
Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

1 of 212

Codename One
Developer
Guide

Authors
Shai Almog, Chen Fishbein, Eric Coolman

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

2 of 212

Table of contents
Table	 of	 contents	 ...	 2	

Introduction	 ...	 6	
History	 ...	 6	
How	 Does	 It	 Work	 ..	 6	
Limitations	 &	 Capabilities	 ...	 7	

Lightweight	 UI	 ...	 8	
Installation	 ...	 8	
Installing	 Codename	 One	 In	 NetBeans	 ...	 8	
Installing	 Codename	 One	 In	 Eclipse	 ...	 10	

GUI	 Builder	 Hello	 World	 ...	 11	
Manual	 Hello	 World	 ...	 15	

Basics:	 Themes,	 Styles,	 Components	 &	 Layouts	 ...	 17	
What	 Is	 A	 Theme,	 What	 Is	 A	 Style	 &	 What	 Is	 a	 Component?	 ..	 17	
Creating	 A	 Native	 Theme	 ...	 17	
Component/Container	 Hierarchy	 ..	 20	
Layout	 Managers	 ...	 21	
Flow	 Layout	 ..	 22	
Box	 Layout	 ..	 23	
Border	 Layout	 ..	 23	
Grid	 Layout	 ...	 24	
Table	 Layout	 ..	 24	
Layered	 Layout	 ...	 25	
Understanding	 Preferred	 Size	 ..	 26	
Layout	 Reflow	 ..	 26	

Layout	 Animations	 ..	 27	
Building	 Your	 Own	 Layout	 Manager	 ...	 29	
Porting	 a	 Swing/AWT	 Layout	 Manager	 ...	 31	

Theme	 Basics	 ...	 32	

Advanced	 Theming	 ..	 38	
Understanding	 Codename	 One	 Themes	 ..	 38	
Working	 With	 UIID	 ...	 38	
Style	 Inheritance	 ..	 39	
Colors	 &	 Transparency	 ...	 40	
Backgrounds	 ..	 40	
Fonts	 ...	 41	
Borders	 ..	 42	
Padding/Margin	 ...	 43	
Theme	 Constants	 ...	 44	
How	 Does	 A	 Theme	 Work	 ..	 50	
Understanding	 Images	 &	 Multi-‐Images	 ...	 51	

Working	 With	 The	 GUI	 Builder	 ...	 54	
Basic	 Concepts	 ..	 54	

The	 Components	 Of	 Codename	 One	 ..	 55	

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

3 of 212

Container	 ...	 55	
Composite	 Components	 ..	 55	
Form	 ..	 55	
Dialog	 ..	 57	
Label	 ..	 57	
Button	 ...	 58	
CheckBox/Radio	 Button	 ...	 58	
Multi-‐Button	 ..	 58	
Span	 Button	 ..	 59	
Span	 Label	 ..	 59	
On	 Off	 Switch	 ...	 59	
TextField/TextArea	 ..	 59	
Toggle	 Button	 ..	 59	
List,	 ContainerList,	 Renderers	 &	 Models	 ...	 61	
Important	 -‐	 Lists	 &	 Layout	 Managers	 ...	 62	
Using	 Lists	 In	 The	 GUI	 Builder	 ..	 62	
Understanding	 MVC	 ..	 67	
List	 Cell	 Renderer	 ...	 68	
Generic	 List	 Cell	 Renderer	 ..	 72	
The	 List	 Model	 ...	 75	

MultiList	 ..	 79	
Slider	 ...	 79	
Table	 ...	 80	
Tree	 ...	 81	
Share	 Button	 ..	 82	
Infinite	 Progress	 ..	 83	
Tabs	 ...	 84	
MediaPlayer	 ...	 84	
ImageViewer	 ...	 85	
WebBrowser	 ..	 85	
Auto	 Complete	 ..	 86	
Spinner	 &	 Picker	 ..	 87	
Embedded	 Container	 ...	 87	
The	 Map	 Component	 ..	 88	

