava/lang/String;Lcom/codename1/ui/layouts/Layout;)V
 #19 = Methodref #4.#18 //
com/codename1/ui/Form."<init>":(Ljava/lang/String;Lcom/codename1/ui/layouts/Layout;)V
 #20 = Utf8 com/codename1/ui/Label
 #21 = Class #20 // com/codename1/ui/Label
 #22 = Utf8 (Ljava/lang/String;)V
 #23 = NameAndType #5:#22 // "<init>":(Ljava/lang/String;)V
 #24 = Methodref #21.#23 // com/codename1/ui/Label."<init>":(Ljava/lang/String;)V
 #25 = Utf8 com/codename1/ui/Button
 #26 = Class #25 // com/codename1/ui/Button
 #27 = Utf8 Click Me
 #28 = String #27 // Click Me
 #29 = Methodref #26.#23 // com/codename1/ui/Button."<init>":(Ljava/lang/String;)V
 #30 = Utf8 com/codename1/hellokotlin2/KotlinForm$1
 #31 = Class #30 // com/codename1/hellokotlin2/KotlinForm$1
 #32 = Utf8 (Lcom/codename1/hellokotlin2/KotlinForm;Lcom/codename1/ui/Label;)V
 #33 = NameAndType #5:#32 // "<init>":(Lcom/codename1/hellokotlin2/KotlinForm;Lcom/codename1/ui/Label;)V
 #34 = Methodref #31.#33 //
com/codename1/hellokotlin2/KotlinForm$1."<init>":(Lcom/codename1/hellokotlin2/KotlinForm;Lcom/codename1/ui/Label;)V
 #35 = Utf8 com/codename1/ui/events/ActionListener
 #36 = Class #35 // com/codename1/ui/events/ActionListener
 #37 = Utf8 addActionListener
 #38 = Utf8 (Lcom/codename1/ui/events/ActionListener;)V
 #39 = NameAndType #37:#38 // addActionListener:(Lcom/codename1/ui/events/ActionListener;)V
 #40 = Methodref #26.#39 //
com/codename1/ui/Button.addActionListener:(Lcom/codename1/ui/events/ActionListener;)V
 #41 = Utf8 com/codename1/ui/Component
 #42 = Class #41 // com/codename1/ui/Component
 #43 = Utf8 add
 #44 = Utf8 (Lcom/codename1/ui/Component;)Lcom/codename1/ui/Container;
 #45 = NameAndType #43:#44 // add:(Lcom/codename1/ui/Component;)Lcom/codename1/ui/Container;
 #46 = Methodref #2.#45 //
com/codename1/hellokotlin2/KotlinForm.add:(Lcom/codename1/ui/Component;)Lcom/codename1/ui/Container;
 #47 = Utf8 com/codename1/ui/Container
 #48 = Class #47 // com/codename1/ui/Container
 #49 = Methodref #48.#45 //
com/codename1/ui/Container.add:(Lcom/codename1/ui/Component;)Lcom/codename1/ui/Container;
 #50 = Utf8 clickMe
 #51 = Utf8 Lcom/codename1/ui/Button;
 #52 = Utf8 label
 #53 = Utf8 Lcom/codename1/ui/Label;
 #54 = Utf8 this
 #55 = Utf8 Lcom/codename1/hellokotlin2/KotlinForm;
 #56 = Utf8 Lkotlin/Metadata;
 #57 = Utf8 mv
 #58 = Integer 1
 #59 = Integer 6
 #60 = Utf8 bv
 #61 = Integer 0
 #62 = Utf8 k
 #63 = Utf8 d1
 #64 = Utf8
 \n\n\20¢¨
 #65 = Utf8 d2
 #66 = Utf8 Lcom/codename1/ui/Form;
 #67 = Utf8 HelloKotlin2
 #68 = Utf8 KotlinForm.kt
 #69 = Utf8 Code
 #70 = Utf8 LocalVariableTable

648

 #71 = Utf8 LineNumberTable
 #72 = Utf8 SourceFile
 #73 = Utf8 InnerClasses
 #74 = Utf8 RuntimeVisibleAnnotations
{
 public com.codename1.hellokotlin2.KotlinForm();
 descriptor: ()V
 flags: ACC_PUBLIC
 Code:
 stack=5, locals=3, args_size=1
 0: aload_0
 1: ldc #8 // String Hello Kotlin
 3: invokestatic #14 // Method
com/codename1/ui/layouts/BoxLayout.y:()Lcom/codename1/ui/layouts/BoxLayout;
 6: checkcast #16 // class com/codename1/ui/layouts/Layout
 9: invokespecial #19 // Method
com/codename1/ui/Form."<init>":(Ljava/lang/String;Lcom/codename1/ui/layouts/Layout;)V
 12: new #21 // class com/codename1/ui/Label
 15: dup
 16: ldc #8 // String Hello Kotlin
 18: invokespecial #24 // Method com/codename1/ui/Label."<init>":(Ljava/lang/String;)V
 21: astore_1
 22: new #26 // class com/codename1/ui/Button
 25: dup
 26: ldc #28 // String Click Me
 28: invokespecial #29 // Method com/codename1/ui/Button."<init>":(Ljava/lang/String;)V
 31: astore_2
 32: aload_2
 33: new #31 // class com/codename1/hellokotlin2/KotlinForm$1
 36: dup
 37: aload_0
 38: aload_1
 39: invokespecial #34 // Method
com/codename1/hellokotlin2/KotlinForm$1."<init>":(Lcom/codename1/hellokotlin2/KotlinForm;Lcom/codename1/ui/Label;)V
 42: checkcast #36 // class com/codename1/ui/events/ActionListener
 45: invokevirtual #40 // Method
com/codename1/ui/Button.addActionListener:(Lcom/codename1/ui/events/ActionListener;)V
 48: aload_0
 49: aload_1
 50: checkcast #42 // class com/codename1/ui/Component
 53: invokevirtual #46 // Method add:(Lcom/codename1/ui/Component;)Lcom/codename1/ui/Container;
 56: aload_2
 57: checkcast #42 // class com/codename1/ui/Component
 60: invokevirtual #49 // Method
com/codename1/ui/Container.add:(Lcom/codename1/ui/Component;)Lcom/codename1/ui/Container;
 63: pop
 64: return
 LocalVariableTable:
 Start Length Slot Name Signature
 32 32 2 clickMe Lcom/codename1/ui/Button;
 22 42 1 label Lcom/codename1/ui/Label;
 0 65 0 this Lcom/codename1/hellokotlin2/KotlinForm;
 LineNumberTable:
 line 13: 0
 line 14: 12
 line 15: 22
 line 16: 32
 line 21: 48
}

That’s a big mess of stuff, but it’s pretty easy to pick through it when you know what you’re looking
for. The layout of this output is pretty straight forward. The beginning shows that this is a class
definition:

649

public final class com.codename1.hellokotlin2.KotlinForm extends com.codename1.ui.Form {
 //...
}

Even just comparing this line with the class definition from the source file we have learned
something about the Kotlin compiler. It has made the class final by default. That observation
shouldn’t affect our assessment here, but it is kind of interesting.

After the class definition, it shows the internal classes:

InnerClasses:
 static final #31; //class com/codename1/hellokotlin2/KotlinForm$1

The Constant Pool

And the constants that are used in the class:

Constant pool:
 #1 = Utf8 com/codename1/hellokotlin2/KotlinForm
 #2 = Class #1 // com/codename1/hellokotlin2/KotlinForm
 #3 = Utf8 com/codename1/ui/Form
 #4 = Class #3 // com/codename1/ui/Form
 #5 = Utf8 <init>
 #6 = Utf8 ()V
 #7 = Utf8 Hello Kotlin
 #8 = String #7 // Hello Kotlin
 #9 = Utf8 com/codename1/ui/layouts/BoxLayout
 ... etc...

The constant pool will consist of class names, and strings mostly. You’ll want to peruse this list to
see if the compiler has added any classes that aren’t in the source code. In the example above, it
looks like Kotlin is pretty faithful to the original source’s dependencies. It didn’t inject any classes
that aren’t in the original source.

Even if the compiler does inject other dependencies into the bytecode, it might not be a problem. It
is only a problem if those classes aren’t supported by Codename One. Keep your eyes peeled for
anything in the java.lang.reflect package or unsolicited use of java.net, java.nio, or any other
package that aren’t part of the Codename One standard library. If you’re not sure if a class or
package is available in the Codename One standard library, check the javadocs
[https://www.codenameone.com/javadoc/].

The ByteCode Instructions:

After the constant pool, we see each of the methods of the class written out as a list of bytecode
instructions. E.g.

650

https://www.codenameone.com/javadoc/

public com.codename1.hellokotlin2.KotlinForm();
 descriptor: ()V
 flags: ACC_PUBLIC
 Code:
 stack=5, locals=3, args_size=1
 0: aload_0
 1: ldc #8 // String Hello Kotlin
 3: invokestatic #14 // Method
com/codename1/ui/layouts/BoxLayout.y:()Lcom/codename1/ui/layouts/BoxLayout;
 6: checkcast #16 // class com/codename1/ui/layouts/Layout
 9: invokespecial #19 // Method
com/codename1/ui/Form."<init>":(Ljava/lang/String;Lcom/codename1/ui/layouts/Layout;)V
 12: new #21 // class com/codename1/ui/Label
 15: dup
 16: ldc #8 // String Hello Kotlin
 etc...

In the above snippet, the first instruction is aload_0 (which adds this to the stack). The 2nd
instruction is ldc, (which loads constant #8 — the string "Hello Kotlin" to the stack). The 3rd
instruction is invokestatic which calls the static method define by Constant #14 from the constant
pool, with the two parameters that had just been added to the stack.

You don’t need to understand what all of these instructions do. You just need to
look for instructions that may be problematic.

The only instruction that I think might be problematic is "invokedynamic". All other instructions
should work find in Codename One. (I don’t know for a fact that invokedynmic won’t work - I just
suspect it might not work on some platforms).

Summary of Byte-code Assessment

So to summarize, the byte-code assessment phase, we’re basically just looking to make sure that the
compiler doesn’t tend to add dependencies to parts of the JDK that Codename One doesn’t currently
support. And we want to make sure that it doesn’t use invokedynamic.

If you find that the compiler does use invokedynamic or add references to classes that Codename
One doesn’t support, don’t give up just yet. You might be able to create your own "porting" runtime
library that will provide these dependencies at runtime.

Assessing the Runtime Library

The process for assessing the runtime library is pretty similar to the process for the bytecodes.
You’ll want to get your hands on the language’s runtime library, and use javap to inspect the .class
files. You’re looking for the same things as you were looking for in the compiler’s output:
"invokedynamic" and classes that aren’t supported in Codename One.

Step 2: Convert the Runtime Library into a CN1Lib

Once you have assessed the language and are optimistic that it is a good candidate for porting, you
can proceed to port the runtime library into Codename One. Usually that language’s runtime
library will be distributed in .jar format. You need to convert this into a cn1lib so that it can be used
in a Codename One project. If you can get your hands on the source code for the runtime library

651

then the best approach is to paste the source files into a Codename One Library project, and try to
build it. This has the advantage that it will validate the source during compile to ensure that it
doesn’t depend on any classes that Codename One doesn’t support.

If you can’t find the sources of the runtime library or they don’t seem to be easily "buildable", then
the next best thing is to just get the binary distribution’s jar file and convert it to a cn1lib. This is
what we did for the Kotlin runtime library [https://github.com/shannah/codenameone-kotlin].

This procedure exploits the fact that a cn1lib file is just a zip file with a specific file structure inside
it. The cross-platform Java .class files are all contained inside a file named "main.zip", inside the zip
file. This is the only mandatory file that must be inside a cn1lib.

To make the library easier to use the cn1lib file can also contain a file named "stubs.zip" which
includes stubs of the Java sources. When you build a cn1lib using a Codename One Library project,
it will automatically generate stubs of the source so that the IDE will have access to nice things like
Javadoc when using the library. The kotlin distribution includes a separate jar file with the runtime
sources, named "kotlin-runtime-sources.jar", so we used this as the "stubs". It contains full sources,
which isn’t necessary, but it also doesn’t hurt.

So now that we had my two jar files: kotlin-runtime.jar and kotlin-runtime-sources.jar, I created a
new empty directory, and copied them inside. I renamed the jars "main.zip" and "stubs.zip"
respectively. Then I zipped up the directory and renamed the zip file "kotlin-runtime.cn1lib".

Building cn1libs manually in this way is a very bad habit, as it bypasses the API
verification step that normally occurs when building a library project. It is
possible, even likely, that the jar files that you convert depend on classes that
aren’t in the Codename One library, so your library will fail at runtime in
unexpected ways. The only reason we could do this with kotlin’s runtime (with
some confidence) is because I already analyzed the bytecodes to ensure that they
didn’t include anything problematic.

Step 3: Hello World

For our "Hello World" test we will need to create a separate project in our JVM language and
produce class files that we will manually copy into an appropriate location of our project. We’ll
want to use the normal tools for the language and not worry about how it integrates with
Codename One. For Kotlin, I just followed the getting started tutorial on the Kotlin site to create a
new Kotlin project in IntelliJ. When Steve ported Mirah, he just used a text editor and the mirahc
command-line compiler to create my Hello World class. The tools and process will depend on the
language.

Here is the "hello world" we created in Kotlin:

652

https://github.com/shannah/codenameone-kotlin

package com.mycompany.myapp

class HelloKotlin {

 fun hello() {
 System.out.println("Hello from Kotlin");
 }
}

After building this, I have a directory that contains "com/mycompany/myapp/HelloKotlin.class".

It also produced a .jar file that contains this class.

The easiest way to integrate external code into a Codename One project, is just to wrap it as a cn1lib
file and place it into my Codename One project’s lib directory. That way you don’t have to mess
with any of the build files. So, using roughly the same procedure as we used to create the kotlin-
runtime.cn1lib, I wrap my hellokotlin.jar as a cn1lib to produce "hellokotlin.cn1lib" and copy it to
the "lib" directory of a Codename One project.

Remember to select "Codename One" → "Refresh CN1Libs" after placing the cn1lib
in your lib directory or it won’t get picked up.

Finally, I call my library from the start() method of my app:

HelloKotlin hello = new HelloKotlin();
hello.hello();

If we run this in the Simulator, it should print "Hello from Kotlin" in the output console. If we get an
error, then we can dig in and try to figure out what went wrong using my standard debugging
techniques. EXPECT an error on the first run. Hopefully it will just be a missing import or
something simple.

Step 4: A More Complex Hello World

In the case of Kotlin, the hello world example app would actually run without the runtime library
because it was so simple. So it was necessary to add a more complex example to prove the need for
the runtime library. It doesn’t matter what you do with your more complex example, as long as it
doesn’t require classes that aren’t in Codename One.

If you want to use the Codename One inside your project, you should add the CodenameOne.jar
(found inside any Codename One project) to your classpath so that it will compile.

Step 5: Automation and Integration

At this point we already have a manual process for incorporating files built with our alternate
language into a Codename One project. The process looks like:

1. Use standard tools for your JVM language to write your code.

653

2. Use the JVM language’s standard build tools (e.g. command-line compiler, etc..) to compile your
code so that you have .class files (and optionally a .jar file).

3. Wrap your .class files in a cn1lib.

4. Add the cn1lib to the lib directory of a Codename One project.

5. Use your library from the Codename One project.

When Steve first developed Mirah support he automated this process using an ANT script
[https://github.com/shannah/CN1MirahNBM/blob/master/src/ca/weblite/codename1/mirah/build.xml]. He also
automatically generated some bootstrap code so that he could develop the whole app in Mirah and
he woudn’t have to write any Java. However, this level of integration has limitations.

For example, with this approach alone, you couldn’t have two-way dependencies between Java
source and Mirah source. Yes, Mirah code could use Java libraries (and it did depend on
CodenameOne.jar), and my Java code could use my Mirah code. However, Mirah source code could
not depend on the Java source code in my project. This has to do with the order in which code is
compiled. It’s a bit of a chicken and egg issue. If we are building a project that has Java source code
and Mirah source code, we are using two different compilers: mirahc to compile the Mirah files,
and javac to compile the Java files. If we are starting from a clean build, and we run mirahc first,
then the .java files haven’t yet been compiled to .class files - and thus mirahc can’t reference them -
and any mirah code that depends on those uncompiled Java classes will fail. If we compile the .java
files first, then we have the opposite problem.

Steve worked around this problem in Mirah by writing my own pseudo-compiler [https://github.com/

shannah/mirah-ant/blob/master/src/ca/weblite/asm/JavaExtendedStubCompiler.java] that produced stub class
files for the java source that would be referenced by mirahc when compiling the Mirah files. In this
way he was able to have two-way dependencies between Java and Mirah in the same project.

Kotlin also supports two-way dependencies, probably using a similar mechanism.

How Seamless Can You Make It?

For both the Kotlin and Mirah support, we wanted integration to be seamless. We didn’t want users
to have to create a separate project for their Kotlin/Mirah code. We wanted them to simply add a
Kotlin/Mirah file into their project and have it just work. Achieving this level of integration in
Kotlin was quite easy, since they provide an ANT plugin [https://kotlinlang.org/docs/reference/using-

ant.html] that essentially allowed me to just add one tag inside my <javac/> tags:

<withKotlin/>

And it would automatically handle Kotlin and Java files together: Seamlessly. There are a few places
in a Codename One’s build.xml file where we call "javac" so we just needed to inject these tags in
those places. This injection is performed automatically by the Codename One IntelliJ plugin.

For Mirah, Steve developed his own ANT plugins [https://github.com/shannah/mirah-ant] and Netbeans
module [https://github.com/shannah/mirah-nbm] that do something similar in Netbeans.

654

https://github.com/shannah/CN1MirahNBM/blob/master/src/ca/weblite/codename1/mirah/build.xml
https://github.com/shannah/mirah-ant/blob/master/src/ca/weblite/asm/JavaExtendedStubCompiler.java
https://kotlinlang.org/docs/reference/using-ant.html
https://github.com/shannah/mirah-ant
https://github.com/shannah/mirah-nbm
https://github.com/shannah/mirah-nbm

16.18. Update Framework
When we launched Codename One in 2012 we needed a way to ship updates and fixes faster than
the plugin update system. So we built the client lib update system. Then we needed a way to update
the designer tool (resource editor), the GUI builder & the skins… We also needed a system to update
the builtin builder code (CodeNameOneBuildClient.jar so we built a tool for that too).

The Update Framework [https://github.com/codenameone/UpdateCodenameOne] solves several problems in
the old systems:

• Download once - if you have multiple projects the library will only download once to the
.codenameone directory. All the projects will update from local storage

• Skins update automatically - this is hugely important. When we change a theme we need to
update it in the skins and if you don’t update the skin you might see a difference between the
simulator and the device

• Update of settings/designer without IDE plugin update - The IDE plugin update process is slow
and tedious. This way we can push out a bug fix for the GUI builder without going through the
process of releasing a new plugin version

For the most part this framework should be seamless. You should no longer see the "downloading"
message whenever we push an update after your build client is updated. Your system would just
poll for a new version daily and update when new updates are available.