Animations	 &	 Transitions	 ..	 94	
Low	 Level	 Animations	 ...	 94	
Transitions	 ...	 95	
The	 EDT	 -‐	 Event	 Dispatch	 Thread	 ...	 100	
What	 Is	 The	 EDT	 ...	 100	
Debugging	 EDT	 Violations	 ..	 100	
Call	 Serially	 (And	 Wait)	 ...	 101	
Invoke	 And	 Block	 ..	 102	
Monetization	 ...	 105	
Ad	 Networks	 ...	 105	
vserv	 ..	 105	
Inneractive	 ...	 106	

Google	 Play	 Ads	 ...	 106	

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

4 of 212

In	 App	 Purchase	 ..	 107	

Graphics,	 Drawing,	 Images	 &	 Fonts	 ...	 110	
Basics	 -‐	 Where	 &	 How	 Do	 I	 Draw	 Manually?	 ..	 110	
Images	 ...	 111	
Understanding	 Encoded	 Images	 &	 Image	 Locking	 ..	 114	
Glass	 Pane	 ..	 114	

File	 System,	 Storage,	 Network	 &	 Parsing	 ...	 117	
Externalizable	 Objects	 ..	 117	
Storage	 vs.	 File	 System	 ...	 119	
Storage	 ..	 119	
File	 System	 ..	 119	
Cloud	 Storage	 ...	 120	
Cloud	 File	 Storage	 ..	 124	
SQL	 ..	 124	
Network	 Manager	 &	 Connection	 Request	 ...	 125	
Debugging	 Network	 Connections	 ..	 126	
Network	 Services	 ...	 126	
UI	 Bindings	 &	 Utilities	 ..	 127	
Logging	 &	 Crash	 Protection	 ...	 127	
Parsing:	 JSON,	 XML	 &	 CSV	 ...	 128	
Cached	 Data	 Service	 ..	 129	
GZIP	 ..	 130	

Miscellaneous	 Features	 ...	 132	
SMS,	 Dial	 (Phone)	 &	 E-‐Mail	 ..	 132	
Contacts	 API	 ..	 132	
Localization	 &	 Internationalization	 (L10N	 &	 I18N)	 ..	 133	
Localization	 Manager	 ...	 135	
RTL/Bidi	 ..	 135	

Location	 -‐	 GPS	 ..	 136	
Capture	 -‐	 Photos,	 Video,	 Audio	 ...	 137	
Codescan	 -‐	 Barcode	 &	 QR	 code	 scanner	 ...	 137	
Analytics	 Integration	 ..	 139	
Facebook	 Support	 (legacy)	 ..	 139	
SideMenuBar	 -‐	 Hamburger	 Sidemenu	 ...	 143	
Pull	 To	 Refresh	 ..	 148	
Infinite	 Scroll	 Adapter	 ..	 148	
Performance,	 Size	 &	 Debugging	 ...	 150	
Reducing	 Resource	 File	 Size	 ..	 150	
Improving	 Performance	 ..	 151	
Performance	 Monitor	 ...	 151	
Network	 Speed	 ..	 151	
Debugging	 Codename	 One	 Sources	 ..	 152	
Device	 Testing	 Framework/Unit	 Testing	 ..	 153	
EDT	 Error	 Handler	 and	 sendLog	 ...	 153	
Advanced	 Topics/Under	 The	 Hood	 ..	 155	
Sending	 Arguments	 To	 The	 Build	 Server	 ...	 155	

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

5 of 212

The	 Architecture	 Of	 The	 GUI	 Builder	 ...	 158	
Basic	 Concepts	 ..	 158	
IDE	 Bindings	 ..	 159	

Native	 Interfaces	 ...	 162	
Native	 Permissions	 ...	 165	

Libraries	 -‐	 cn1lib	 ...	 165	
Drag	 &	 Drop	 ..	 166	
Physics	 -‐	 The	 Motion	 Class	 ...	 167	
Signing,	 Certificates	 &	 Provisioning	 ...	 168	
iOS	 (iPhone/iPad)	 ..	 168	
iOS	 Code	 Signing	 Fail	 Checklist	 ...	 169	

Android	 ...	 173	
RIM/BlackBerry	 ..	 174	
J2ME	 ...	 174	
Appendix:	 Working	 With	 iOS	 ...	 175	
Provisioning	 Profile	 &	 Certificates	 ..	 175	
Push	 Notifications	 ..	 182	