You can also use the usual method of Codename One Settings → Basic → Update Client Libs which
will force an update check. Notice that the UI will look a bit different after this update.

16.18.1. How does it Work?

You can see the full code here [https://github.com/codenameone/UpdateCodenameOne] the gist of it is very
simple. We create a jar called UpdateCodenameOne.jar under ~/.codenameone (~ represents the users
home directory).

An update happens by running this tool with a path to a Codename One project e.g.:

java -jar ~/.codenameone/UpdateCodenameOne.jar path_to_my_codenameone_project

E.g.:

655

https://github.com/codenameone/UpdateCodenameOne
https://github.com/codenameone/UpdateCodenameOne

java -jar ~/.codenameone/UpdateCodenameOne.jar ~/dev/AccordionDemo
Checking: JavaSE.jar
Checking: CodeNameOneBuildClient.jar
Checking: CLDC11.jar
Checking: CodenameOne.jar
Checking: CodenameOne_SRC.jar
Checking: designer_1.jar
Checking: guibuilder_1.jar
Updating the file: /Users/shai/dev/AccordionDemo/JavaSE.jar
Updating the file: /Users/shai/dev/AccordionDemo/CodeNameOneBuildClient.jar
Updating the file: /Users/shai/dev/AccordionDemo/lib/CLDC11.jar
Updating the file: /Users/shai/dev/AccordionDemo/lib/CodenameOne.jar
Updated project files

Notice that no download happened since the files were up to date. You can also force a check
against the server by adding the force argument as such:

java -jar ~/.codenameone/UpdateCodenameOne.jar path_to_my_codenameone_project

The way this works under the hood is thought a Versions.properties within your directory that lists
the versions of local files. That way we know what should be updated.

 Exclude Versions.properties from Git

Under the ~/.codenameone directory we have a more detailed UpdateStatus.properties file that
includes versions of the locally downloaded files. Notice you can delete this file and it will be
recreated as all the jars get downloaded over again.

16.18.2. What isn’t Covered

You will notice 3 big things that aren’t covered in this unified framework:

• We don’t update cn1libs - I’m not sure if this is something we would like to update automatically

• Versioned builds - there is a lot of complexity in the versioned build system. This might be
something we address in the future but for now I wanted to keep the framework simple.

• Offline builds - Offline builds work through manual download and aren’t subjected to this
framework

[10] The old Codename One VM

656

17. Signing, Certificates & Provisioning
In this section we attempt to explain how to acquire certificates for the various platforms and how
to set them up.

The good news is that this is usually a "one time issue" and once it’s done the work becomes easier
(except for the case of iOS where a provisioning profile should be maintained).

17.1. Common Terms In Signing & Distribution
This section uses some terms that you might not be familiar with if you haven’t used cryptography
or built mobile apps before. Here is a quick "FAQ" covering some common terms/concepts in this
section.

17.1.1. What Is A Certificate?

Certificates use cryptographic principals to "sign" data (e.g. an application). Think of them as you
would think of a company stamp, you use them to sign an app so users know who it’s from.

17.1.2. What Is Provisioning?

Provisioning provides the hints/guidelines for the application install. E.g. if an application needs
some service from the OS such as push it can usually request that with provisioning.

In iOS provisioning is separate from the app and you need to also define the devices supported by
the app during development.

17.1.3. What’s a Signing Authority?

Normally certificates are issued by a signing authority which is a body that certifies that you are
who you say you are. Apple issues certificates for iOS and is in effect a signing authority.

Android uses self signed certificates which don’t use a signing authority so anyone can ship an
Android app.

The logic with the Android approach is that a signature indicates that you are the same person who
previously shipped the app. Hence an app will be updated only with the exact same certificate.

17.1.4. What is UDID?

The UDID is the Universal Device Identifier. It identifies mobile devices uniquely, notice that some
operating systems e.g. iOS block access to this value due to privacy concerns.

You need the iOS device UDID value during development to add the device into the list of allowed
devices.

657

Don’t use an app to get the UDID!
Most return the wrong value, the official way to get the UDID is thru itunes. We
can also recommend trying http://get.udid.io/ which seems to work rather well

17.1.5. Should I Reuse the Same Certificate for All Apps?

For iOS yes. It’s designed to work in that way.

We would recommend it for all platforms for simplicity but some developers prefer creating per-
application certificates for Android. The advantage here is that you can transfer ownership of the
application later on without giving away what is effectively "you house keys".

17.2. iOS Signing Wizard
Codename One features a wizard to generate certificates/provisioning for iOS without requiring a
Mac or deep understanding of the signing process for iOS. There is still support for manually
generating the P12/provisioning files when necessary but for most intents and purposes using the
wizard will simplify this error prone process significantly.

To generate your certificates and profiles, open project’s properties and click on "iOS" in the left
menu. This will show the "iOS Signing" panel that includes fields to select your certificates and
mobile provisioning profiles.

Figure 489. Netbeans iOS Signing properties panel

If you already have valid certificates and profiles, you can just enter their locations here. If you
don’t, then you can use the wizard by clicking the Generate button in the lower part of the form.

17.2.1. Logging into the Wizard

After clicking Generate you’ll be shown a login form. Log into this form using your iTunes Connect
user ID and password. NOT YOUR CODENAME ONE LOGIN.

658

http://get.udid.io/

Figure 490. Wizard login form

17.2.2. Selecting Devices

Once you are logged in you will be shown a list of all of the devices that you currently have
registered on your Apple developer account.

Figure 491. Devices form

Select the ones that you want to include in your provisioning profile and click next.

Apple supports up to 100 devices for testing purposes so if you want to install the
built app on your device you need to add it here

Figure 492. After selecting devices

If you don’t have any devices registered yet, you can click the "Add New Device" button, which will
prompt you to enter the UDID for your device.

659

17.2.3. Decisions & Edge Cases

If you already have iOS P12 development/distribution certificates you should reuse
them for all your apps from that account and you shouldn’t regenerate them

After you click Next on the device form, the wizard checks to see if you already have a valid
certificate. If your project already has a valid certificate and it matches the one that is currently
active in your apple developer account, then it will just use the same certificate. If the certificate
doesn’t match the currently-active one, or you haven’t provided a certificate, you will be prompted
to overwrite the old certificate with a new one.

Figure 493. Prompt to overwrite existing certificate

Figure 494. Prompt to overwrite other certificate

The same decision need to be made twice: Once for the development certificate, and once for the
Apptore certificate.

You can revoke a certificate when you have an application in the store shipping
with said certificate!
This won’t affect the shipping app see this [http://stackoverflow.com/questions/6320255/if-

i-revoke-an-existing-distribution-certificate-will-it-mess-up-anything-with].

660

http://stackoverflow.com/questions/6320255/if-i-revoke-an-existing-distribution-certificate-will-it-mess-up-anything-with

Why Two Certificates?

A typical iOS app has at least two certificates:

• Development - this is used during development and can’t be shipped to 3rd parties. An
application signed with this certificate can only be installed on one of the up to 100
devices listed above.

• Distribution - this is used when you are ready to upload your app to itunes whether for
final shipping or beta testing. Notice that you can’t install a distribution build on your
own device. You need to upload it to itunes.

• There are two push certificates, they are separate from the signing certificates. Don’t
confuse them!
They are used to authenticate with Apple when sending push messages.

17.2.4. App IDs and Provisioning Profiles

The next form in the wizard asks for your app’s bundle ID. This should have been pre-filled, but
you can change the app ID to a wildcard ID if you prefer.

Figure 495. Enter the app bundle ID

661

Wildcard Card Provisioning

Wildcard ids such as com.mycompany.* or even * allow you to create one generic certificate
to use with all applications. This is remarkably useful for the global settings dialog and allows
you to create an app without launching the wizard. Notice that wildcards apps can’t use
features such as push etc.

You can set the global defaults for the IDE by going to IDE settings/preferences and setting
default values e.g.:

Figure 496. Setting the development certificate and a global * provisioning profile allows you to
create a new app and built it to device without running the certificate wizard. Notice that you will
need to run it when going into production

17.2.5. Installing Files Locally

Once the wizard is finished generating your provisioning profiles, you should click "Install Locally",
which will open a file dialog for you to navigate to a folder in which to store the generated files.

Figure 497. Install files locally

662

Figure 498. Select directory to save files in

Figure 499. Final Done Message

You can see the password for the P12 files in the codenameone_settings.properties
file. You can use the values defined there when creating a new application

17.2.6. Building Your App

After selecting your local install location, and closing the wizard, you should see the fields of the
"iOS Signing" properties panel filled in correctly. You should now be able to send iOS debug or
Appstore builds without the usual hassles.

Figure 500. Filled in signing panel after wizard complete

17.3. Advanced iOS Signing

You should use the certificate wizard, especially if you don’t have a Mac. This
section is here mostly for reference and edge cases that don’t work with the
certificate wizard

iOS signing has two distinct modes: App Store signing which is only valid for distribution via iTunes
(you won’t be able to run the resulting application without submitting it to Apple) and development
mode signing.

663

You have two major files to keep track of:

1. Certificate - your signature

2. Provisioning Profile - details about the application and who is allowed to execute it

You need two versions of each file (4 total files) one pair is for development and the other pair is for
uploading to the itunes App Store.

 You need to use a Mac in order to create a certificate file for iOS

The first step you need to accomplish is signing up as a developer to Apple’s iOS development
program [http://developer.apple.com/], even for testing on a device this is required!
This step requires that you pay Apple on an annual basis.

The Apple website will guide you through the process of applying for a certificate at the end of this
process you should have a distribution and development certificate pair. After that point you can
login to the iOS provisioning portal [https://developer.apple.com/ios/manage/overview/index.action] where
there are plenty of videos and tutorials to guide you through the process. Within the iOS
provisioning portal you need to create an application ID and register your development devices.

You can then create a provisioning profile which comes in two flavors:

• Distribution - for building the release version of your application

• Development - the development provisioning profile needs to contain the devices on which you
want to test.

You can then configure the 4 files in the IDE and start sending builds to the Codename One cloud.

17.4. Provisioning Profile & Certificates Visual Guide
One of the hardest parts in developing for iOS is the certificate & provisioning process. In this step
by step guide we walk over the manual certificate generation process. Notice that the UI for the
Apple website changes occasionally but the basic process remains the same…

Start by logging in to the iOS-provisioning portal

Figure 501. Login for the iOS provisioning portal

In the certificates section you can download your development and distribution certificates.

664

http://developer.apple.com/
http://developer.apple.com/
https://developer.apple.com/ios/manage/overview/index.action

Figure 502. Download development provisioning profile

Figure 503. Download distribution provisioning profile

In the devices section add device ids for the development devices you want to support. Notice no
more than 100 devices are supported!

Figure 504. Add devices

Create an application id; it should match the package identifier of your application perfectly!

Figure 505. Create application id

Create a provisioning profile for development, make sure to select the right app and make sure to
add the devices you want to use during debug.

Figure 506. Create provisioning profile step 1

665

Figure 507. Create provisioning profile step 2

Refresh the screen to see the profile you just created and press the download button to download
your development provisioning profile.

Figure 508. Create provisioning profile step 3

Create a distribution provisioning profile; it will be used when uploading to the app store. There is
no need to specify devices here.

Figure 509. Create distribution provisioning profile

Download the distribution provisioning profile.

Figure 510. Download distribution provisioning profile

We can now import the cer files into the key chain tool on a Mac by double clicking the file, on
Windows the process is slightly more elaborate

Figure 511. Import cer files

We can export the p12 files for the distribution and development profiles through the keychain tool

666

Figure 512. Export p12 files

In the IDE we enter the project settings, configure our provisioning profile, the password we typed
when exporting and the p12 certificates. It is now possible to send the build to the server.

Figure 513. IOS Project Settings

17.4.1. iOS Code Signing Failure Checklist

Below is a list of common issues when singing and a set of suggestions for things to check. Notice
that some of these signing failures will sometimes manifest themselves during build and sometimes
will manifest during the install of the application.

Most of these issues aren’t applicable when using the wizard e.g. a Mac isn’t
required for the certificate wizard as it uses the Codename One cloud

• You must use a Mac to generate P12 certificates manually. The only workaround we found is
the certificate wizard!

Notice that this is something you need to do once a year (generate P12), you will also need a Mac
to upload your final app to the store at this time.

• When exporting the P12 certificate make sure that you selected BOTH the public and the
private keys as illustrated here. If you only see one entry (no private key) then you created the
CSR (singing request) on a different machine than the one where you imported the resulting
CER file.

Figure 514. p12 export

• Make sure the package matches between the main preferences screen in the IDE and the iOS
settings screen.

667

Figure 515. Package ID matching App ID

• Make sure the prefix for the app id in the iOS section of the preferences matches the one you
have from Apple

Figure 516. App prefix

• Make sure your provisioning profile’s app id matches your package name or is a * provisioning
profile. Both are sampled in the pictures below, notice that you would need an actual package
name for push/in-app-purchase support as well as for app store distribution.

Figure 517. The star (*) Provisioning Profile

Figure 518. Provisioning Profile with app id

• Make sure the certificate and provisioning profile are from the same source (if you work with
multiple accounts), notice that provisioning profiles and certificates expire so you will need to
regenerate provisioning when your certificate expires or is revoked.

• If you declare push in the provisioning profile then ios.includePush (in the build arguments)
MUST be set to true, otherwise it MUST be set to false (see pictures below). Notice that this
should be configured via the UI in the iOS section.

668

Figure 519. Include push build hint

17.5. Android
Signing Android applications is trivial when compared to the pain of iOS signing.

The NetBeans and Eclipse plugins have a simple wizard to generate the certificate that you can
launch by pressing this button:

Figure 520. Android keystore generation wizard

Then fill out your details and password in the form:

Figure 521. UI for Android certificate details

This will seamlessly generate a certificate for your project, you can reuse it for other projects as
well.

17.5.1. Generating an Android Certificate Manually

You need the JDK’s keytool executable (it should be under the JDK’s bin directory) and execute the
following command:

keytool -genkey -keystore Keystore.ks -alias [alias_name] -keyalg RSA -keysize 2048 -validity 15000 -dname "CN=[full
name], OU=[ou], O=[comp], L=[City], S=[State], C=[Country Code]" -storepass [password] -keypass [password]

669

The elements in the brackets should be filled up based on this:

Alias: [alias_name] (just use your name/company name without spaces)
Full name: [full name]
Organizational Unit: [ou]
Company: [comp]
City: [City]
State: [State]
CountryCode: [Country Code]
Password: [password] (we expect both passwords to be identical)

Executing the command will produce a Keystore.ks file in that directory which you need to keep
since if you lose it you will no longer be able to upgrade your applications! Fill in the appropriate
details in the project properties or in the CodenameOne section in the Netbeans preferences dialog.

For more details see http://developer.android.com/guide/publishing/app-signing.html

17.6. RIM/BlackBerry
You can now get signing keys for free from Blackberry by going here [https://www.blackberry.com/

SignedKeys/]. Once you obtain the certificates you need to install them on your machine (you will
need the Blackberry development environment for this). You will have two files: sigtool.db and
sigtool.csk on your machine (within the JDE directory hierarchy). We need them and their
associated password to perform the signed build for Blackberry application.

17.7. J2ME
Currently signing J2ME applications isn’t supported. You can use tools such as the Sprint WTK to
sign the resulting jad/jar produced by Codename One.  

670

http://developer.android.com/guide/publishing/app-signing.html
https://www.blackberry.com/SignedKeys/

18. Working with iOS

18.1. Troubleshooting iOS Debug Build installs
In 9 cases out of 10 if you have a problem installing an app make sure your device is a 64 bit device.
If not you will need to add the build hint ios.debug.archs=armv7. Notice that a 32 bit app will still
work on a 64 bit device it will just display a performance warning.

If you have access to a Mac you can connect a cable and open xcode where you can use the device
explorer console to look at messages which sometimes give a clue about what went wrong. If not
here is a laundry list of a few things that might fail:

• Make sure you built the debug version and not the appstore version. The appstore version won’t
install on the device and can only be distributed via Apple’s store or testflight

• Verify that you are sending a 32 bit build in the build hints using the build hint
ios.debug.archs=armv7. It’s only necessary if you have an older 32 bit device, see this
[https://www.codenameone.com/blog/moving-to-64bit-by-default.html]. Notice that this only applies for
debug builds, release builds include both 32 and 64 bit versions

Devices prior to iPad Air & iPhone 5s were 32 bit devices so iPhone 5s won’t need
that flag but iPhone 5 or iPhone 5c will need it

• Check the the UDID is correct - if you got the UDID from an app then it’s probably wrong as apps
don’t have access to the device UDID anymore. The way to get the UDID is either thru iOS
Settings app or itunes

• Make sure the device isn’t locked for installing 3rd party apps. I’ve had this when trying to
install on my kids tablet which I configured to be child safe. This is configured in the settings as
parental controls

• Check that you "own" the package name. E.g. if you previously installed an app with the same
package name but a different certificate a new install will fail (this is true for Android too). So if
you installed the kitchen sink from the store then built one of your own and installed it there
will be a collision.
Notice that this might be problematic if you use overly generic package names as someone else
might have used them which is why you must always use your own domain

• Make sure the device has a modern enough version of iOS for the dependencies. I think the
current minimum for hello world is 6.0.1 but some apps might require a newer version e.g.
Intercom requires OS 8 or newer

• Verify that you are using Safari when installing on the device (if you tried via cable that’s not a
problem), some developers had issues with firefox not launching the install process

• Check that the build hint ios.includePush is set in a way that matches your iOS provisioning. So
it must be false if you don’t have push within the provisioning profile

671

https://www.codenameone.com/blog/moving-to-64bit-by-default.html

18.2. The iOS Screenshot/Splash Screen Process

As of version 5.0 (September 2018), screenshot generation is no longer enabled by
default. Instead, the launch storyboard is used. Therefore much of the following
section is no longer relevant.

iOS apps seem to start almost instantly in comparison to Android apps.
There is a trick to that, iOS applications have a file traditionally called Default.png that includes a
320x480 pixel image of the first screen of the application. This creates an "illusion" of the application
instantly coming to life and filling up with data, this is rather clever but is a source trouble as the
platform grows [11].

You can disable the screenshot process entirely with the ios.fastBuild=true build
hint. This will only apply for debug builds so you don’t need to worry about
accidentally forgetting it in production.

The screenshot process was a pretty clever workaround but as Apple introduced the retina display
640x960 it required a higher resolution Default@2x.png file, then it added the iPad, iPad Retina and
iPhone 5 [12] iPhone 6 & 6+ all of which required images of their own.

To make matters worse iPad apps (and iPhone 6+ apps) can be launched in landscape mode so
that’s two more resolutions for the horizontal orientation iPad. Overall as of this writing (or until
Apple adds more resolutions) we need 16 screenshots for a typical iOS app:

Table 13. iOS Device Screenshot Resolutions

Resolution File Name Devices

320x480 Default.png iPhone 3gs

640x960 Default@2x.png iPhone 4x

640x1136 Default-568h@2x.png iPhone 5x

1024x768 Default-Portrait.png Non-retina ipads in portrait
mode

768x1024 Default-Landscape.png Non-retina ipads in landscape
mode

2048x1536 Default-Portrait@2x.png Retina ipads in portrait mode

1536x2048 Default-Landscape@2x.png Retina ipads in landscape mode

750x1334 Default-667h@2x.png iPhone 6

1242x2208 Default-736h@3x.png iPhone 6 Plus Portrait

2208x1242 Default-736h-Landscape@3x.png iPhone 6 Plus Landscape

2048×2732 Default-iPadPro@2.png iPad Pro Portrait

2732x2048 Default-iPadPro-
Landscape@2.png

iPad Pro Landscape

1668×2224 Default-iPadProSmall@2.png 10.5" iPad Pro Portrait

672

Resolution File Name Devices

2224x1668 Default-iPadProSmall-
Landscape@2.png

10.5" iPad Pro Landscape

1125×2436 Default-iPhoneX@3.png iPhone X Portrait

2436x1125 Default-iPhoneX-
Landscape@3.png

iPhone X Landscape

You can predefine any of these files within the native/ios directory in your project.
If the build server sees a file matching that exact name it will not generate a
screenshot for that resolution

Native iOS developers can run their applications 16 times with blank data to grab these screenshots
every time they change something in the first view of their application!

With Codename One this will not be feasible since the fonts and behavior might not match the
device. Thus Codename One runs the application 16 times in the build servers, grabs the right sized
screenshots in the simulator and then builds the app!

This means the process of the iPhone splash screen is almost seamless to the developer, however
like every abstraction this too leaks.

The biggest problem developers have with this approach is for apps that use a web browser or
native maps in the first screen of their app. This won’t work well as those are native widgets. They
will look different during the screenshot process.

Another problem is with applications that require a connection immediately on startup, this can
fail for the build process.

A solution to both problems is to create a special case for the first launch of the app where no data
exists. This will setup the screenshot process correctly and let you proceed with the app as usual.

18.2.1. Size

One of the first things we ran into when building one of our demos was a case where an app that
wasn’t very big in terms of functionality took up 30mb!

After inspecting the app we discovered that the iPad retina PNG files were close to 5mb in size…
Since we had 2 of them (landscape and portrait) this was the main problem.

The iPad retina is a 2048x1536 device and with the leather theme the PNG images are almost
impossible to compress because of the richness of details within that theme. This produced the
huge screenshots that ballooned the application.

18.2.2. Mutable first screen

A very common use case is to have an application that pops up a login dialog on first run. This
doesn’t work well since the server takes a picture of the login screen and the login screen will
appear briefly for future loads and will never appear again.

673

18.2.3. Unsupported component

One of the biggest obstacles is with heavyweight components, e.g. if you use a browser or maps on
the first screen of the app you will see a partially loaded/distorted MapComponent
[https://www.codenameone.com/javadoc/com/codename1/maps/MapComponent.html] and the native webkit
browser obviously can’t be rendered properly by our servers.

The workaround for such issues is to have a splash screen that doesn’t include any of the above. Its
OK to show it for a very brief amount of time since the screenshot process is pretty fast.

18.3. Launch Screen Storyboards
With the shift to Xcode 9, which is the default version on the Codename One build servers as of
February 2018 [https://www.codenameone.com/blog/xcode-9-on-by-default.html], it is now possible to use a
launch-screen storyboard as the splash screen instead of launch images. This will potentially solve
the issue of the proliferation of screenshots, as you can supply a single storyboard which will work
on all devices. Launch screen storyboards are enabled by default (as of version 5.0/September
2018). You can disable them by adding the ios.generateSplashScreens=true build hint.

18.3.1. Launch Storyboard vs Launch Images

The key benefit of using a launch storyboard right now is that it allows your app to be used in split-
screen mode. Storyboards, however, work a little bit differently than launch images. They don’t
show a screenshot of the first page of your app. The default Codename One launch storyboard
simply shows your app’s icon in the middle of the screen. You can customize the launch screen by
providing one or more of the following files in your project’s native/ios directory

1. Launch.Foreground.png - Will be shown instead of your app’s icon in the center of the screen.

2. Launch.Background.png - Will fill the background of the screen.

3. LaunchScreen.storyboard - A custom storyboard developed in Xcode, that will be used instead of
the default storyboard.

Make sure to add the ios.multitasking=true build hint, or your launch storyboard
will not be used.

Changes to the launch screen will not take effect until the device has been
restarted. I.e. If you install your app on a device, then you make changes to the
launch screen and update the app, the launch screen won’t change until the device
is restarted.

18.4. Local Notifications on iOS and Android
Local notifications are similar to push notifications, except that they are initiated locally by the app,
rather than remotely. They are useful for communicating information to the user while the app is
running in the background, since they manifest themselves as pop-up notifications on supported
devices.

674

https://www.codenameone.com/javadoc/com/codename1/maps/MapComponent.html
https://www.codenameone.com/blog/xcode-9-on-by-default.html

To set the notification icon on Android place a 24x24 icon named
ic_stat_notify.png under the native/android folder of the app. The icon can be
white with transparency areas

18.4.1. Sending Notifications

The process for sending a notification is:

1. Create a LocalNotification [https://www.codenameone.com/javadoc/com/codename1/notifications/

LocalNotification.html] object with the information you want to send in the notification.

2. Pass the object to Display.scheduleLocalNotification().

Notifications can either be set up as one-time only or as repeating.

Example Sending Notification

LocalNotification n = new LocalNotification();
n.setId("demo-notification");
n.setAlertBody("It's time to take a break and look at me");
n.setAlertTitle("Break Time!");
n.setAlertSound("beep-01a.mp3");

Display.getInstance().scheduleLocalNotification(
 n,
 System.currentTimeMillis() + 10 * 1000, // fire date/time
 LocalNotification.REPEAT_MINUTE // Whether to repeat and what frequency
);

The resulting notification will look like

Figure 522. Resulting notification in iOS

18.4.2. Receiving Notifications

The API for receiving/handling local notifications is also similar to push. Your application’s main
lifecycle class needs to implement the com.codename1.notifications.LocalNotificationCallback

675

https://www.codenameone.com/javadoc/com/codename1/notifications/LocalNotification.html

interface which includes a single method:

public void localNotificationReceived(String notificationId)

The notificationId parameter will match the id value of the notification as set using
LocalNotification.setId().

Example Receiving Notification

public class BackgroundLocationDemo implements LocalNotificationCallback {
 //...

 public void init(Object context) {
 //...
 }

 public void start() {
 //...

 }

 public void stop() {
 //...
 }

 public void destroy() {
 //...
 }

 public void localNotificationReceived(String notificationId) {
 System.out.println("Received local notification "+notificationId);
 }
}

localNotificationReceived() is only called when the user responds to the
notification by tapping on the alert. If the user doesn’t click on the notification,
then this event handler will never be fired.

18.4.3. Canceling Notifications

Repeating notifications will continue until they are canceled by the app. You can cancel a single
notification by calling:

Display.getInstance().cancelLocalNotification(notificationId);

Where notificationId is the string id that was set for the notification using

676

LocalNotification.setId().

18.5. iOS Beta Testing (Testflight)
Apple provides the ability to distribute beta versions of your application to beta testers using
testflight. This allows you to recruit up to 1000 beta testers without the typical UDID limits a typical
Apple account has.

 This is supported for pro users as part of the crash protection feature.

To take advantage of that capability use the build hint ios.testFlight=true and then submit the app
to the store for beta testing. Make sure to use a release build target.

18.6. Accessing Insecure URL’s
Due to security exploits Apple blocked some access to insecure URL’s which means that http code
that worked before could stop working for you on iOS 9+. This is generally a good move, you should
use https and avoid http as much as possible but that’s sometimes impractical especially when
working with an internal or debug environment.

You can disable the strict URL checks from Apple by using the venerable ios.plistInject build hint
and setting it to:

<key>NSAppTransportSecurity</key><dict><key>NSAllowsArbitraryLoads</key><true/></dict>

However, it seems that Apple will reject your app if you just include that and don’t have a good
reason.

18.7. Using Cocoapods
CocoaPods [https://cocoapods.org/] is a dependency manager for Swift and Objective-C Cocoa projects.
It has over eighteen thousand libraries and can help you scale your projects elegantly. Cocoapods
can be used in your Codename One project to include native iOS libraries without having to go
through the hassle of bundling the actual library into your project. Rather than bundling .h and .a
files in your ios/native directory, you can specify which "pods" your app uses via the ios.pods build
hint. (There are other build hints also if you need more advanced features).

Examples

Include the AFNetworking [https://github.com/AFNetworking/AFNetworking] library in your app:

ios.pods=AFNetworking

Include the AFNetworking [https://github.com/AFNetworking/AFNetworking] version 3.0.x library in your
app:

677

https://cocoapods.org/
https://github.com/AFNetworking/AFNetworking
https://github.com/AFNetworking/AFNetworking

ios.pods=AFNetworking ~> 3.0

For full versioning syntax specifying pods see the Podfile spec for the "pod" directive
[https://guides.cocoapods.org/syntax/podfile.html#pod].

18.7.1. Including Multiple Pods

Multiple pods can be separated by either commas or semi-colons in the value of the ios.pods build
hint. E.g. To include GoogleMaps and AFNetworking, you could:

ios.pods=GoogleMaps,AFNetworking

Or specifying versions:

ios.pods=AFNetworking ~> 3.0,GoogleMaps

18.7.2. Other Pod Related Build Hints

ios.pods.platform : The minimum platform to target. In some cases, Cocoapods require
functionality that is not in older version of iOS. For example, the GoogleMaps pod requires iOS 7.0
or higher, so you would need to add the ios.pods.platform=7.0 build hint.

ios.pods.sources : Some pods require that you specify a URL for the source of the pod spec. This
may be optional if the spec is hosted in the central CocoaPods source (https://github.com/
CocoaPods/Specs.git).

18.7.3. Converting PodFile To Build Hints

Most documentation for Cocoapods "pods" provide instructions on what you need to add to your
Xcode project’s PodFile. Here is an example from the GoogleMaps cocoapod to show you how a
PodFile can be converted into equivalent build hints in a Codename One project.

The GoogleMaps cocoapod directs you to add the following to your PodFile:

source 'https://github.com/CocoaPods/Specs.git'
platform :ios, '7.0'
pod 'GoogleMaps'

This would translate to the following build hints in your Codename One project:

ios.pods.sources=https://github.com/CocoaPods/Specs.git
ios.pods.platform=7.0
ios.pods=GoogleMaps

678

https://guides.cocoapods.org/syntax/podfile.html#pod
https://github.com/CocoaPods/Specs.git
https://github.com/CocoaPods/Specs.git

(Note that the ios.pods.sources directive is optional).

18.8. Including Dynamic Frameworks
If you need to use a dynamic framework (e.g. SomeThirdPartySDK.framework), and it isn’t
available via cocoapods, then you can add it to your project by simply zipping up the framework
and copying it to your native/ios directory.

e.g. native/ios/SomeThirdPartySDK.framework.zip

There are no build hints necessary for this approach. The build server will automatically detect the
framework and link it into your app.

[11] Apple provided another trick with XIB files starting with iOS 8 but that doesn’t apply to games or Codename One. It has its own
set of problems

[12] slightly larger screen and different aspect ratio

679

680

19. Working with JavaScript
This section covers the Codename One Javascript port, which allows you to compile your app as
native javascript and run it inside a browser. This is different from the BrowserComponent
[https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.html] and other methods of
displaying HTML/Javascript inside a Codename One app.

19.1. Limitations of the Javascript Port

19.1.1. No Multithreaded Code inside Static Initializers

This section pertains to Codename One 3.6 and older. Newer versions of Codename
One support multithreaded code inside static initializers now.

Codename One’s Javascript port uses TeaVM [http://teavm.org/] to compile your application directly to
Javascript so that it can run inside modern web browsers without the need for any plugins (i.e. NOT
as an applet). One of the revolutionary features that TeaVM provides is the ability to run multi-
threaded code (i.e. it has full support for Object.wait(), Object.notify(), Object.notifyAll(), and the
synchronized keyword). The one caveat to be aware of is that you cannot use any threading
primitives inside static initializers. This is due to technical limitations in the browser
environment and the way that TeaVM compiles class definitions into Javascript. The workaround
for this issue is to do lazy initialization in cases where you need to use multithreaded code.

Example

The following code will result in a build error when deploying a Javascript build:

Class1.java

import com.codename1.io.Log;
class Class1 {
 public static int getValue() {
 Log.p("Hello world");
 return 1;
 }
}

Class2.java

class Class2 {
 public static int value = Class1.getValue();

}

This fails because Class2 calls Class1.getValue() in its static initializer, and getValue() calls Log.p(),
which, underneath the covers, writes to Storage - which involves some synchronous network access

681

https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.html
http://teavm.org/

in the Javascript port (i.e. it uses wait() and notify() under the hood.

If we simply remove the call to Log.p() from getValue(), as follows:

 public static int getValue() {
 return 1;
 }

Then everything would be fine.

But How do we Know if A method includes wait()/notify somewhere along the line?

When you try to build your app as a Javascript app, it will fail (if code in your static initializers uses
wait()/notify() somewhere along the line).

How to Work Around this Issue

Use lazy initialization wherever you can. You don’t need to worry about this for setting static
variables to literal values. E.g.: static int someVal = 20; will always be fine. But static int someVal
= OtherClass.calculateSomeVal(); may or may not be fine, because you don’t know whether
calculateSomeVal() uses a wait/notify. So instead of initializing someVal in the static initializer,
create a static accessor that lazily initializes it. Or initialize it inside your app’s init() method. Or
initialize it inside the class constructor.

19.2. Troubleshooting Build Errors
If your Javascript build fails, you should download the error log and see what the problem is. The
most common errors are:

1. "[ERROR] Method XXX.<clinit>()V is claimed to be synchronous, but it is has invocations of
asynchronous methods"

This error will occur if you have static initializers that use multithreaded code (e.g.
wait/notify/sleep, etc…). See Static Initializers for information about troubleshooting this error.
In some cases TeaVM may give a false-positive here (i.e. it thinks you are doing some
multithreaded stuff, but you’re really not), then you can force the build to "succeed" by adding
the javascript.stopOnErrors=false build hint.

2. "Method XXX was not found"

TeaVM uses its own Java runtime library. It is mostly complete, but you may occasionally run
into methods that haven’t been implemented. If you run into errors saying that certain classes
or methods were not found, please post them to the Codename One issue tracker
[https://github.com/codenameone/CodenameOne/issues]. You can also work around these by changing
your own code to not use such functions. If this missing method doesn’t fall on a critical path on
your app, you can also force the app to still build despite this error by adding the
javascript.stopOnErrors=false build hint.

682

https://github.com/codenameone/CodenameOne/issues

19.3. ZIP, WAR, or Preview. What’s the difference?
The Javascript build target will result in up to three different bundles being generated:

1. YourApp-1.0.war

2. YourApp-1.0.zip

3. YourApp-1.0-Preview.html

YourApp-1.0.war is a self contained application bundle that can be installed in any JavaEE servlet
container. If you haven’t customized any proxy settings, then the application will be configured to
use a proxy servlet that is embedded into the .war file.

As an example, the PropertyCross .war file contains the following files:

$ jar tvf PropertyCross-1.0.war
 0 Thu Apr 30 15:57:38 PDT 2015 META-INF/
 132 Thu Apr 30 15:57:36 PDT 2015 META-INF/MANIFEST.MF
 0 Thu Apr 30 15:57:36 PDT 2015 assets/
 0 Thu Apr 30 15:57:36 PDT 2015 assets/META-INF/
 0 Thu Apr 30 15:57:36 PDT 2015 js/
 0 Thu Apr 30 15:57:36 PDT 2015 teavm/
 0 Thu Apr 30 15:57:36 PDT 2015 WEB-INF/
 0 Thu Apr 30 15:57:36 PDT 2015 WEB-INF/classes/
 0 Thu Apr 30 15:57:36 PDT 2015 WEB-INF/classes/com/
 0 Thu Apr 30 15:57:36 PDT 2015 WEB-INF/classes/com/codename1/
 0 Thu Apr 30 15:57:36 PDT 2015 WEB-INF/classes/com/codename1/corsproxy/
 0 Thu Apr 30 15:57:36 PDT 2015 WEB-INF/lib/
 27568 Thu Apr 30 15:57:12 PDT 2015 assets/CN1Resource.res
306312 Thu Apr 30 15:57:12 PDT 2015 assets/iOS7Theme.res
427737 Thu Apr 30 15:57:12 PDT 2015 assets/iPhoneTheme.res
 350 Thu Apr 30 15:57:12 PDT 2015 assets/META-INF/MANIFEST.MF
 92671 Thu Apr 30 15:57:12 PDT 2015 assets/theme.res
 23549 Thu Apr 30 15:57:14 PDT 2015 icon.png
 2976 Thu Apr 30 15:57:14 PDT 2015 index.html
 30695 Thu Apr 30 15:57:12 PDT 2015 js/fontmetrics.js
 84319 Thu Apr 30 15:57:12 PDT 2015 js/jquery.min.js
 13261 Thu Apr 30 15:57:12 PDT 2015 progress.gif
 2816 Thu Apr 30 15:57:12 PDT 2015 style.css
1886163 Thu Apr 30 15:57:36 PDT 2015 teavm/classes.js
359150 Thu Apr 30 15:57:36 PDT 2015 teavm/classes.js.map
1147502 Thu Apr 30 15:57:36 PDT 2015 teavm/classes.js.teavmdbg
 30325 Thu Apr 30 15:57:36 PDT 2015 teavm/runtime.js
 1011 Thu Apr 30 15:57:18 PDT 2015 WEB-INF/classes/com/codename1/corsproxy/CORSProxy.class
232771 Wed Nov 05 17:35:12 PST 2014 WEB-INF/lib/commons-codec-1.6.jar
 62050 Wed Apr 15 14:35:56 PDT 2015 WEB-INF/lib/commons-logging-1.1.3.jar
590004 Wed Apr 15 14:35:58 PDT 2015 WEB-INF/lib/httpclient-4.3.4.jar
282269 Wed Apr 15 14:35:56 PDT 2015 WEB-INF/lib/httpcore-4.3.2.jar
 14527 Wed Apr 15 14:35:56 PDT 2015 WEB-INF/lib/smiley-http-proxy-servlet-1.6.jar
 903 Thu Apr 30 15:57:12 PDT 2015 WEB-INF/web.xml
 9458 Thu Apr 30 15:57:14 PDT 2015 META-INF/maven/com.propertycross/PropertyCross/pom.xml
 113 Thu Apr 30 15:57:36 PDT 2015 META-INF/maven/com.propertycross/PropertyCross/pom.properties

683

Some things to note in this file listing:

1. The index.html file is the entry point to the application.

2. CORSProxy.class is the proxy servlet for making network requests to other domains.

3. The assets directory contains all of your application’s jar resources. All resource files in your
app will end up in this directory.

4. The teavm directory contains all of the generated javascript for your application. Notice that
there are some debugging files generated (classes.js.map and classes.js.teavmdbg). These are
not normally loaded by the browser when your app is run, but they can be used by Chrome
when you are doing debugging.