Appendix:	 Creating	 Codename	 One	 Maker	 Plugins	 ..	 189	

Appendix:	 Cloud	 Object	 API	 On	 The	 Desktop	 ...	 195	

Appendix:	 Casual	 Game	 Programming	 ...	 196	
The	 Game	 ...	 197	
Getting	 Started	 ...	 197	
Handling	 Multiple	 Device	 Resolutions	 ..	 197	
Resources	 ...	 198	
The	 Splash	 Screen	 ..	 199	
The	 Game	 UI	 ...	 200	
Summary	 ..	 201	

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

6 of 212

Introduction
Codename One is a set of tools for mobile application development that derive a great
deal of its architecture from Java. It stands both as the name of the startup that created
the set of tools and as a prefix to the distinct tools that make up the Codename One
product.

The goal of the Codename One project is to take the complex and fragmented task of
mobile device programming and unify it under a single set of tools, APIs and services to
create a more manageable approach to mobile application development without sacrificing
development power/control.

History
Codename One was started by Chen Fishbein & Shai Almog
who authored the Open Source LWUIT1 project at Sun
Microsystems starting at 2007. The LWUIT project aimed at
solving the fragmentation within J2ME/Blackberry devices by
targeting a higher standard of user interface than the common
baseline at the time. LWUIT received critical acclaim and traction
within multiple industries but was limited by the declining feature
phone market.
In 2012 the Codename One project has taken many of the basic
concepts developed within the LWUIT project and adapted them
to the smartphone world which is experiencing similar issues to
the device fragmentation of the old J2ME phones.

How Does It Work
Codename One has 4 major parts: API, Designer, Simulator and Build/Cloud server.

● API - abstracts platform specific functionality
● Designer - allows developers/designers to design the GUI/theme and package

various resources required by the application
● Simulator - allows previewing and debugging applications within the IDE
● Build/Cloud server - the server performs the build of the native application,

removing the need to install additional software stacks.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 See http://lwuit.blogspot.com/ http://lwuit.java.net/

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

7 of 212

Codename One unifies the pieces illustrated above allowing developers to use them as a
single coherent product. When building the final native application the build server
produces the actual native application removing the need for a dedicated
machine/installation.

Limitat ions & Capabil i t ies
J2ME & RIM are very limited platforms to achieve partial Java 5 compatibility Codename
One automatically strips the Java 5 language requirements from bytecode and injects its
own implementation of Java 5 classes. Not everything is supported so consult the
Codename One JavaDoc when you get a compiler error to see what is available.
Due to the implementation of the NetBeans IDE it is very difficult to properly replace and
annotate the supported Java API’s so the completion and error marking might not
represent correctly what is actually working and implemented on the devices. However,
the compilation phase will not succeed if you used classes that are unsupported.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

8 of 212

Lightweight UI
The biggest differentiation for Codename One is the lightweight architecture which allows
for a great deal of the capabilities within Codename One. A Lightweight component is a
component that is written entirely in Java, it draws its own interface and handles its own
events/states. This has huge portability advantages since the same code executes on all
platforms, but it carries many additional advantages.
The components are infinitely customizable just by using standard inheritance and
overriding paint/event handling. Theming and the GUI builder allow for live preview and
accurate reproduction across platforms since the same code executes everywhere.

Instal lat ion
Instal l ing Codename One In NetBeans
For the purpose of this document we will focus mostly on the NetBeans IDE for
development, however most operations are almost identical in the Eclipse IDE as well. For
instructions specific for Eclipse please go to the following section.

These instructions assume you have downloaded NetBeans 7.x, installed and launchedit.

Select the Tools->Plugins menu option & select the Settings tab

Click the "Add" button & enter the details below

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

9 of 212

For the name enter: Codename One
For the URL enter:
https://codenameone.googlecode.com/svn/trunk/CodenameOne/repo/netbeans/updates.
xml
In The Available Plugins Tab Click "Reload Catalog" Then Check The CodenameOne
Plugin

After that click the install button below. Follow the Wizard instructions to install the plugin

You will be informed that the plugin is unsigned which is indeed true, you just continue
anyway.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

10 of 212

Instal l ing Codename One In Ecl ipse
Startup Eclipse and click Help->Install New Software. You should get this dialog

Click the Add button on the right side & fill out the entries

Enter Codename One for the name and
https://codenameone.googlecode.com/svn/trunk/CodenameOne/repo/eclipse/site.xml for
the location.