5. The jar files in the WEB-INF/lib directory are dependencies of the proxy servlet. They are not
required for your app to run - unless you are using the proxy.

YourApp-1.0.zip is appropriate for deploying the application on any web server. It contains all of
the same files as the .war file, excluding the WEB-INF directory (i.e. it doesn’t include any servlets,
class files, or Java libraries - it contains purely client-side javascript files and HTML).

As an example, this is a listing of the files in the zip distribution of the PropertyCross demo:

$ unzip -vl PropertyCross-1.0.zip
Archive: /path/to/PropertyCross-1.0.zip
 Length Method Size Ratio Date Time CRC-32 Name
-------- ------ ------- ----- ---- ---- ------ ----
 27568 Defl:N 26583 4% 04-30-15 15:57 9dc91739 assets/CN1Resource.res
 306312 Defl:N 125797 59% 04-30-15 15:57 0b5c1c3a assets/iOS7Theme.res
 427737 Defl:N 218975 49% 04-30-15 15:57 3de499c8 assets/iPhoneTheme.res
 350 Defl:N 241 31% 04-30-15 15:57 7e7e3714 assets/META-INF/MANIFEST.MF
 92671 Defl:N 91829 1% 04-30-15 15:57 004ad9d7 assets/theme.res
 23549 Defl:N 23452 0% 04-30-15 15:57 acd79066 icon.png
 2903 Defl:N 1149 60% 04-30-15 15:57 e5341de1 index.html
 30695 Defl:N 7937 74% 04-30-15 15:57 2e008f6c js/fontmetrics.js
 84319 Defl:N 29541 65% 04-30-15 15:57 15b91689 js/jquery.min.js
 13261 Defl:N 11944 10% 04-30-15 15:57 51b895c7 progress.gif
 2816 Defl:N 653 77% 04-30-15 15:57 a12159c7 style.css
 1886163 Defl:N 315437 83% 04-30-15 15:57 2b34c50f teavm/classes.js
 359150 Defl:N 92874 74% 04-30-15 15:57 30abdf13 teavm/classes.js.map
 1147502 Defl:N 470472 59% 04-30-15 15:57 e5c456f7 teavm/classes.js.teavmdbg
 30325 Defl:N 5859 81% 04-30-15 15:57 46651f06 teavm/runtime.js
-------- ------- --- -------
 4435321 1422743 68% 15 files

You’ll notice that it has many of the same files as the .war distribution. It is just missing the the
proxy servlet and dependencies.

YourApp-1.0-Preview.html is a single-page HTML file with all of the application’s resources
embedded into a single page. This is generated for convenience so that you can preview your
application on the build server directly. While you could use this file in production, you are
probably better to use the ZIP or WAR distribution instead as some mobile devices have file size

684

limitations that may cause problems for the "one large single file" approach. If you do decide to use
this file for your production app (i.e. copy the file to your own web server), you will need to change
the proxy settings, as it is configured to use the proxy on the Codename One build server - which
won’t be available when the app is hosted on a different server.

19.4. Setting up a Proxy for Network Requests
The Codename One API includes a network layer (the NetworkManager
[https://www.codenameone.com/javadoc/com/codename1/io/NetworkManager.html] and ConnectionRequest
[https://www.codenameone.com/javadoc/com/codename1/io/ConnectionRequest.html] classes) that allows you to
make HTTP requests to arbitrary destinations. When an application is running inside a browser as
a Javascript app, it is constrained by the same origin policy. You can only make network requests to
the same host that served the app originally.

E.g. If your application is hosted at http://example.com/myapp/index.html, then your app will be
able to perform network requests to retrieve other resources under the example.com domain, but
it won’t be able to retrieve resources from example2.com, foo.net, etc..

The HTTP standard does support cross-origin requests in the browser via the
Access-Control-Allow-Origin HTTP header. Some web services supply this header
when serving resources, but not all. The only way to be make network requests to
arbitrary resources is to do it through a proxy.

Luckily there is a solution. The .war javascript distribution includes an embedded proxy servlet,
and your application is configured, by default, to use this servlet. If you intend to use the .war
distribution, then it should just work. You shouldn’t need to do anything to configure the proxy.

If, however, you are using the .zip distribution or the single-file preview, you will need to set up a
Proxy servlet and configure your application to use it for its network requests.

19.4.1. Step 1: Setting up a Proxy

This section is only relevant if you are using the .zip or single-file distributions of
your app. You shouldn’t need to set up a proxy for the .war distribution since it
includes a proxy built-in.

The easiest way to set up a proxy is to use the Codename One cors-proxy [https://github.com/shannah/

cors-proxy] project. This is the open-source project from which the proxy in the .war distribution is
derived. Simply download and install the cors-proxy .war file in your JavaEE compatible servlet
container.

If you don’t want to install the .war file, but would rather just copy the proxy servlet into an
existing web project, you can do that also. See the cors-proxy wiki for more information about this
[https://github.com/shannah/cors-proxy/wiki/Embedding-Servlet-into-Existing-Project].

19.4.2. Step 2: Configuring your Application to use the Proxy

There are three ways to configure your application to use your proxy.

685

https://www.codenameone.com/javadoc/com/codename1/io/NetworkManager.html
https://www.codenameone.com/javadoc/com/codename1/io/ConnectionRequest.html
http://example.com/myapp/index.html
https://github.com/shannah/cors-proxy
https://github.com/shannah/cors-proxy/wiki/Embedding-Servlet-into-Existing-Project

1. Using the javascript.proxy.url build hint.

E.g.:

javascript.proxy.url=http://example.com/myapp/cn1-cors-proxy?_target=

2. By modifying your app’s index.html file after the build.

E.g.:

<script type="text/javascript">
 window.cn1CORSProxyURL='http://example.com/myapp/cn1-cors-proxy?_target=';
</script>

3. By setting the javascript.proxy.url property in your Java source. Generally you would do this
inside your init() method, but it just has to be executed before you make a network request
that requires the proxy.

Display.getInstance().setProperty(
 "javascript.proxy.url",
 "http://example.com/myapp/cn1-cors-proxy?_target="
);

The method you choose will depend on the workflow that you prefer. Options #1 and #3 will almost
always result in fewer changes than #2 because you only have to set them up once, and the builds
will retain the settings each time you build your project.

19.5. Using the CORS Proxy for Same Origin Requests
By default, the CORS proxy is only used for HTTP requests to URLS at a different domain than the
one that the app is running in. There are some circumstances where you may want to even use the
proxy for same domain requests. You can do this by setting the javascript.useProxyForSameDomain
display property to true. E.g.

Display.getInstance().setProperty("javascript.useProxyForSameDomain", "true");

Why would you want to do this?

The browser shields some HTTP headers (e.g. "Set-Cookie") from Javascript so that your app cannot
access them. Going through the proxy works around this limitation by copying and encoding such
headers in a format that the browser will allow, and then decoding them client-side to make them
available to your app seamlessly.

686

Using Apache as a Proxy

If you are hosting your application on an Apache 2 web server with mod_proxy installed, and you
only need to make CORS requests to a single domain (or a limited set of domains), you can use
Apache to serve as your proxy. One sample configuration (which you would place either in your
VirtualHost definition or your .htaccess file is as follows:

SSLProxyEngine on
ProxyPass /app https://www.myexternaldomain.com
ProxyPassReverse /app https://www.myexternaldomain.com

This tells Apache to proxy all requests for '/app' to the domain https://www.myexternaldomain.com.
You would then need to set your CORS proxy URL in your CN1 app to "/app/".

The syntax is the same if you have multiple domains, but keep attention to the order of the lines to
make the proxy working correctly. For example:

SSLProxyEngine on
ProxyPass /app https://www.myexternaldomain1.com
ProxyPassReverse /app https://www.myexternaldomain1.com
ProxyPass /storage https://www.myexternaldomain2.com
ProxyPassReverse /storage https://www.myexternaldomain2.com

This tells Apache to proxy all requests for '/app' to the domain
https://www.myexternaldomain1.com and all requests for '/storage' to the domain
https://www.myexternaldomain2.com

19.6. Customizing the Splash Screen
Since your application may include many resource files, videos, etc.., the the build-server will
generate a splash screen for your app to display while it is loading. This basically shows a progress
indicator with your app’s icon.

You can customize this splash screen by simply modifying the HTML source inside the cn1-splash
div tag of your app’s index.html file:

<div id="cn1-splash">

 <p>...Loading...</p>
</div>

19.7. Debugging
If you run into problems with your app that only occur in the Javascript version, you may need to

687

https://www.myexternaldomain.com
https://www.myexternaldomain1.com
https://www.myexternaldomain2.com

do a little bit of debugging. There are many debugging tools for Javascript, but the preferred tool for
debugging Codename One apps is Chrome’s debugger.

If your application crashes and you don’t have a clue where to begin, follow these steps:

1. Load your application in Chrome.

2. Open the Chrome debugger.

3. Enable the "Pause on Exceptions" feature, then click the "Refresh" button to reload your app.

4. Step through each exception until you reach the one you are interested in. Chrome will then
show you a stack trace that includes the name of the Java source file and line numbers.

Figure 523. Debugging using Chrome tools

19.8. Including Third-Party Javascript Libraries
Codename One allows you to interact directly with Javascript using native interfaces. Native
interfaces are placed inside your project’s native/javascript directory using a prescribed naming
convention. If you want to, additionally, include third-party Javascript libraries in your application
you should also place these libraries inside the native/javascript directory but you must specify
which files should be treated as "libraries" and which files are treated as "resources". You can do
this by adding a file with extension .cn1mf.json file either the root of your native/javascript
directory or the root level of the project’s src directory.

19.8.1. Libraries vs Resources

A resource is a file whose contents can be loaded by your application at runtime using
Display.getInstance().getResourceAsStream(). In a typical Java environment, resources would be
stored on the application’s classpath (usually inside a Jar file). On iOS, resources are packaged
inside the application bundle. In the Javascript port, resources are stored inside the APP_ROOT/assets
directory. Historically, javascript files have always been treated as resources in Codename One, and

688

many apps include HTML and Javascript files for use inside the BrowserComponent
[https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.html].

With the Javascript port, it isn’t quite so clear whether a Javascript file is meant to be a resource or
a library that the application itself uses. Most of the time you probably want Javascript files to be
used as libraries, but you might also have Javascript files in your app that are meant to be loaded at
runtime and displayed inside a Web View - these would be considered resources.

19.8.2. The Javascript Manifest File

In order to differentiate libraries from resources, you should provide a cn1mf.json file inside your
native/javascript directory that specifies any files or directories that should be treated as libraries.
This file can be named anything you like, as long as its name ends with cn1mf.json. Any files or
directories that you list in this manifest file will be packaged inside your app’s includes directory
instead of the assets directory. Additionally it add appropriate <script> tags to include your
libraries as part of the index.html page of your app.

If you include the cn1mf.json file in your project’s src directory it could potentially
be used to add configuration parameters to platform’s other than Javascript
(although currently no other platforms use this feature). If you place it inside your
native/javascript directory, then only the Javascript port will use the
configuration contained therein.

A simple manifest file might contain the following JSON:

{
 "javascript" : {
 "libs" : [
 "mylib1.js"
]
 }
}

I.e. It contains a object with key libs whose value is a list of files that should be treated as libraries.
In the above example, we are declaring that the file native/javascript/mylib1.js should be treated
as a library. This will result in the following <script> tag being added to the index.html file:

<script src="includes/mylib1.js"></script>

This also caused the mylib1.js file to be packaged inside the includes directory
instead of the assets directory.

A project may contain more than one manifest file. This allows you to include
manifest files with your cn1libs also. You just need to make sure that each manifest
file has a different name.

689

https://www.codenameone.com/javadoc/com/codename1/ui/BrowserComponent.html

How to NOT generate the <script> tag

In some cases you may want a Javascript file to be treated as a library (i.e. packaged in the includes
directory) but not automatically included in the index.html page. Rather than simply specifying the
name of the file in the libs list, you can provide a structure with multiple options about the file. E.g.

{
 "javascript" : {
 "libs" : [
 "mylib1.js",
 {
 "file" : "mylib2.js",
 "include" : false
 }
]
 }
}

In the above example, the mylib2.js file will be packaged inside the includes directory, but the build
server won’t insert its <script> tag in the index.html page.

Library Directories

You can also specify directories in the manifest file. In this case, the entire directory will be
packaged inside the includes directory of your app.

If you are including Javascript files in your app that are contained inside a
directory hierarchy, you should specify the root directory of the hierarchy in your
manifest file and use the sub "includes" property of the directory entry to specify
which files should be included with <script> tags. Specifying the file directly inside
the "libs" list will result in the file being packed directly in the your app’s includes
directory. This may or may not be what you want.

E.g.

690

{
 "javascript" : {
 "libs" : [
 "mylib1.js",
 {
 "file" : "mylib2.js",
 "include" : false
 },
 {
 "file" : "mydir1",
 "includes" : ["subfile1.js", "subfile2.js"]
 }
]
 }
}

In this example the entire mydir1 directory would be packed inside the app’s includes directory, and
the following script tags would be inserted into the index.html file:

<script src="includes/mydir1/subfile1.js"></script>
<script src="includes/mydir1/subfile2.js"></script>

Libraries included from a directory hierarchy may not work correctly with the
single file preview that the build server generates. For that version, it will embed
the contents of each included Javascript file inside the index.html file, but the rest
of the directory contents will be omitted. If your the library depends on the
directory hierarchy and supporting files and you require the single-file preview to
work, then you may consider hosting the library on a separate server, and
including the library directly from there, rather than embedding it inside your
project’s "native/javascript" directory.

Including Remote Libraries

The examples so far have only demonstrated the inclusion of libraries that are part of the app
bundle. However, you can also include libraries over the network by specifying the URL to the
library directly. This is handy for including common libraries that are hosted by a CDN.

E.g. The Google Maps library requires the Google maps API to be included. This is accomplished
with the following manifest file contents:

691

{
 "javascript" : {
 "libs" : [
 "//maps.googleapis.com/maps/api/js?v=3.exp"
]
 }
}

This example uses the "//" prefix for the URL instead of specifying the protocol
directly. This allow the library to work for both http and https hosting. You could
however specify the protocol as well:

+

{
 "javascript" : {
 "libs" : [
 "https://maps.googleapis.com/maps/api/js?v=3.exp"
]
 }
}

Including CSS Files

CSS files can be included using the same mechanism as is used for Javascript files. If the file name
ends with ".css", then it will be treated as a CSS file (and included with a <link> tag instead of a
<script> tag. E.g.

{
 "javascript" : {
 "libs" : [
 "mystyles.css"
]
 }
}

or

{
 "javascript" : {
 "libs" : [
 "https://example.com/mystyles.css"
]
 }
}

692

Embedding Variables in URLs

In some cases the URL for a library may depend on the values of some build hints in the project. For
example, in the Google Maps cn1lib, the API key must be appended to the URL for the API as a GET
parameter. E.g. https://maps.googleapis.com/maps/api/js?v=3.exp&key=SOME_API_KEY, but the
developer of the library doesn’t want to put his own API key in the manifest file for the library. It
would be better for the API key to be supplied by the developer of the actual app that uses the
library and not the library itself.

The solution for this is to add a variable into the URL as follows:

{
 "javascript" : {
 "libs" : [
 "//maps.googleapis.com/maps/api/js?v=3.exp&key={{javascript.googlemaps.key}}"
]
 }
}

The {{javascript.googlemaps.key}} variable will be replaced with the value of the
javascript.googlemaps.key build hint by the build server, so the resulting include you see in the
index.html page will be something like:

<script src="//maps.googleapis.com/maps/api/js?v=3.exp&key=XYZ"></script>

19.9. Browser Environment Variables
Native interfaces allow you to interact with the Javascript environment in unlimited ways, but
Codename One provide’s a simpler method of obtaining some common environment information
from the browser via the Display.getInstance().getProperty() method. The following environment
variables are currently available:

Table 14. Property hints for the JavaScript port

Name Description

browser.window.location.href A String, representing the entire URL of the
page, including the protocol (like http://)

browser.window.location.search A String, representing the querystring part of a
URL, including the question mark (?)

browser.window.location.host A String, representing the domain name and
port number, or the IP address of a URL

browser.window.location.hash A String, representing the anchor part of the
URL, including the hash sign (#)

693

https://maps.googleapis.com/maps/api/js?v=3.exp&key=SOME_API_KEY

Name Description

browser.window.location.origin A String, representing the protocol (including
://), the domain name (or IP address) and port
number (including the colon sign (:) of the URL.
For URL’s using the "file:" protocol, the return
value differs between browsers

browser.window.location.pathname A String, representing the pathname

browser.window.location.protocol A String, representing the protocol of the
current URL, including the colon (:)

browser.window.location.port A String, representing the port number of a URL.
+ Note: If the port number is not specified or if it
is the scheme’s default port (like 80 or 443), an
empty string is returned

browser.window.location.hostname A String, representing the domain name, or the
IP address of a URL

User-Agent The User-agent string identifying the browser,
version etc..

browser.language The language code that the browser is currently
set to. (e.g. en-US)

browser.name the name of the browser as a string.

Platform a string that must be an empty string or a string
representing the platform on which the browser
is executing. + For example: "MacIntel", "Win32",
"FreeBSD i386", "WebTV OS"

browser.codeName the internal name of the browser

browser.version the version number of the browser

javascript.deployment.type Specifies the deployment type of the app. This
will be "file" for the single-file preview,
"directory" for the zip distribution, and "war" for
the war distribution.

19.10. Changing the Native Theme
Since a web application could potentially be run on any platform, it isn’t feasible to bundle all
possible themes into the application (at least it wouldn’t be efficient for most use cases). By default
we have bundled the iOS7 theme for javascript applications. This means that the app will look like
iOS7 on all devices: desktop, iOS, Android, WinPhone, etc…

You can override this behavior dynamically by setting the javascript.native.theme Display
[https://www.codenameone.com/javadoc/com/codename1/ui/Display.html] property to a theme that you have
included in your app. All of the native themes are available on GitHub, so you can easily copy these
into your application. The best place to add the theme is in your native/javascript directory - so
that they won’t be included for other platforms.

694

https://www.codenameone.com/javadoc/com/codename1/ui/Display.html

19.10.1. Example: Using Android Theme on Android

As of Codename One 6.0, apps will automatically use the Android theme when run
on an Android device, so this example is not necessary. However the technique of
changing the native theme at runtime is still applicable.

First, download androidTheme.res [https://github.com/codenameone/CodenameOne/raw/master/Ports/

Android/src/androidTheme.res] from the Android port on GitHub, and copy it into your app’s
native/javascript directory.

Then in your app’s init() method, add the following:

Display d = Display.getInstance();
if (d.getProperty("User-Agent", "Unknown").indexOf("Android") != -1) {
 d.setProperty("javascript.native.theme", "/androidTheme.res");
}

19.11. Disabling the 'OnBeforeUnload' Handler
By default, apps will display warning/confirm dialog when the user attempts to leave the page.

You can explicitly enable or disable this behaviour by setting the
"platformHint.javascript.beforeUnloadMessage" display property. Setting the property to null will
disable this behaviour, so that users will not be harassed by this dialog when they navigate away
from the app. Setting it to a string value, like "leaving so soon?", will re-enable this behaviour.

Some browsers don’t allow you to specify the message that is displayed in this
dialog. In those browsers, this property can be viewed as boolean: A null value will
result in no prompt being shown, and a non-null value will result in a prompt
being shown.

19.11.1. Example: Toggling the BeforeUnload Prompt On/Off

Form f = new Form("Test Before Unload", BoxLayout.y());
CheckBox enableBeforeUnload = new CheckBox("Enable Before Unload");
enableBeforeUnload.setSelected(true);
enableBeforeUnload.addActionListener(e->{
 if (enableBeforeUnload.isSelected()) {
 CN.setProperty("platformHint.javascript.beforeUnloadMessage", "Are you sure you want to leave this page? It
might be bad");
 } else {
 CN.setProperty("platformHint.javascript.beforeUnloadMessage", null);
 }
});
f.add(enableBeforeUnload);
f.show();

695

https://github.com/codenameone/CodenameOne/raw/master/Ports/Android/src/androidTheme.res

19.12. Deploying as a Progressive Web App
Out of the box, your app is ready to be deployed as a progressive web app (PWA). That means that
users can access the app directly in their browser, but once the browser determines that the user is
frequenting the app, it will "politely" prompt the user to install the app on their home screen. Once
installed on the home screen, the app will behave just like a native app. It will continue to work
while offline, and if the user launches the app, it will open without the browser’s navigation bar. If
you were to install the native and PWA versions of your app side by side, you would be hard
pressed to find the difference - especially on newer devices.

Below is a screenshot from Chrome for Android where the browser is prompting the user to add
the app to their home screen.

Figure 524. Add app to homescreen banner

If the app is available as a native app, in the Play store, you can indicate this using the
javascript.manifest.related_applications and javascript.manifest.prefer_related_applications
build hints. Then, instead of prompting the user to add the web app to their home screen, they’ll be
prompted to install the native app from the Play store, as shown below.

Figure 525. Add native app banner

696

The PWA standard requires that you host your app on over HTTPS. For testing
purposes, it will also work when accessed at a localhost address. You can use the
Lighthoust PWA analysis tool [https://developers.google.com/web/ilt/pwa/lighthouse-pwa-

analysis-tool] to ensure compliance.

For more information about Progressive Web Apps see Google’s introduction to the subject
[https://developers.google.com/web/progressive-web-apps/].

19.12.1. Customizing the App Manifest File

At the heart of a progressive web app is the web app manifest [https://developer.mozilla.org/en-US/docs/

Web/Manifest]. It specifies things like the app’s name, icons, description, preferred orientation,
display mode (e.g. whether to display browser navigation or to open with the full screen like a
native app), associated native apps, etc.. The Codename One build server will automatically
generate a manifest file for your app but you can (and should) customize this file via build hints.

Build hints of the form javascript.manifest.XXX will be injected into the app manifest. E.g. To set the
app’s description, you could add the build hint:

javascript.manifest.description=An app for doing cool stuff

You can find a full list of available manifest keys here [https://developer.mozilla.org/en-US/docs/Web/

Manifest]. The build server will automatically generate all of the icons so you don’t need to worry
about those. The "name" and "short_name" properties will default to the app’s display name, but
they can be overridden via the javascript.manifest.name and javascript.manifest.short_name build
hints respectively.

The javascript.manifest.related_applications build hint expects a JSON formatted
list, just like in the raw manifest file.

19.12.2. Related Applications

One nice feature (discussed above) of progressive web apps, is the ability to specify related
applications in the app manifest. Browsers that support the PWA standard use some heuristics to
"offer" the user to install the associated native app when it is clear that the user is using the app on
a regular basis. Use the javascript.manifest.related_applications build hint to specify the location
of the native version of your app. E.g.

javascript.manifest.related_applications=[{"platform":"play", "id":"my.app.id"}]

You can declare that the native app is the preferred way to use the app by setting the
javascript.manifest.prefer_related_applications build hint to "true".

According to the app manifest documentation [https://developer.mozilla.org/en-US/docs/

Web/Manifest], this should only be used if the related native apps really do offer
something that the web application can’t do.

697

https://developers.google.com/web/ilt/pwa/lighthouse-pwa-analysis-tool
https://developers.google.com/web/progressive-web-apps/
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://developer.mozilla.org/en-US/docs/Web/Manifest

19.12.3. Device/Browser Support for PWAs

Chrome and Firefox both support PWAs on desktop and on Android. iOS doesn’t support the PWA
standard, however, many aspects of it are supported. E.g. On iOS you can add the app to your home
screen, after which time it will appear and behave like a native app - and it will continue to work
while offline. However, many other nice features of PWA like "Install this app on your home
screen" banners, push notifications, and invitations to install the native version of the app, are not
supported. It is unclear when, or even, whether Apple will ever add full support; but most experts
predict that they will join the rest of the civilized world and add PWA support in the near future.

On the desktop, Chrome provides an analogous feature to "add to your homescreen": "Add to shelf".
If it looks like the user is using the app on a regular basis, and it isn’t yet installed, it will show a
banner at the top of the page asking the user if they want to add to their shelf.

Figure 526. Add to shelf banner

Clicking the "Add button" prompts the user for the name they wish the app to appear as:

Figure 527. Add to shelf prompt

Upon submission, Chrome will generate a real application (on Mac, it will be a ".app", on Windows,
an "exe", etc..) which the user can double click to open the app directly in the Chrome. And,
importantly, the app will still work when the user is offline.

The app will also appear in their "Shelf" which you can always access at chrome://apps, or by
opening the "Chrome App Launcher" app (on OS X this is located in "~/Applications/Chrome
Apps/Application Launcher").

Figure 528. Chrome App Launcher

698

The Chrome App Launcher lists apps installed both via the Chrome Web Store and
via the "Add to Shelf" feature that we discuss here. The features we describe in this
article are orthogonal to the Chrome Web Store and will not be affected by its
closure.

19.13. Playing Media and Opening Links
People don’t like it when the browser automatically starts playing sounds, or opening links without
their permission. For this reason, modern browsers generally restrict your ability to
programmatically do these things, unless they are in response to a user action, like a mouse click.

If your app needs to play media (e.g. Media.play()), or open a link (e.g. Display.execute("…"))
without the user actually interacting physically (e.g. key press or pointer press), then it will display
a popup dialog confirming that the user actually wants to perform this action.

In some cases this dialog may affect the utility of the app. For example, suppose you want to play a
video in response to a voice command. Having to press an "OK" button after the command, may be
annoying. For such cases, you can use the platformHint.javascript.backsideHooksInterval property
to poll for media play requests on an authorized event.

For example:

CN.setProperty("platformHint.javascript.backsideHooksInterval", "1000");

// Now your app will process media.play() and Display.execute(...) calls
// once per second (1000ms). If play() or execute() has been called anytime
// in that second (since the last poll), it will seamlessly process the
// request.

// To disable polling, just set it to an interval 0 or lower.
// e.g.
CN.setProperty("platformHint.javascript.backsideHooksInterval", "0");

Do not abuse this feature. You should enable this polling only when necessary. E.g.
If your app enables the user to listen for voice commands, only enable polling for
the period of time that it is listening. When the user wants to stop listening, you
should also stop the polling by setting the interval to "0".

699

700

20. Working with UWP
UWP Apps may distributed in 2 different ways:

1. In the Windows App Store. (This should be used for deployment of any production app).

2. Outside of the Windows App Store via sideloading directly onto a device. This should only be
used for development.

20.1. Deploying Outside of the Windows App Store
(Sideloading)
UWP apps may be deployed directly to Windows 10 desktop and mobile devices without any need
to involve the Windows Store. This process is only realistic, though, for testing and debugging your
app during development because it requires you to enable "Development" mode on the device. In
addition, installation is a little bit more complicated than simply downloading an app over the
internet. The process for deploying to Windows 10 desktop devices is different than the process for
mobile devices. These are described in the following sections.

20.1.1. Side-loading to Windows 10 Mobile Devices

Enabling Developer Mode on Device

Before you can side-load apps onto your phone, you’ll need to set up your phone for development.

1. In "Settings", select "Update & Security" > "For developers"

701

2. Select "Developer mode"

3. Under "Device Discovery", make sure that the "Make your device visible to USB connections and
your local network" is set to "On".

4. Make sure that "Device Portal" is set to "On"

5. When you switch "Device Portal" to "On" it should show you an address that you can access the
Phone at via wifi. (E.g. https://10.0.1.11). Remember this address, you’re going to use it to install
all of your apps onto the device.

This will be a local address within your local network. It won’t be available to
the outside world.

702

https://10.0.1.11

At this point, your phone should be ready to receive "Side-loaded" apps. This was a one-time setup,
so you shouldn’t have to do it again, until you set up another device.

Building App for UWP

Now that your device is set up for development, you can proceed to build your app.

1. Select the "Mobile Debug Build" option in the UWP Codename One Settings.

2. Select the "Send Windows UWP Build" option in the Codename One menu of your IDE. This will
initiate the build on the Codename One build server.

3. Log into the Codename One dashboard to watch the build progress. When it is complete, you’ll
be able to download the ".appxbundle" file to your desktop.

You cannot simply download the .appxbundle file directly to your Windows
Phone 10 mobile device and install it. It will indeed allow you to download it,
and will give you an option to install it, but the install will silently fail.

Installing App On Device

1. Point your computer’s web browser to the address for your mobile device. (This is the address
listed when you turned on the "Device Portal" in the "Enabling Developer Mode on Device"
section above. This will open the App Manager page.

2. Click on the "Apps" item in the left menu.

703

3. If this is the first time installing a UWP (debug) app on your device, you will need to install the
dependencies. You can find the dependencies for mobile/ARM apps here [https://github.com/

codenameone/cn1-binaries/tree/master/uwp/Dependencies/ARM]. You’ll need to install both
Microsoft.NET.CoreRuntime.1.0.appx and Microsoft.VCLibs.ARM.Debug.14.00.appx. If this is not
the first time installing a UWP app, you can skip to the next step.

a. Under the "Install App" section, click the "Choose File" button and navigate through the file
chooser to select the "Microsoft.NET.CoreRuntime.1.0.appx" file. Then click "Go".

b. Do the same for the "Microsoft.VCLibs.ARM.Debug.14.00.appx" file.

4. Under the "Install App" section, click the "Choose File" button and navigate through the file
chooser to select the .appxbundle file for your app.

5. Once you have the appxbundle selected, you should press "Go" under the "Deploy" subheading.
This will install the app and, if all went well, your app will appear in the "Recently Added"
section in the apps list of the phone.

20.1.2. Side-loading to Windows 10 Desktop Devices

Enabling Developer Mode on PC

The easiest way to be able to run your development apps on a Windows 10 PC is to enable
developer mode. This will allow you to install any app even if it is just "self-signed".

To enable developer mode, open "Settings", then select "Updates an Security". Under the "For
Developers" menu item, select "Developer Mode" as shown below:

704

https://github.com/codenameone/cn1-binaries/tree/master/uwp/Dependencies/ARM

Building the App

Before building the app, you’ll need to ensure that the build target is set to "Debug Desktop" in the
Codename One Settings panel for Windows apps.

Steps:

1. Open Codename One Settings (steps vary by IDE). On Netbeans you will find "Codename One
Settings" by right clicking your project’s node in the project explorer, and look in the
"Codename One" submenu:

2. Click on "Windows Settings":

3. Under "Build Type", make sure that "Desktop Debug Build" is selected, as shown below:

4. Save the changes by clicking the "Disk" icon in the upper right:

Now you can proceed to send the build to the build server.

1. Select the "Send Windows UWP Build" option in the Codename One menu of your IDE. This will
initiate the build on the Codename One build server.

705

2. Log into the Codename One dashboard to watch the build progress. When it is complete, you’ll
be able to download the ".zip" file to the Windows 10 PC on which you wish to install the app.

Installing the App

Start by extracting the .zip file. (Navigate to the folder where the zip was downloaded, right click it,
and select "Extract all" as shown below:

Figure 529. Extract UWP zip file

After extraction, open the resulting directory. You should see contents similar to the following:

Figure 530. UWP Zip file contents

Downloading Dependencies

If this is your first time installing a UWP app on this PC, you may need to add the dependencies
before you can install. You can download the dependencies here [https://github.com/codenameone/cn1-

binaries/raw/master/uwp/Dependencies.zip]. Extract "Dependencies.zip" and copy the resulting
"Dependencies" directory into the app install directory. Your app install directory should now look
like:

Figure 531. UWP Zip file contents with dependencies

706

https://github.com/codenameone/cn1-binaries/raw/master/uwp/Dependencies.zip

Running the Powershell Script

We are finally at the point where we can run the installer.

Right-click on the "Add-AppDevPackage" icon, and select "Run in Powershell", as shown:

Figure 532. UWP Install by run in powershell

You may be prompted that you need to change the execution policy, in Powershell:

Figure 533. UWP Powershell change execution policy

Enter "Y" at the prompt to allow this.

If all goes well, you should see a message saying that the app as successfully installed.

Figure 534. UWP Powershell app successfully installed

And if you look in your "Windows Menu" under "All Apps", you should see your app listed there:

Figure 535. Windows 10 App listed in All Apps

20.1.3. Building for the Windows Store

If you want to be able to distribute your app to the public, the Windows Store is your best channel.

707

Building for the Windows store involves roughly 3 steps:

1. Reserve a name for your app in the Windows Store

2. Build your app using the "Windows Store Upload" build type.

3. Upload the resulting .appxupload file to the Windows store.

Let’s go through these steps in more detail. Start here [https://developer.microsoft.com/en-us/windows/

publish].

Figure 536. Publish windows apps webpage

If you don’t already have an account, sign up for one. Then log in. Once logged in, you can click the
"Dashboard" link on the toolbar.

Figure 537. Windows Store dashboard

Under the "Your apps" section (on the left in the above screenshot), click the "Create new app"
button.

Figure 538. Reserve name form

708

https://developer.microsoft.com/en-us/windows/publish

Enter a name for your app, and click "Reserve app name".

If the name was available, it should take you to the app overview page for your new app. There’s
quite a few options there to play with, but we’re not going to worry about any of them for now. All
we need to know is:

1. Your App’s ID

2. Your App’s Publisher ID

You can get this information by scrolling down to the bottom of the "App overview" page and
clicking the "View app identity details" under the "App Management" > "App identity" section:

Figure 539. App Identity section

You’ll see a page with the information we need shown below:

Figure 540. App identity details

The next step is to copy this information into your Codename One project.

Open up the Codename One Settings for your project and go to the "Windows Settings" section.

Copy and paste the "Package/Identity/Name" and "Package/Properties/PublisherDisplayName"
values from the windows store into the "App ID" and "Publisher Display Name" fields respectively.

It is important that your App ID and Publisher Display Name match exactly what
you have in the store, or your app will fail at the validation stage when you try to
upload your app to the store.

Next, click on the "Generate" button next to the Certificate field.

This will open a dialog titled "Certificate Generator". Paste the value from the
"Package/Identity/Publisher" listed in the Windows Store into the Publisher ID field as shown
below:

709

Figure 541. Certificate Generator

Then click OK. This will generate a .pfx file inside your project folder.

The "Display Name" must also match that app name in the store.

Finally, make sure that "Windows Store Upload" is selected in the "Build Type" field. For the
example above, my settings form looks like the following screenshot when I am done.

Figure 542. Settings for Windows Store uploads

When you are done, hit the "Save" icon in the upper right corner of the window to save your
changes.

Finally, select "Codename One" > "Send Windows UWP Build" in your IDE’s project explorer.

This will produce an .appxupload file that you can upload to the Windows Store.

See the Microsoft’s documentation on uploading app packages [https://msdn.microsoft.com/en-us/

windows/uwp/publish/upload-app-packages] for more information on the remaining steps.

20.2. Debugging UWP Apps
On most platforms, there is a device log that records errors, exceptions, and messages written to
STDOUT. UWP, unfortunately, doesn’t seem to provide this. If you are running on Windows Phone
10, there doesn’t seem to be any device log at all. There is a separate program called "Field Medic"
that you can use to do some logging, but it doesn’t capture application errors or STDOUT messages.

The best way to debug apps on device is to enable crash protection in your app. This can be enabled
by adding the following to your app’s init() method:

Log.bindCrashProtection(true);

With crash protection enabled, you’ll receive an email whenever an exception is thrown that isn’t
caught in your application code. The email will include the stack trace of the error along with any
output you had previously provided using the com.codename1.io.Log class (e.g. Log.p() and Log.e()).

 A Pro account (or higher) is required to receive crash protection emails.

20.2.1. No Line Numbers in Stack Traces

One major annoyance of UWP is that it doesn’t provide line numbers in its stack traces. Here is
what you can expect to see in a stack trace:

710

https://msdn.microsoft.com/en-us/windows/uwp/publish/upload-app-packages

[EDT] 0:0:7,683 - Results null
[EDT] 0:0:7,799 - Exception: java.lang.NullPointerException - null
 at com.codename1.ui.Display.invokeAndBlock(Runnable r, Boolean dropEvents)[EDT] 0:0:7,815 - Exception in AppName
version 1.1
[EDT] 0:0:7,830 - OS win
[EDT] 0:0:7,836 - Error java.lang.NullPointerException
[EDT] 0:0:7,836 - Current Form null
[EDT] 0:0:7,836 - Exception: java.lang.NullPointerException - null
at System.Environment.GetStackTrace(Exception e, Boolean needFileInfo)
 at System.Environment.get_StackTrace()
 at UWPApp.IKVMReflectionHelper.getCurrentStackTrace()
 at java.lang.ThrowableHelper.getCurrentStackTrace()
 at java.lang.Throwable..ctor()
 at java.lang.Exception..ctor()
 at java.lang.RuntimeException..ctor()
 at java.lang.NullPointerException..ctor()
 at java.lang.Throwable.__mapImpl(Exception)
 at IKVM.Internal.ExceptionHelper.MapException[T](Exception x, Boolean remap, Boolean unused)
 at IKVM.Runtime.ByteCodeHelper.MapException[T](Exception x, MapFlags mode)
 at com.codename1.ui.Display.invokeAndBlock(Runnable r, Boolean dropEvents)
 at com.codename1.ui.Display.invokeAndBlock(Runnable r)
 at com.codename1.impl.SilverlightImplementation.editString(Component n1, Int32 n2, Int32 n3, String n4, Int32 n5)
 at com.codename1.impl.CodenameOneImplementation.editStringImpl(Component cmp, Int32 maxSize, Int32 constraint, String
text, Int32 initiatingKeycode)
 at com.codename1.ui.Display.editString(Component cmp, Int32 maxSize, Int32 constraint, String text, Int32
initiatingKeycode)
 at com.codename1.ui.Display.editString(Component cmp, Int32 maxSize, Int32 constraint, String text)
 at com.codename1.ui.TextArea.editString()
 at com.codename1.ui.TextArea.pointerReleased(Int32 x, Int32 y)
 at com.codename1.ui.TextField.pointerReleased(Int32 x, Int32 y)
 at com.codename1.ui.Form.pointerReleased(Int32 x, Int32 y)
 at com.codename1.ui.Component.pointerReleased(Int32[] x, Int32[] y)
 at com.codename1.ui.Display.handleEvent(Int32 offset)
 at com.codename1.ui.Display.edtLoopImpl()
 at com.codename1.ui.Display.mainEDTLoop()
 at com.codename1.ui.RunnableWrapper.run()
 at com.codename1.impl.CodenameOneThread.run()
 at java.lang.Thread.threadProc2()
 at java.lang.Thread.threadProc()
 at java.lang.Thread.1.Invoke()
 at com.codename1.impl.NativeThreadImpl.<>c__DisplayClass6_0.<init>b__0()
 at System.Threading.Tasks.Task.InnerInvoke()
 at System.Threading.Tasks.Task.Execute()
 at System.Threading.Tasks.Task.ExecutionContextCallback(Object obj)
 at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state)
 at System.Threading.Tasks.Task.ExecuteWithThreadLocal(Task& currentTaskSlot)
 at System.Threading.Tasks.Task.ExecuteEntry(Boolean bPreventDoubleExecution)
 at System.Threading.Tasks.ThreadPoolTaskScheduler.LongRunningThreadWork(Object obj)
 at System.Threading.ThreadHelper.ThreadStart_Context(Object state)
 at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state)
 at System.Threading.ThreadHelper.ThreadStart(Object obj)
Originating from:
Message=Object reference not set to an instance of an object.
 at com.propertycross.codename1.PropertyCross.1.run()
 at com.codename1.ui.Display.processSerialCalls()
 at com.codename1.ui.Display.edtLoopImpl()
 at com.codename1.ui.Display.invokeAndBlock(Runnable r, Boolean dropEvents)

It will show you the call stack with the names of the methods. But it won’t show you the line
numbers. If the stack trace isn’t specific enough, you can add Log.p() statements in various
positions in my code to help narrow down the source of the exception.