Select the entries & follow the wizard to install

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

11 of 212

GUI Bui lder Hel lo World
Start by creating a new project in the IDE and selecting the Codename One project.

Use a proper package name for the project!

It is important to use proper package names for the project since platforms such as iOS &
Android rely on these names for future updates. They are thus painful to change! The
convention is the common Java convention of reverse domain names (e.g.
com.codenameone for the owner of codenameone.com etc.).

By default a GUI builder project is created, we will maintain this default for the purpose of
this hello world.

Since this is a GUI builder project you can open the Codename One Designer with the
content of the theme.res file by double clicking the file. FYI: If you choose to rename this
file in the future it is important to update the resource file name in the project properties
settings.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

12 of 212

Within the Codename One Designer we can see several categories the most interesting of
which are theme & GUI. We will start by opening the theme section and clicking the entry
there.
The default Codename One theme, derives from the platform native theme. We can easily
change the "base theme" in the preview to see how the theme will act in different devices
by clicking the native theme option in the application menu as such.

To edit the UI for the application we need to select the GUI section and click “GUI 1” within
that section. We are then faced with a drag and drop interface to manipulate the GUI of
the application we saw within the theme preview. All changes made here are reflected
instantly to the theme preview.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

13 of 212

The GUI builder allows us to bind events, we will drag a new button into the GUI and use
this functionality to select the button from the GUI and then add an action event to a
button listener to a button..

Clicking the action event button creates a new method within the IDE which we can can
use to bind functionality to the button. Within the code we show a dialog by adding the
code: Dialog.show("Hello", "Hi There", "OK", null);

If we inspect the Codename One project to some degree we will notice that it is pretty
close to a standard Java project hence it can be modified/used in very similar ways. You

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

14 of 212

can use the debugger and most refactoring functionality as usual. Notice that you should
not change the classpath settings for the project since library support is a more complex
issue than just modifying the classpath!
Furthermore, if you change package/class names for some of the core classes you will
need to update the project settings accordingly.

In order to get a native application for the devices you need to send a build to the build
server. Before you get started you will probably need to read the signing section of this
guide in order to produce an actual working application. Right click the project and select
the device type for which you wish to build. If you haven’t registered in the build server just
visit http://www.codenameone.com/ and signup for free to get an account there!

Within the build server at http://www.codenameone.com/ you can follow the status of your
current build.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

15 of 212

In the build server we can follow the progress of the build and the results for the current
build. We can email a link to the deployment files, download them or use a QR reader to
install them to the phone. The Codename One LIVE! application allows following the status
and installing applications directly from the build server.

Manual Hel lo World
Some developers prefer writing all their code and avoiding the GUI builder like a plague, for
them this tutorial covers the creation of a hello world application without the GUI builder.

Start by creating a new project in the IDE and selecting the Codename One project.

Use a proper package name for the project!

It is important to use proper package names for the project since platforms such as iOS &
Android rely on these names for future updates. They are thus painful to change! The
convention is the common Java convention of reverse domain names (e.g.
com.codenameone for the owner of codenameone.com etc.).

Make sure to select the Hello World project and NOT the GUI Builder project!

Within your project main class you will see a start method that contains the code:

 Form f = new Form("Hello World");

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

16 of 212

to add a button to the form that will show a dialog add the following:

 Button d = new Button(“Show Dialog”);
 f.addComponent(d);
 d.addActionListener(new ActionListener() {
 publ ic void ActionPerformed(ActionEvent ev) {
 Dialog.show("Hello", "Hi There", "OK", nul l) ;
 }
 }) ;

This will show a dialog when the user clicks the button. You can use the play button in the
IDE to run the application.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

17 of 212

Basics: Themes, Styles, Components
& Layouts
This chapter covers the basic ideas underlying a Codename One application. It focuses
mostly on the issues related to UI.

What Is A Theme, What Is A Style & What Is a
Component?
Every visual element within Codename One is is a component, the button on the screen is
a Component and so is the Form in which it is placed. This is all represented within the
Component class, which is probably the most central class in Codename One.
Several style objects determine the appearance of the component, every component has 4
style objects associated with it: Selected, Unselected, Disabled & Pressed.
Only one style is applicable at any given time and it can be queried via the getStyle()
method. A style contains the colors, fonts, border and spacing information relating to how
the component is presented to the user.
A theme allows the designer to define the styles externally via a set of UIID’s (User
Interface ID’s), the themes are created via the Codename One Designer tool and allow
developers to separate the look of the component from the application logic.

Creating A Native Theme
When creating a Codename One theme the default uses the platform native theme

You can easily create a theme with any look you desire or you can "inherit" the platform
native theme and start from that point. When adding a new theme you are given the option.

Any theme can be configured to derive a native theme

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

18 of 212

Codename One uses a theme constant called "includeNativeBool", when that constant is
set to true Codename One starts by loading the native theme first and then applying all the
theme settings. This effectively means your theme "derives" the style of the native theme
first, similar to the cascading effect of CSS.

By avoiding this flag you can create themes that look EXACTLY the same on all platforms.
You can simulate different OS platforms by using the native theme menu option

Developers can pick the platform of their liking and see how the theme will appear in that
particular platform by selecting it and having the preview update on the fly.

You can easily create deep customizations that span across all themes

In this case we just customized the UIID of a label and created a style for the new UIID.
When deriving a native theme its important to check the various platform options to make

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

19 of 212

sure that basic assumptions aren't violated. E.g. labels might be transparent on one
platform but opaque on others. Or labels might look good in a dialog in Android but look
horrible in an iOS dialog (hint: use the DialogBody UIID for text content within a dialog).

Codename One allows you to override a resource for a specific platform

A common case we run into when adapting for platform specific looks is that a specific
resource should be different to match the platform conventions. The Override feature
allows us to define resources that are specific to a given platform combination. Override
resources take precedence over embedded resources thus allowing us to change the look
or even behavior (when overriding a GUI builder element) for a specific platform/OS.

To override select the platform where overriding is applicable

Then click the green checkbox to define that this resource is specific to this platform. All
resources added at this point will only apply to the given platform. If you change your mind
and are no longer interested in a particular override just delete it in the override mode and
it will no longer be overridden.

In this case we just select a new image object applicable to this platform

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

20 of 212

Selecting the “...” button easily does this. We can easily do the same in the GUI builder
although this is a dangerous road to start following since it might end up with a great deal
of fragmentation.

Component/Container Hierarchy

The component class is the basis of all UI widgets in Codename One, to arrange multiple
components together we use the Container class which itself “IS A” Component subclass.
The Container is a Component that contains Components effectively allowing us to nest
Containers infinitely to build any type of visual hierarchy we want by nesting Containers.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

21 of 212

Layout Managers
Layout managers are installed on the Container class and effectively position the
Components within the given container. The LayoutManager class is abstract and allows
users to create their own layout managers, however Codename One ships with multiple
layout managers allowing for the creation of many layout types.

The layout managers are designed to allow developers to build user interfaces that
seamlessly adapt to all resolutions and thus they don’t state the component size/position
but rather the intended layout behavior. To install a layout manager one does something
like this:

Container c = new Container(new BoxLayout(BoxLayout.X_AXIS));
c.addComponent(new Button("1"));
c.addComponent(new Button("2"));
c.addComponent(new Button("3"));

This would produce 3 buttons one next to the other horizontally.

There are two major types of layout managers: Constraint based & regular. The regular
layout managers like the box layout are just installed on the container and “do their job”.
The constraint based layout managers associate a value with a Component sometimes
explicitly and sometimes implicitly. Codename One ships with 3 such layouts BorderLayout,
TableLayout & GroupLayout.
A constraint layout can/must accept a value when adding the component to indicate its
position e.g.:

Container c = new Container(new BorderLayout()) ;
c.addComponent(BorderLayout.CENTER, new Button("1"));
c.addComponent(BorderLayout.NORTH, new Button("2"));
c.addComponent(BorderLayout.SOUTH, new Button("3"));

This will stretch button 1 across the center of the container and buttons 2-3 will be
stretched horizontally at the top and bottom of the container. Notice that the order to
adding doesn’t mean much once we have a constraint involved...

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

22 of 212

Flow Layout
Flow layout can be used to just let the
components “flow” horizontally and break a
line when reaching the end of the
component. It is the default layout manager
for Codename One but because it is so
flexible it could be problematic since it can
cause the preferred size of the Container to
provide false information triggering endless layout reflows (see below).