711

20.3. Customizing the Status Bar
On mobile, the status bar (the bar across the top of the screen with the time, battery level etc…) is
updated each time a form is shown. The foreground color, background color, and background
opacity are set using the unselected style of the form being shown.

You can override these colors application-wide using the following display properties:

1. windows.StatusBar.ForegroundColor - A string representation of an integer RGB color.

2. windows.StatusBar.BackgroundColor - A string representation of an integer RGB color.

3. windows.StatusBar.BackgroundTransparency - A string representation of 0-255 integer.

e.g.

Display d = Display.getInstance();
d.setProperty("windows.StatusBar.ForegroundColor", String.valueOf(0xff0000)); // red
d.setProperty("windows.StatusBar.BackgroundColor", String.valueOf(0xffffff)); // white
d.setProperty("windows.StatusBar.BackgroundOpacity", String.valueOf(255)); // fully opaque

20.4. Associating App with File Types
It is possible to associate your application with file types on UWP using the standard Codename One
"AppArg" method in conjunction with the windows.extensions build hint. Any content you place in
the windows.extensions build hint will be embedded inside the <Extensions/> section of the
Package.appxmanifest file. Then if the app is opened as a result of the user opening a file of the
specified type, then the path to that file will be made available to the app via
Display.getProperty("AppArg").

Example windows.extensions Value:

The following value would associate the app with the file extension ".alsdk". This example is taken
from this MSDN document [https://msdn.microsoft.com/vi-vn/windows/uwp/launch-resume/handle-file-

activation?f=255&MSPPError=-2147217396].

<uap:Extension Category="windows.fileTypeAssociation">
 <uap:FileTypeAssociation Name="alsdk">
 <uap:Logo>images\icon.png</uap:Logo>
 <uap:SupportedFileTypes>
 <uap:FileType>.alsdk</uap:FileType>
 </uap:SupportedFileTypes>
 </uap:FileTypeAssociation>
</uap:Extension>

To register your app to be able to handle PDFs, you would add:

712

https://msdn.microsoft.com/vi-vn/windows/uwp/launch-resume/handle-file-activation?f=255&MSPPError=-2147217396

<uap:Extension Category="windows.fileTypeAssociation">
 <uap:FileTypeAssociation Name="pdf">
 <uap:Logo>images\icon.png</uap:Logo>
 <uap:SupportedFileTypes>
 <uap:FileType ContentType="application/pdf">.pdf</uap:FileType>
 </uap:SupportedFileTypes>
 </uap:FileTypeAssociation>
</uap:Extension>

For more information about using the "AppArg" property, see this blog post
[https://www.codenameone.com/blog/intercepting-urls-on-ios-android.html] which describes its usage on iOS
and Android for intercepting URL types.

713

https://www.codenameone.com/blog/intercepting-urls-on-ios-android.html

714

21. Working with Mac OS X

21.1. Mac OS Desktop Build Options
You can configure Desktop Mac OS build settings, by opening Codename One Settings, and clicking
the "Mac Desktop Settings" button:

Figure 543. Mac Desktop settings

This will bring you to the following form:

Figure 544. Mac Desktop settings form

Here you can provide your certificate(s) as a .p12 file, and select a bundle type.

21.1.1. Bundle Types

There are three bundle types which dictate what the build server produces for you when you build
your project as a Desktop Mac OS App.

1. DMG - Produces a .DMG disk image with your app. This is the preferred format for distributing
your app outside of the Mac Appstore. If you provide a Developer ID Application certificate (see
"Understanding Certificates" below), this the app will be signed so that users won’t receive
warnings about "Unidentified developer" when they install your app.

2. Sandboxed DMG - Same as DMG bundle type except that your app is set up to use the app
sandbox. Generally this would be used to test an app that is being distributed via the Appstore,
since Appstore apps must use the sandbox. If you select this bundle type, you are required to
provide a Mac App Distribution Certificate, and you should additionally specify entitlements
required for your app to function properly. For more information about the app sandbox, see
Apple’s documentation on the subject [https://developer.apple.com/app-sandboxing/].

3. Mac Appstore Upload (PKG) - Produces a .PKG file that you can upload to the Mac appstore.
This requires that you provide both a Mac App Distribution certificate, and a Mac App Installer
certificate (see "Understanding Certificates" below). Both of these certificates should be
embedded into a single .p12 file (See "Exporting Certificates as p12" below).

21.1.2. Understanding Mac Certificates

For the purposes of Mac application distribution, there are 3 types of certificates that we will be
interested in. The type(s) of certificate required will depend on the type of bundle you generate.
The certificate types are:

1. Developer ID Application Certificate (Mac applications)

715

https://developer.apple.com/app-sandboxing/

This type of certificate is used to sign an app to be distributed outside of the Mac Appstore as a
DMG image. This corresponds to the "DMG" bundle type in Codename one settings. You can
easily identity this kind of certificate because its identity will be of the form "Developer ID
Application: YOUR COMPANY NAME (SOMECODE)". E.g. Developer ID Application: Acme
Widgets Corp. (XYSD5YF).

2. Mac App Distribution Certificate (Mac Appstore)

This type of certificate is used to sign the .app bundle for an app that is to be distributed in the
Mac Appstore. This certificate is required for both the "Sandboxed DMG", and "Mac Appstore
Upload (PKG)" bundle types. You can easily identify this kind of certificate because its identity
will be of the form "3rd Party Mac Developer Application: YOUR COMPANY NAME
(SOMECODE)". E.g. 3rd Party Mac Developer Application: Acme Widgets Corp. (XYSD5YF).

3. Mac App Installer Certificate (Mac Appstore)

This type of certificate is used to sign the .pkg installer for an app that is being submitted to the
Mac Appstore. This certificate is required for the "Mac Appstore Upload (PKG)" bundle type only.
You can easily identify this kind of certificate because its identity will be of the form "3rd Party
Mac Developer Installer: YOUR COMPANY NAME (SOMECODE)". E.g. 3rd Party Mac Developer
Installer: Acme Widgets Corp. (XYXD5YF).

21.1.3. Obtaining Certificates

Apple provides documentation on obtaining certificates on its website
[https://developer.apple.com/library/content/documentation/IDEs/Conceptual/
AppDistributionGuide/MaintainingCertificates/MaintainingCertificates.html#//apple_ref/doc/uid/

TP40012582-CH31-SW6] but the process described there involves Xcode. This section
describes an alternate process that doesn’t require Xcode.

If you have an Apple developer account, you can manage your certificates here
[https://developer.apple.com/account/mac/certificate].

Figure 545. Mac Developer portal certificates

The screenshot above shows an account that already has the three kinds of certificates we will
require:

1. Developer ID Application - Used for the DMG bundle type.

2. Mac App Distribution - Used for the Sandboxed DMG and Mac Appstore Upload (PKG) bundle
types.

3. Mac App Installer - Used for the Mac Appstore Upload (PKG) bundle type.

If your account doesn’t yet have a certificate of the required type, you should begin by pressing the

716

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingCertificates/MaintainingCertificates.html#//apple_ref/doc/uid/TP40012582-CH31-SW6
https://developer.apple.com/account/mac/certificate

"+" button in the upper right. This will bring you to a page asking "What type of Certificate do you
need?". There are only two options on this page that we’ll be interested in:

Figure 546. Creating a new certificate

1. Production > Mac App Store - For both the Mac App Distribution and Mac App Installer
certificates.

2. Production > Developer ID - For the Developer ID Application certificate.

Select the option corresponding to the certificate you wish to generate. In either case, you’ll be
taken to a form to select whether you want an "Installer" certificate or an "Application" certificate.
Select the appropriate type.

You will then be prompted to upload a Certificate Signing Request (CSR) file, and it will provide
instructions on how to do this via the Keychain app.

 You can reuse the same CSR file for generating all 3 certificates.

After generating the certificates, you should download them to your Mac, and import them into
your keychain. You should be able to accomplish this by simply double-clicking the downloaded
".cer" file, and following the prompts.

21.1.4. Exporting Certificates as P12

The following section requires access to a Mac, and assumes that you have already
generated your 3 certificates

Notice that Mac apps may require three different kinds of certificates, yet the settings page only
provides space for a single certificate (P12) file. This is not a mistake. P12 files may contain more
than one certificate, and you are expected to include all of the certificates that the build server may
require inside a single P12. The build server will automatically extract the certificates it needs
according to the bundle type.

When building the "DMG" bundle type, the build server will look for a "Developer ID Application

717

Certificate" inside the P12. If one is found, it will be used to sign the app bundle.

The "Sandboxed DMG" target will look for a "Mac App Distribution Certificate" certificate in the P12.

The "Mac Appstore Upload (PKG)" target will require both a "Mac App Distribution Certificate" and
a "Mac App Installer Certificate" to be included in the P12.

The easiest way to produce a P12 that includes all 3 kinds of certificates is to export them from the
Keychain Access app (Requires a Mac). Select all 3 certificates at once (using CMD-click), then right
click and select "Export 3 Items…"

You will then be prompted to select a location to save the .p12 file, as well as selecting a password
for the file.

21.1.5. Entitlements

When distributing apps in the Mac Appstore, or when using the "Sandboxed DMG" bundle type,
your app is run inside a sandboxed environment, meaning that it doesn’t have access to the outside
world. It is provided its own "sandboxed" container for file system access, and it doesn’t get any
network access. If your app requires access to the "outside world", you need to request entitlements
for that access. If you select a bundle type that uses the sandbox, you you will be shown a list of all
of the available entitlements from which you can "check" the ones that you wish to include.

Figure 547. App sandbox entitlements

For more information about the app sandbox, and a full list of entitlements, see Apple’s
documentation on the subject [https://developer.apple.com/library/content/documentation/Miscellaneous/

Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html].

718

https://developer.apple.com/library/content/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html
https://developer.apple.com/library/content/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html

22. Security
Security is a "big word". It implies many things and that is also true for the mobile app development
so before we get started lets try to define the scope of security.

We will deal only with application security and its communication mechanisms while ignoring
everything beyond that scope. Let’s start with a simple fact:

Codename One applications are secure on the devices by the nature of the
mobile OS security.

For most intents and purposes this will be enough, unless you are specifically concerned about
security this section isn’t for you. Mobile OS’s isolate applications from one another so it’s hard for
an application to damage the OS or even damage/spy on a different app.

The restrictions laid on apps are here to make them extra secure and on top of that Codename One
lays a few big advantages in terms of security:

• Codename One code is compiled (unlike e.g. PhoneGap/Cordova)

• We obfuscate by default which makes the binaries harder to reverse engineer

• We compile the UI to native code too which means typical reverse engineering code will have a
harder time following

• We disable debug flags so a hacker won’t be able to debug your production app on the device

Despite that you still need to keep in mind that the binary could still be reverse engineered and so it
is important to avoid storing keys in the client side code. E.g. if you have an API key to access a
service (e.g. Google Cloud key) it needs to be stored in your server and not as a constant in your
app!

Each section below discusses some attack vectors against applications and how they can be
stopped. Pretty much all of these attacks require a very sophisticated attacker which will only exist
for high value targets (e.g. bank apps, government etc.).

22.1. Constant Obfuscation
One of the first things a hacker will do when compromising an app is look at it. E.g. if I want to
exploit a bank’s login UI I would look at the label next to the login and then search for it in the
decompiled code. So if the UI has the String "enter user name and password" I can search for that.

It won’t lead directly to a hack or exploit but it will show you the approximate area of the code
where we should look and it makes the first step that much easier. Obfuscation helps as it removes
descriptive method names but it can’t hide the Strings we use in constants. If an app has a secret
key within obfuscating it can make a difference (albeit a slight difference).

Notice that this is a temporary roadblock as any savvy hacker would compile the app and connect a
debugger eventually (although this is blocked in release builds) and would be able to inspect values
of variables/flow. But the road to reverse engineering the app would be harder even with a simple

719

xor obfuscation.

We’re not calling this encoding or encryption since it’s neither. It’s a simple
obfuscation of the data

There are two simple methods in the Util class:

public static String xorDecode(String s);
public static String xorEncode(String s);

They use a simple xor based obfuscation to make a String less readable. E.g. if you have code like
this:

private static final String SECRET = "Don't let anyone see this....";

You might be concerned about the secret, then this would make it slightly harder to find out:

// Don't let anyone see this....
private static final String SECRET = Util.xorDecode("RW1tI3Ema219KmpidGFhdTFhdnE1Yn9xajQ1MjM=");

Notice that this is not secure, if you have a crucial value that must not be found you need to store it
in the server. There is no alternative as everything that is sent to the client can be compromised by
a determined hacker

 Use the comment to help you find the string in the code

Our builtin user specific constants are obfuscated with this method, e.g. normally an app built with
Codename One carries some internal data such as the user who built the app etc. This is obfuscated
now. We built this small app to encode strings easily so we can copy and paste them into our app
easily:

Form hi = new Form("Encoder", BoxLayout.y());
TextField bla = new TextField("", "Type Text Here", 20, TextArea.ANY);
TextArea encoded = new TextArea();
SpanLabel decoded = new SpanLabel();
hi.addAll(bla, encoded, decoded);
bla.addDataChangedListener((a, b) -> {
 String s = bla.getText();
 String e = Util.xorEncode(s);
 encoded.setText(e);
 decoded.setText(Util.xorDecode(e));
 hi.getContentPane().animateLayout(100);
});

hi.show();

720

This allows you to type in the first text field and the second text area shows the encoded result. We
used a text area so copy/paste would be easy.

For your convenience this app can be accessed here: https://www.codenameone.com/demos/
StringEncoder/index.html

22.2. Storage Encryption
Codename One had support for bouncy castle encryption for quite a while but it’s not as intuitive as
we’d like it to be. This makes securing/encrypting your app more painful than it should.

Codename One supports full encryption of the Storage (notice the distinction, Storage is not
FileSystemStorage). This is available by installing the bouncy castle cn1lib from the extensions
menu then using one line of code

EncryptedStorage.install("your-pass-encryption-key");

 Normally you would want that code within your init(Object) method

Notice that you can’t use storage or preferences to store this data as it would be encrypted
(Preferences uses Storage internally). You can use a password for this key and it would make it way
more secure but if a user changes his password you might have a problem. In that case you might
need the old password to migrate to a new password.

This works thru a new mechanism in storage where you can replace the storage instance with
another instance using:

Storage.setStorageInstance(new MyCustomStorageSubclass());

We can leverage that knowledge to change the encryption password on the encryption storage
using pseudo code like this:

EncryptedStorage.install(oldKey);
InputStream is = Storage.getInstance().createInputStream(storageFileName);
byte[] data = Util.readInputStream(is);
EncryptedStorage.install(newKey);
OutputStream o = Storage.getInstance().createOutputStream("TestEncryption");
o.write(data);
o.close();

It’s not a good idea to replace storage objects when an app is running so this is
purely for this special case…

If you use preferences it might be a good idea to set their builtin location to a different path using
something like Preferences.setPreferencesLocation("EncryptedPreferences");.

721

https://www.codenameone.com/demos/StringEncoder/index.html
https://www.codenameone.com/demos/StringEncoder/index.html

This is useful as it prevents the encrypted preferences from colliding with the regular preferences.

22.3. Disabling Screenshots
One of the common security features some apps expect is the ability to block a screenshot. In the
past apps like snapchat required that you touch the screen to view a photo to block the ability to
grab a screenshot (on iOS). This no longer works…

Blocking screenshots is an Android specific feature that can’t be implemented on iOS. This is
implemented by classifying the app window as secure and you can do that via the build hint
android.disableScreenshots=true. Once that is added screenshots should no longer work for the app,
this might impact other things as well such as the task view which will no longer show the
screenshot either.

22.4. Blocking Copy & Paste
Blocking copy & paste is useful for cases where a device might have spyware installed that monitors
the clipboard. This also prevents a user from using a password manager (which usually rely on the
clipboard), those managers could be compromised and thus if you are building a very secure app
this might be necessary.

You can block copy & paste on Android & iOS. Blocking of copy & paste can be implemented globally
or on a specific field.

To block copy & paste globally use:

Display.getInstance().setProperty("blockCopyPaste", "true");

To block copy & paste on a specific field do:

textCmp.putClientProperty("blockCopyPaste", Boolean.TRUE);

 Notice that the inverse of using false might not work as expected

22.5. Blocking Jailbreak
iOS & Android are walled gardens which is both a blessing and a curse. Looking at the bright side
the walled garden aspect of locked down devices means the devices are more secure by nature. E.g.
on a PC that was compromised we can detect the banking details of a user logging into a bank. But
on a phone it would be much harder due to the deep process isolation.

This isn’t true for jailbroken or rooted devices. In these devices security has been compromised
often with good intentions (opening up the ecosystem) but it can also be used as a step in a serious
attack on an application!

For obvious reasons it’s really hard to accurately detect a jailbroken or rooted device but when

722

possible if you have a high security app you might want to block the functionality or even raise a
"silent alarm" in such a case. To detect this you can use the isJailbrokenDevice method as such:

if(Display.getInstance().isJailbrokenDevice()) {
 // probably jailbroken or rooted
} else {
 // probably not
}

Notice that this isn’t accurate, we can’t be 100% sure as there are no official ways to detect
jailbreak. That is why it’s crucial to encrypt everything and assume the device was compromised to
begin with when dealing with very sensitive data. Still it’s worthwhile to use these API’s to make the
life of an attacker just a little bit harder.

22.6. Strong Android Certificates
When Android launched RSA1024 with SHA1 was considered strong enough for the foreseeable
future, this hasn’t changed completely but the recommendation today is to use stronger cyphers for
signing & encrypting as those can be compromised.

APK’s are signed as part of the build process when we upload an app to the Google Play Store. This
process seems redundant as we generate the signature/certificate ourselves (unlike Apple which
generates it for us). However, this is a crucial step as it allows the device to verify upgrades and
make sure a new update is from the same original author!

This means that if a hacker takes over your account on Google Play, he still won’t be able to ship
fake updates to your apps without your certificate. That’s important since if a hacker would have
access to your certificate he could create an app update that would just send him all the users
private information e.g. if you are a bank this could be a disaster.

Android launched with RSA1024/SHA1 as the signing certificates. This was good enough at the time
and is still pretty secure. However, these algorithms are slowly eroding and it is conceivable that
within the 10-15 year lifetime of an app they might be compromised using powerful hardware. That
is why Google introduced support for stronger cryptographic signing into newer versions of
Android and you can use that.

22.6.1. The Bad News

There is a downside…

Google only introduced that capability in Android 4.3 so using these new keys will break
compatibility with older devices. If you are building a highly secure app this is probably a tradeoff
you should accept. If not this might not be worth it for some theoretical benefit.

Furthermore, if your app is already shipping you are out of luck. Due to the obvious security
implications once you shipped an app the certificate is final. Google doesn’t provide a way to
update the certificate of a shipping app. Thus this feature only applies to apps that aren’t yet in the
play store.

723

22.6.2. The Good

If you are building a new app this is pretty easy to integrate and requires no changes on your part.
Just a new certificate. You can generate the new secure key using instructions in articles like this
one [https://guardianproject.info/2015/12/29/how-to-migrate-your-android-apps-signing-key/].

If you are using Codename One Setting you can check the box to generate an SHA512 key which will
harden the security for the APK.

22.7. Certificate Pinning
When we connect to HTTPS servers our networking code checks the certificate on the server. If the
certificate was issued by a trusted certificate authority then the connection goes thru otherwise it
fails. Let’s imagine a case where I’m sitting in a coffee shop connected to the local wifi, I try to
connect to gmail to check my email. Since I use HTTPS to Google I trust my connection is secure.

 What if the coffee shop was hacked and the router is listening in on everything?

So HTTPS is encrypted and the way encryption works is thru the certificate. The server sends me a
certificate and we can use that to send encrypted data to it.

What if the router grabs the servers certificate and communicates with Google in
my name?

This won’t work since the data we send to the server is encrypted with the certificate from the
server.

 So what if the router sends its own "fake certificate"?

That won’t work either. All certificates are signed by a "certificate authority" indicating that a
google.com certificate is valid.

What if I was able to get my fake certificate authorized by a real certificate
authority?

That’s a problem!

It’s obviously hard to do but if someone was able to do this he could execute a "man in the middle"
attack as described above. People were able to fool certificate authorities in the past and gain fake
certificates using various methods so this is possible and probably doable for any government level
attacker.

22.7.1. Certificate Pinning

This is the attack certificate pinning (or SSL pinning) aims to prevent. We code into our app the
"fingerprint" of the certificate that is "good" and thus prevent the app from working when the
certificate is changed. This might break the app if we replace the certificate at some point but that
might be reasonable in such a case.

724

https://guardianproject.info/2015/12/29/how-to-migrate-your-android-apps-signing-key/
https://guardianproject.info/2015/12/29/how-to-migrate-your-android-apps-signing-key/

To do this we have a cn1lib [https://github.com/codenameone/SSLCertificateFingerprint/]. that fetches the
certificate fingerprint from the server, we can just check this fingerprint against a list of
"authorized" keys to decide whether it is valid. You can install the SSLCertificateFingerprint from
the extensions section in Codename One Settings and use something like this to verify your server:

if(CheckCert.isCertCheckingSupported()) {
 String f = CheckCert.getFingerprint(myHttpsURL);
 if(validKeysList.contains(f)) {
 // OK it's a good certificate proceed
 } else {
 if(Dialog.show("Security Warning", "WARNING: it is possible your commmunications are being tampered! We suggest
quitting the app at once!", "Quit", "Continue")) {
 Display.getInstance().exitApplication();
 }
 }
} else {
 // certificate fingerprint checking isn't supported on this platform... It's your decision whether to proceed or not
}

Notice that once connection is established you don’t need to verify again for the current application
run.

725

https://github.com/codenameone/SSLCertificateFingerprint/

726

23. Travis CI Integration
This page includes instructions on setting up continuous integration for Codename One
applications using GitHub and Travis-CI.

Travis CI is a hosted, distributed continuous integration service used to
build and test software projects hosted at GitHub.

Open source projects may be tested at no charge via travis-ci.org. Private
projects may be tested at travis-ci.com on a fee basis. TravisPro provides
custom deployments of a proprietary version on the customer’s own
hardware.

Although the source is technically free software and available piecemeal on
GitHub under permissive licenses, the company notes that it is unlikely that
casual users could successfully integrate it on their own platforms.

— Wikipedia

Codename One provides single-click integration with Travis-CI via the Codename One Settings tool.
Once integration is set up, Travis will automatically build your project and run unit tests following
each commit of your project to GitHub.

23.1. Quick Start
Assuming you already have a Codename One project, you only need to do three things to enable
Travis:

1. Enable Travis in Codename One Settings

2. Push the project to GitHub.

3. Turn on your repository on travis-ci.org [https://travis-ci.org] if your repository is public or travis-
ci.com [https://travis-ci.com] if your repository is private.

Travis CI is free for public Github repositories. If your repository is private, then
you’ll need a travis-ci.com [https://travis-ci.com/] account. See their plans and pricing
here [https://travis-ci.com/plans].

23.1.1. Enabling Travis

Open Codename One settings by right clicking the project, and selecting "Codename One" >
Codename One Settings"

727

https://travis-ci.org
https://travis-ci.com
https://travis-ci.com
https://travis-ci.com/
https://travis-ci.com/plans
https://travis-ci.com/plans

Then click on the "Travis CI Integration" button

If your project isn’t already configured for travis, you’ll see a form as follows:

728

Click the "Enable Travis CI" button.

This will install some travis scripts from the cn1-travis-template [https://github.com/shannah/cn1-travis-

template] project. In particular, it will add the following files to your project:

1. .travis.yml - A travis script that is set up to build your project and run its unit tests.

2. .travis/ - A directory containing some utility shell scripts that are used the .travis.yml script.

Activating/Deactivating Jobs

The .travis.yml script that was installed in the previous step includes jobs for testing your app on
many different platforms. Currently JavaSE (the Codename One simulator), and a selection of iOS
and Android versions are included, but we will be adding more platforms as time goes on. The goal
is to provide jobs for every platform that Codename One supports.

You can select the platforms you want Travis to test against by selecting or deselecting the platform,
as shown below.

729

https://github.com/shannah/cn1-travis-template

Only the JavaSE job is available for non-enterprise subscribers. If you don’t have
an enterprise subscription, the Android and iOS options will be disabled in your
settings. If you have an enterprise subscription, and your Android and iOS options
are disabled, then you may not be logged in correctly. Check on the main menu of
settings to ensure that you’re logged into the correct account.

On-device jobs such as Android and iOS require that you have the CN1USER and
CN1PASS environment variables set in your Travis settings. These are used to build
your project on the build server.

23.1.2. Pushing to GitHub

The process of setting up a Github repository is beyond the scope of this document. Please refer to
github’s documentation [https://guides.github.com/activities/hello-world/] for details on this process.

Add a .gitignore file to your project to prevent you from committing all of your .jar
files along with your project. Take a look at the .gitignore file from the Kitchen
Sink demo app [https://github.com/codenameone/KitchenSink/blob/master/.gitignore] for a
sample .gitignore file that is suitable for a typical Codename One project.

730

https://guides.github.com/activities/hello-world/
https://github.com/codenameone/KitchenSink/blob/master/.gitignore
https://github.com/codenameone/KitchenSink/blob/master/.gitignore

23.1.3. Activate Repository On Travis

Now that your project is in a Github repository, you just need to activate the repository within
Travis. For this part, you’ll need an account on travis-ci.org (for public repositories) or travis-ci.com
(for private repositories).

Steps to activate your repository in Travis.

1. Go to travis-ci [https://travis-ci.org], and login.

2. Click on your name in the upper right corner, to go to your profile page.

3. Click the "Sync account" button in the upper right to load your Github repositories.

4. Flip the switch next to the repository you want to activate in the list.

23.1.4. Setting Environment Variables

If you have any Android or iOS jobs activated in your travis script, you’ll need to set the CN1PASS and
CN1USER environment variables in Travis. Do this by first clicking on the repository, then select

731

https://travis-ci.org

"More Options" in the upper right, and "Settings".

The settings form will allow you to enter environment variables.

23.1.5. Testing Travis Script

To test the travis script, all you need to do is commit a change to your project in it, then push it to
github.

$ git add .
$ git commit -m "Some changes"
$ git push origin master

Then go to https://travis-ci.org, and you should see your repository listed in the left menu. Click on it
to follow your build status

732

https://travis-ci.org

23.1.6. Writing Unit Tests

In order to make the most out of continuous integration, you’ll want to write unit tests for your app.
See this video/post [https://www.codenameone.com/blog/test-it.html] for a light introduction to Codename
One unit testing, and also check out the javadocs for the com.codename1.testing package
[https://www.codenameone.com/javadoc/com/codename1/testing/package-summary.html].

Disabling Travis

If you want to disable travis, or start fresh with a new travis script, you can simply delete the
.travis directory and .travis.yml file from your project. If you want to reactivate travis later, you
can do so through the Codename One settings using the same procedure as described above. That
will re-download the latest travis script from the online template [https://github.com/shannah/cn1-travis-

733

https://www.codenameone.com/blog/test-it.html
https://www.codenameone.com/javadoc/com/codename1/testing/package-summary.html
https://github.com/shannah/cn1-travis-template

template].

734

24. Working with Codename One Sources

24.1. Checking out the Sources

$ mkdir workspace
$ cd workspace
$ git clone https://github.com/codenameone/CodenameOne

Creating a clean "workspace" directory is optional, and there is nothing special
about the name "workspace". It is just recommended to create a clean directory
into which you check out Codename One, because building Codename One will
check out a few dependent projects and place then at the same level as the
CodenameOne folder, so having a clean workspace will make it easier to manage.

24.2. Building Sources

$ cd CodenameOne
$ ant

The cd CodenameOne command should take you to the root project directory which
contains subfolders "CodenameOne", "Ports", etc.. - not the subfolder named
"CodenameOne".

24.3. Running Unit Tests
You can run the unit test suite locally in the Codename One simulator using the "test-javase" ant
target.

$ ant test-javase

24.4. Running iOS Unit Tests

 Running iOS Unit tests is currently limited to interal use only by Codename One.

TLDR: You can run Codename One’s unit tests on a local iOS simulator by running the "test-ios" ant
target in the main CodenameOne directory. E.g.

ant test-ios

This assumes the following requirements

735

1. You are running Mac OS X with Xcode 7.3 or higher installed.

2. You have npm installed and in your environment PATH.

3. You have appium installed and running.

24.4.1. Installing npm

Either download the installer from https://nodejs.org/en/ OR run brew install node from terminal.

24.4.2. Installing and Running Appium

Open a new terminal window, then

$ mkdir appium
$ cd appium
$ npm install appium
$./node_modules/.bin/appium

You may want to run the last command ./node_modules/.bin/appium as a daemon so
that you can continue to use the same terminal window. E.g.
./node_modules/.bin/appium &

24.4.3. Running the Unit tests

$ cd CodenameOne
$ ant test-ios

24.4.4. Overriding the Codename One Build Server Target

$ ant test-ios -Dcn1.iphone.target=iphone_new

This will send to the "iphone_new" build server instead of the default "iphone" server.

736

https://nodejs.org/en/

	Codename One Developer Guide
	Contents
	Preface
	1. Introduction
	1.1. Build Cloud
	1.1.1. Why Build Servers?
	1.1.2. How does Codename One Work?
	Lightweight Architecture
	Why ParparVM
	Windows Phone/UWP
	JavaScript Port
	Desktop and Android

	1.1.3. Versions In Codename One

	1.2. History
	1.3. Core Concepts of Mobile Programming
	1.3.1. Density
	1.3.2. Touch Interface
	1.3.3. Device Fragmentation
	1.3.4. Performance
	App Size
	Power Drain

	1.3.5. Sandbox and Permissions

	1.4. Installing Codename One
	1.5. IntelliJ/IDEA
	1.6. NetBeans
	1.7. Eclipse
	1.8. Hello World Application
	1.8.1. Running
	1.8.2. The Source Code Of The Hello World App
	1.8.3. Building and Deploying On Devices
	Signing/Certificates
	Build and Install

	1.9. Kotlin
	1.9.1. Hello Kotlin

	2. Basics: Themes, Styles, Components and Layouts
	2.1. Components
	2.1.1. Layout Managers
	Terse Syntax
	Flow Layout
	Box Layout
	Border Layout
	Grid Layout

	2.1.2. Table Layout
	The Full Potential
	TextMode Layout

	2.1.3. Layered Layout
	Insets and Reference Components
	auto Insets
	% Insets
	Insets, Margin, and Padding
	Component References: Linking Components together

	2.1.4. GridBag Layout
	2.1.5. Group Layout
	2.1.6. Mig Layout

	2.2. Themes and Styles
	2.2.1. Theme
	Native Theme

	2.3. GUI Builder
	2.3.1. Hello World
	NetBeans
	IntelliJ/IDEA
	Eclipse
	Basic Usage
	Events
	Underlying XML

	2.3.2. Auto-Layout Mode
	The Inset Control
	Auto Snap
	Smart Insets
	The Widget Control Pad
	Keyboard Short-Cuts
	Sub-Containers
	The Canvas Resize Tool

	3. Theme Basics
	3.1. Understanding Codename One Themes
	3.2. Customizing Your Theme
	3.3. Customizing The Title
	3.3.1. Background Priorities and Types
	3.3.2. The Background Behavior and Image
	3.3.3. The Color Settings
	3.3.4. Alignment
	3.3.5. Padding and Margin
	3.3.6. Borders
	3.3.7. 9-Piece Image Border
	Customizing The 9-Piece Border

	3.3.8. Horizontal/Vertical Image Border
	3.3.9. Empty Border
	3.3.10. Round Border
	3.3.11. Rounded Rectangle Border
	3.3.12. Bevel/Etched Borders
	3.3.13. Derive
	3.3.14. Fonts
	Font Effects

	4. Advanced Theming
	4.1. Working With UIID’s
	4.2. Theme Layering
	4.3. Override Resources In Platform
	4.4. Theme Constants
	4.5. Native Theming
	4.6. Under the Hood of the Theme Engine
	4.7. Understanding Images and Multi-Images
	4.8. Use Millimeters for Padding/Margin and Font Sizes
	4.8.1. Fractions of Millimeters

	4.9. Creating a Great Looking Side Menu
	4.10. Converting a PSD To A Theme
	4.10.1. Breaking Down the PSD
	Removing the Noise
	The Camera Button

	4.10.2. The Code
	4.10.3. Styling The UI
	Not Quite There Yet

	5. CSS
	5.1. Activating CSS
	5.2. Supported CSS Selectors
	5.2.1. Inheriting properties using cn1-derive

	5.3. Special Selectors
	5.3.1. #Device
	5.3.2. #Constants
	5.3.3. Default

	5.4. Standard CSS Properties
	5.5. Custom Properties
	5.6. CSS Variables
	5.7. CSS Properties
	5.7.1. text-decoration
	5.7.2. border
	Round Borders

	5.7.3. background
	Background Images
	Gradients

	5.7.4. cn1-background-type

	5.8. Images
	5.8.1. Image DPI and Device Densities
	5.8.2. Multi-Images vs Regular Images
	5.8.3. Multi-Images as Inputs
	5.8.4. Image Constants

	5.9. Image Recipes
	5.9.1. Import Multiple Images In Single Selector
	5.9.2. Loading Images from URLs
	5.9.3. Generating 9-Piece Image Borders
	5.9.4. Image Backgrounds
	Example Setting Background Image to Scale Fill

	5.10. Image Compression
	5.11. Fonts
	5.11.1. font-family
	Using TTF Fonts

	5.11.2. font-size
	5.11.3. text-decoration
	5.11.4. Some Sample CSS Directives

	5.12. Media Queries
	5.12.1. Compound Media Queries
	5.12.2. Order or Precedence
	5.12.3. Font Scaling Constants

	6. The Components of Codename One
	6.1. Container
	6.1.1. Composite Components

	6.2. Form
	6.3. Dialog
	6.3.1. Styling Dialogs
	6.3.2. Tint and Blurring
	6.3.3. Popup Dialog
	Styling The Arrow Of The Popup Dialog

	6.4. InteractionDialog
	6.5. Label
	6.5.1. Label Gap
	6.5.2. Autosizing Labels

	6.6. TextField and TextArea
	6.6.1. Masking
	6.6.2. The Virtual Keyboard
	Action Button Client Property
	Next and Done on iOS

	6.6.3. Clearable Text Field

	6.7. TextComponent
	6.7.1. Error Handling
	6.7.2. InputComponent and PickerComponent
	6.7.3. Underlying Theme Constants and UIID’s

	6.8. Button
	6.8.1. Uppercase Buttons
	6.8.2. Raised Button
	6.8.3. Ripple Effect

	6.9. CheckBox/RadioButton
	6.9.1. Toggle Button

	6.10. ComponentGroup
	6.11. MultiButton
	6.11.1. Styling The MultiButton

	6.12. SpanButton
	6.13. SpanLabel
	6.14. OnOffSwitch
	6.14.1. Validation

	6.15. InfiniteProgress
	6.16. InfiniteScrollAdapter and InfiniteContainer
	6.16.1. The InfiniteContainer

	6.17. List, MultiList, Renderers & Models
	6.17.1. InfiniteContainer/InfiniteScrollAdapter vs. List/ContainerList
	6.17.2. Why Isn’t List Deprecated?
	6.17.3. MVC In Lists
	6.17.4. Understanding MVC
	Why is this useful?

	6.17.5. Important - Lists & Layout Managers
	6.17.6. MultiList & DefaultListModel
	Going Further With the ListModel

	6.17.7. List Cell Renderer
	6.17.8. Generic List Cell Renderer
	Custom UIID Of Entry in GenenricListCellRenderer/MultiList
	Rendering Prototype

	6.17.9. ComboBox

	6.18. Slider
	6.19. Table
	6.19.1. Sorting Tables

	6.20. Tree
	6.21. ShareButton
	6.22. Tabs
	6.23. MediaManager & MediaPlayer
	6.24. ImageViewer
	6.25. ScaleImageLabel & ScaleImageButton
	6.26. Toolbar
	6.26.1. Search Mode
	6.26.2. South Component
	6.26.3. Title Animations

	6.27. BrowserComponent & WebBrowser
	6.27.1. BrowserComponent Hierarchy
	6.27.2. NavigationCallback
	6.27.3. JavaScript
	So what was wrong with the old API?
	The New API
	Synchronous Wrappers
	Multi-use Callbacks
	Passing Parameters to Javascript
	Proxy Objects
	Legacy JSObject Support
	The JavaScript Bridge

	6.27.4. Cordova/PhoneGap Integration

	6.28. AutoCompleteTextField
	6.28.1. Using Images In AutoCompleteTextField

	6.29. Picker
	6.30. SwipeableContainer
	6.31. EmbeddedContainer
	6.32. MapComponent
	6.33. Chart Component
	6.33.1. Device Support
	6.33.2. Features
	6.33.3. Chart Types
	6.33.4. How to Create A Chart

	6.34. Calendar
	6.35. ToastBar
	6.35.1. Actions In ToastBar

	6.36. SignatureComponent
	6.37. Accordion
	6.38. Floating Hint
	6.39. Floating Button
	6.39.1. Using Floating Button as a Badge

	6.40. SplitPane

	7. Animations
	7.1. Layout Reflow
	7.2. Layout Animations
	7.2.1. Unlayout Animations
	7.2.2. Hiding & Visibility
	7.2.3. Synchronicity In Animations
	Animation Fade and Hierarchy

	7.2.4. Sequencing Animations Via AnimationManager
	Animation Manager to the Rescue

	7.3. Low Level Animations
	7.3.1. Why Not Just Write Code In Paint?

	7.4. Transitions
	7.4.1. Replace
	7.4.2. Slide Transitions
	7.4.3. Fade and Flip Transitions
	7.4.4. Bubble Transition
	7.4.5. Morph Transitions
	7.4.6. SwipeBackSupport

	8. The EDT - Event Dispatch Thread
	8.1. What Is The EDT
	8.2. Call Serially (And Wait)
	8.2.1. callSerially On The EDT

	8.3. Debugging EDT Violations
	8.4. Invoke And Block

	9. Monetization
	9.1. Google Play Ads
	9.2. In App Purchase
	9.2.1. The SKU
	9.2.2. Types of Products
	9.2.3. The "Hello World" of In-App Purchase
	9.2.4. Making it Consumable
	9.2.5. Non-Renewable Subscriptions
	9.2.6. The Server-Side
	The Receipts API

	9.2.7. The "Hello World" of Non-Renewable Subscriptions
	Implementing the Receipt Store
	Synchronizing Receipts
	Expiry Dates and Subscription Status
	Allowing the User to Purchase the Subscription

	9.2.8. subscribe() vs purchase()
	Handling Purchase Callbacks

	9.2.9. Screenshots
	9.2.10. Summary
	9.2.11. Auto-Renewable Subscriptions
	9.2.12. Auto-Renewable vs Non-Renewable. Best Choice?
	9.2.13. Learning By Example
	9.2.14. Building the IAP Demo Project
	Setting up the Client Project
	Setting up the Server Project
	Setting up the Database
	Testing the Project

	9.2.15. Looking at the Source of the App
	Client Side
	Server-Side

	9.2.16. The CN1-IAP-Validator Library
	9.2.17. The validateAndSaveReceipt() Method
	9.2.18. Google Play Setup
	Creating the App in Google Play
	Testing The App
	Creating Google Play Receipt Validation Credentials

	9.2.19. iTunes Connect Setup
	Setting up In-App Products
	Creating Test Accounts
	Setting up Receipt Verification

	10. Graphics, Drawing, Images & Fonts
	10.1. Basics - Where & How Do I Draw Manually?
	10.2. Glass Pane
	10.3. Shapes & Transforms
	10.4. Device Support
	10.5. A 2D Drawing App
	10.5.1. Implementing addPoint()
	10.5.2. Using Bezier Curves
	10.5.3. Detecting Platform Support

	10.6. Transforms
	10.6.1. Device Support

	10.7. Example: Drawing an Analog Clock
	10.7.1. The AnalogClock Component
	10.7.2. Setting up the Parameters
	10.7.3. Drawing the Tick Marks
	10.7.4. Drawing the Numbers
	10.7.5. Drawing the Hands
	10.7.6. The Final Result
	10.7.7. Animating the Clock

	10.8. Starting and Stopping the Animation
	10.9. Shape Clipping
	10.10. The Coordinate System
	10.10.1. Relative Coordinates
	10.10.2. Transforms and Rotations
	10.10.3. Event Coordinates

	10.11. Images
	10.11.1. Loaded Image
	10.11.2. The RGB Image’s
	Internal
	RGBImage class

	10.11.3. EncodedImage
	10.11.4. MultiImage
	10.11.5. FontImage & Material Design Icons
	Material Design Icons

	10.11.6. Timeline
	10.11.7. Image Masking
	10.11.8. URLImage
	Mask Adapter
	URLImage In Lists

	11. Events
	11.1. High Level Events
	11.1.1. Chain Of Events
	11.1.2. Action Events
	Types Of Action Events
	Source Of Event
	Event Consumption
	NetworkEvent

	11.1.3. DataChangeListener
	11.1.4. FocusListener
	11.1.5. ScrollListener
	11.1.6. SelectionListener
	11.1.7. StyleListener
	11.1.8. Event Dispatcher

	11.2. Low Level Events
	11.2.1. Low Level Event Types
	11.2.2. Drag Event Sanitation

	11.3. BrowserNavigationCallback

	12. File System, Storage, Network & Parsing
	12.1. Jar Resources
	12.2. Storage
	12.2.1. The Preferences API

	12.3. File System
	12.3.1. File Paths & App Home
	12.3.2. Storage vs. File System

	12.4. SQL
	12.5. Network Manager & Connection Request
	12.5.1. Threading
	12.5.2. Arguments, Headers & Methods
	Arguments
	Methods
	Headers
	Server Headers
	Error Handling
	Error Stream

	12.5.3. GZIP
	12.5.4. File Upload
	12.5.5. Parsing
	Parsing CSV
	JSON
	XML Parsing
	XPath Processing
	Properties Files

	12.6. Debugging Network Connections
	12.6.1. Simpler Downloads
	Downloading Images

	12.7. Rest API
	12.7.1. Rest in Practice - Twilio

	12.8. Webservice Wizard
	12.9. Connection Request Caching
	12.9.1. getCachedData()
	12.9.2. cacheUnmodified()
	12.9.3. purgeCache & purgeCacheDirectory

	12.10. Cached Data Service
	12.11. Externalizable Objects
	12.12. UI Bindings & Utilities
	12.13. Logging & Crash Protection
	12.14. Sockets
	12.15. Properties
	12.15.1. Properties in Java
	Encapsulation
	Introspection & Observability

	12.15.2. The Cool Stuff
	Constructors
	Seamless Serialization
	Seamless SQL Storage
	Preferences Binding
	UI Binding
	UI Generation

	13. Push Notifications
	13.1. Understanding Push Notifications
	13.2. Implementing Push Support
	13.3. The Push Lifecycle
	13.3.1. Registration
	13.3.2. Sending a Push Notification
	13.3.3. Receiving a Push Notification

	13.4. Testing Push Support
	13.5. Push Types and Message Structure
	13.5.1. Example Push Type 1
	13.5.2. Example Push Type 2
	13.5.3. Example Push Type 3
	13.5.4. Example Push Type 4
	13.5.5. Example Push Type 5
	13.5.6. Example Push Type 100
	13.5.7. Example Push Type 101

	13.6. Rich Push Notifications
	13.6.1. Image Attachment Support
	13.6.2. Notification Actions

	13.7. Deploying Push-Enabled Apps to Device
	13.7.1. The Push Bureaucracy - Android
	13.7.2. The Push Bureaucracy - iOS
	13.7.3. The Push Bureaucracy - UWP (Windows 10)
	13.7.4. The Push Bureaucracy - Javascript

	13.8. Sending Push Messages
	13.8.1. Sending a Push Message From Codename One
	13.8.2. Sending Push Message From A Java or Generic Server
	Server JSON Responses

	14. Miscellaneous Features
	14.1. Phone Functions
	14.1.1. SMS
	14.1.2. Dialing
	14.1.3. E-Mail

	14.2. Contacts API
	14.3. Localization & Internationalization (L10N & I18N)
	14.3.1. Localization Manager
	14.3.2. RTL/Bidi

	14.4. Location - GPS
	14.4.1. Location In The Background - Geofencing

	14.5. Background Music Playback
	14.6. Capture - Photos, Video, Audio
	14.6.1. Capture Asynchronous API

	14.7. Gallery
	14.8. Analytics Integration
	14.8.1. Application Level Analytics
	14.8.2. Overriding The Analytics Implementation

	14.9. Native Facebook Support
	14.9.1. Getting Started - Web Setup
	14.9.2. IDE Setup
	14.9.3. The Code
	14.9.4. Facebook Publish Permissions

	14.10. Google Sign-In
	14.10.1. iOS Setup Instructions
	14.10.2. Android Setup Instructions
	14.10.3. OAuth Setup (Simulator and REST API Access)
	Client ID, Client Secret and Redirect URL

	14.10.4. Javascript Setup Instructions
	14.10.5. The Code

	14.11. Lead Component
	14.11.1. Blocking Lead Behavior

	14.12. Pull To Refresh
	14.13. Running 3rd Party Apps Using Display’s execute
	14.14. Automatic Build Hint Configuration
	14.15. Easy Thread
	14.16. Mouse Cursor
	14.17. Working With GIT
	14.17.1. cn1lib’s
	14.17.2. Resource Files
	14.17.3. Eclipse Version
	14.17.4. IntelliJ/IDEA

	15. Performance, Size & Debugging
	15.1. Reducing Resource File Size
	15.2. Improving Performance
	15.3. Performance Monitor
	15.4. Network Speed
	15.5. Debugging Codename One Sources
	15.6. Device Testing Framework/Unit Testing
	15.7. EDT Error Handler and sendLog
	15.8. Kitchen Sink Case Study
	15.8.1. Scroll Performance - Threads aren’t magic

	16. Advanced Topics/Under the Hood
	16.1. Sending Arguments To The Build Server
	16.2. Offline Build
	16.2.1. Prerequisites for iOS Builds
	16.2.2. Prerequisites for Android Builds
	16.2.3. Installation
	16.2.4. Building
	16.2.5. FAQ
	Should I use the Offline Builder?
	Can I Move/Backup my Builders?
	Can I install the builders for all our developers?
	What Happens if I Cancel?
	When are Versions Released?
	Are Version Numbers Sequential?
	Why is this Feature Limited to Enterprise Subscribers?
	How Different is the Code From Cloud Builds?

	16.3. Android Permissions
	16.3.1. Permissions Under Marshmallow (Android 6+)
	Enabling Permissions
	Permission Prompts
	Code Changes
	Simulating Prompts
	AndroidNativeUtil’s checkForPermission

	16.4. On Device Debugging
	16.4.1. Android Studio Debugging (Easy Way)
	16.4.2. Android Studio Debugging the Hard Way

	16.5. Native Interfaces
	16.5.1. Introduction
	Use the Android Main Thread (Native EDT)
	Gradle Dependencies

	16.5.2. Objective-C (iOS)
	Using the iOS Main Thread (Native EDT)
	Use Cocoapods For Dependencies

	16.5.3. Javascript
	JavaScript Examples

	16.5.4. Native GUI Components
	16.5.5. Type Mapping & Rules
	16.5.6. Android Native Permissions
	16.5.7. Native AndroidNativeUtil
	16.5.8. Broadcast Receiver
	Listening & Permissions

	16.5.9. Native Code Callbacks
	Accessing Callbacks from Objective-C
	Accessing Callbacks from Javascript
	Callbacks of the SMS Receiver
	Asynchronous Callbacks & Threading

	16.6. Libraries - cn1lib
	16.6.1. Why Not Use JAR?
	16.6.2. How To Use cn1libs?
	16.6.3. Creating a Simple cn1lib
	16.6.4. Build Hints in cn1libs

	16.7. Integrating Android 3rd Party Libraries & JNI
	16.8. Drag & Drop
	16.9. Continuous Integration & Release Engineering
	16.10. Android Lollipop ActionBar Customization
	16.11. Intercepting URL’s On iOS & Android
	16.11.1. Passing Launch Arguments To The App

	16.12. Native Peer Components
	16.12.1. Why does Codename One Need Native Widgets at all?
	16.12.2. So what’s the problems with native widgets?
	16.12.3. So how do we show dialogs on top of Peer Components?
	16.12.4. Why can’t we combine peer component scrolling and Codename One scrolling?
	16.12.5. Native Components In The First Form

	16.13. Integrating 3rd Party Native SDKs
	16.13.1. Step 1 : Review the FreshDesk SDKs
	16.13.2. Step 2: Designing the Codename One Public API
	16.13.3. Step 3: The Architecture and Internal APIs
	Things to Notice

	16.13.4. Step 4: Implement the Public API and Native Interface
	Adapting Method Signatures
	Callbacks
	Initialization
	The Resulting Public API
	The Native Interface
	Connecting the Public API to the Native Interface
	Implementing the Glue Between Public API and Native Interface

	16.13.5. Step 5: Implementing the Native Interface in Android
	16.13.6. Step 6: Bundling the Native SDKs
	The FreshDesk SDK
	Dependencies

	16.13.7. Step 7 : Injecting Android Manifest and Proguard Config
	Proguard Config
	Troubleshooting Android Stuff

	16.14. Part 2: Implementing the iOS Native Code
	16.14.1. Using the MobihelpNativeCallback
	16.14.2. Bundling Native iOS SDK
	16.14.3. Troubleshooting iOS
	16.14.4. Adding Required Core Libraries and Frameworks

	16.15. Part 3 : Packaging as a cn1lib
	16.16. Building Your Own Layout Manager
	16.16.1. Porting a Swing/AWT Layout Manager

	16.17. Port a Language to Codename One
	16.17.1. What is a JVM Language?
	16.17.2. How Hard is it to Port a JVM Language to Codename One?
	Step 1: Assess the Language
	Step 2: Convert the Runtime Library into a CN1Lib
	Step 3: Hello World
	Step 4: A More Complex Hello World
	Step 5: Automation and Integration

	16.18. Update Framework
	16.18.1. How does it Work?
	16.18.2. What isn’t Covered

	17. Signing, Certificates & Provisioning
	17.1. Common Terms In Signing & Distribution
	17.1.1. What Is A Certificate?
	17.1.2. What Is Provisioning?
	17.1.3. What’s a Signing Authority?
	17.1.4. What is UDID?
	17.1.5. Should I Reuse the Same Certificate for All Apps?

	17.2. iOS Signing Wizard
	17.2.1. Logging into the Wizard
	17.2.2. Selecting Devices
	17.2.3. Decisions & Edge Cases
	17.2.4. App IDs and Provisioning Profiles
	17.2.5. Installing Files Locally
	17.2.6. Building Your App

	17.3. Advanced iOS Signing
	17.4. Provisioning Profile & Certificates Visual Guide
	17.4.1. iOS Code Signing Failure Checklist

	17.5. Android
	17.5.1. Generating an Android Certificate Manually

	17.6. RIM/BlackBerry
	17.7. J2ME

	18. Working with iOS
	18.1. Troubleshooting iOS Debug Build installs
	18.2. The iOS Screenshot/Splash Screen Process
	18.2.1. Size
	18.2.2. Mutable first screen
	18.2.3. Unsupported component

	18.3. Launch Screen Storyboards
	18.3.1. Launch Storyboard vs Launch Images

	18.4. Local Notifications on iOS and Android
	18.4.1. Sending Notifications
	Example Sending Notification

	18.4.2. Receiving Notifications
	Example Receiving Notification

	18.4.3. Canceling Notifications

	18.5. iOS Beta Testing (Testflight)
	18.6. Accessing Insecure URL’s
	18.7. Using Cocoapods
	18.7.1. Including Multiple Pods
	18.7.2. Other Pod Related Build Hints
	18.7.3. Converting PodFile To Build Hints

	18.8. Including Dynamic Frameworks

	19. Working with JavaScript
	19.1. Limitations of the Javascript Port
	19.1.1. No Multithreaded Code inside Static Initializers

	19.2. Troubleshooting Build Errors
	19.3. ZIP, WAR, or Preview. What’s the difference?
	19.4. Setting up a Proxy for Network Requests
	19.4.1. Step 1: Setting up a Proxy
	19.4.2. Step 2: Configuring your Application to use the Proxy

	19.5. Using the CORS Proxy for Same Origin Requests
	Using Apache as a Proxy

	19.6. Customizing the Splash Screen
	19.7. Debugging
	19.8. Including Third-Party Javascript Libraries
	19.8.1. Libraries vs Resources
	19.8.2. The Javascript Manifest File
	How to NOT generate the <script> tag
	Library Directories
	Including Remote Libraries
	Including CSS Files
	Embedding Variables in URLs

	19.9. Browser Environment Variables
	19.10. Changing the Native Theme
	19.10.1. Example: Using Android Theme on Android

	19.11. Disabling the 'OnBeforeUnload' Handler
	19.11.1. Example: Toggling the BeforeUnload Prompt On/Off

	19.12. Deploying as a Progressive Web App
	19.12.1. Customizing the App Manifest File
	19.12.2. Related Applications
	19.12.3. Device/Browser Support for PWAs

	19.13. Playing Media and Opening Links

	20. Working with UWP
	20.1. Deploying Outside of the Windows App Store (Sideloading)
	20.1.1. Side-loading to Windows 10 Mobile Devices
	Enabling Developer Mode on Device
	Building App for UWP
	Installing App On Device

	20.1.2. Side-loading to Windows 10 Desktop Devices
	Enabling Developer Mode on PC
	Building the App
	Installing the App

	20.1.3. Building for the Windows Store

	20.2. Debugging UWP Apps
	20.2.1. No Line Numbers in Stack Traces

	20.3. Customizing the Status Bar
	20.4. Associating App with File Types

	21. Working with Mac OS X
	21.1. Mac OS Desktop Build Options
	21.1.1. Bundle Types
	21.1.2. Understanding Mac Certificates
	21.1.3. Obtaining Certificates
	21.1.4. Exporting Certificates as P12
	21.1.5. Entitlements

	22. Security
	22.1. Constant Obfuscation
	22.2. Storage Encryption
	22.3. Disabling Screenshots
	22.4. Blocking Copy & Paste
	22.5. Blocking Jailbreak
	22.6. Strong Android Certificates
	22.6.1. The Bad News
	22.6.2. The Good

	22.7. Certificate Pinning
	22.7.1. Certificate Pinning

	23. Travis CI Integration
	23.1. Quick Start
	23.1.1. Enabling Travis
	Activating/Deactivating Jobs

	23.1.2. Pushing to GitHub
	23.1.3. Activate Repository On Travis
	23.1.4. Setting Environment Variables
	23.1.5. Testing Travis Script
	23.1.6. Writing Unit Tests
	Disabling Travis

	24. Working with Codename One Sources
	24.1. Checking out the Sources
	24.2. Building Sources
	24.3. Running Unit Tests
	24.4. Running iOS Unit Tests
	24.4.1. Installing npm
	24.4.2. Installing and Running Appium
	24.4.3. Running the Unit tests
	24.4.4. Overriding the Codename One Build Server Target