Flow layout can be aligned to the left (by default) center or to the right. Components within
the flow layout get their natural preferred size by default and are not stretched in any axis.
The layout manager also supports modifying the horizontal alignment of the flow layout in
cases where the container grows vertically.

f inal Container layouts = new Container();
f inal Button borderLayout = new Button("Border");
f inal Button boxYLayout = new Button("Box Y");
f inal Button boxXLayout = new Button("Box X");
f inal Button flowLayout = new Button("Flow");
f inal Button flowCenterLayout = new Button("Flow Center");
f inal Button gridLayout = new Button("Grid");
f inal Button tableLayout = new Button("Table");
layouts.setLayout(new FlowLayout(Component.CENTER));
layouts.addComponent(borderLayout);
layouts.addComponent(boxYLayout);
layouts.addComponent(boxXLayout);
layouts.addComponent(flowLayout);
layouts.addComponent(flowCenterLayout);
layouts.addComponent(gridLayout);
layouts.addComponent(tableLayout);

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

23 of 212

Box Layout
Box layout allows placing components in a horizontal or a vertical line that doesn’t break
the line. Components are stretched along the opposite axis, e.g. X axis box will flow
components horizontally and stretch them vertically.

.

Box layout accepts the axis in its constructor, the axis can be either BoxLayout.X_AXIS or
BoxLayout.Y_AXIS.

Border Layout
Border layout is quite unique, it’s a constraint-based layout
that can place up to 5 components in one of the 5
positions: North, South, East, West or Center.

The layout always stretches the North/South components
on the X-axis to completely fill the container and the
East/West components on the Y-axis. The center
component is stretched to fill the remaining area by default.
However, the border layout has a flag to manipulate the
behavior of the center component allowing it to be placed
in the absolute center without stretching.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

24 of 212

Grid Layout
The Grid Layout accepts a predefined grid rows/columns and
grants all components within it an equal size based on the
dimensions of the largest component. It is an excellent layout for a
set of icons in a grid.
It can also dynamically calculate the columns/rows based on
available space.

Table Layout
The table layout is far more elaborate than the grid layout and more
akin to the HTML table structure. It is a constraint-based layout, however it includes a
default constraint if none are specified (e.g. using

container.addComponent(component);

 is equivalent to using addComponent((layout.createConstraint(), cmp)).
A table generally gives elements their preferred sizes but stretches them based on
column/row. There are abilities within the constraint element to define multiple behaviors
such as row/column spanning, alignments and grow behavior.

The table layout will automatically size components to the largest preferred size in the
row/column until running out of space, if the table is not horizontally scrollable this will
happen when the edge of the parent container is reached (close to the edge of the screen)
and further components will be "crammed together". Notice that all cells in the table layout
are sized to fit the entire cell always. To align, or margin cell's a developer can use the
methods of the component/Style appropriately.

A developer can provide hints to the table layout to enable spanning and more detailed
column/row sizes using the constraint argument to the addComponent method. The

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

25 of 212

constraint argument is an instance of TableLayout.Constraint that must not be reused for
more than one cell since it will trigger an exception.

A constraint can specify the absolute row/column where the entry should fit as well as
spanning between cell boundaries. Notice that in the picture the "First" cell is spanned
vertically while the "Spanning" cell is spanned horizontally. This is immensely useful in
creating elaborate UI's,

Constraints can also specify a height/width for a column/row that will override the default,
this size is indicated in percentage of the total table layout size. In the picture you can see
that the "First" label is sized to 50% width while the "Forth" label is sized to 20% height.

Form mainForm = new Form("Table Layout");
TableLayout layout = new TableLayout(4, 3);
mainForm.setLayout(layout);
TableLayout.Constraint constraint = layout.createConstraint() ;
constraint.setVerticalSpan(2);
constraint.setWidthPercentage(50);
mainForm.addComponent(constraint, new Label("First")) ;
mainForm.addComponent(new Label("Second"));
mainForm.addComponent(new Label("Third"));

constraint = layout.createConstraint() ;
constraint.setHeightPercentage(20);
mainForm.addComponent(constraint, new Label("Forth"));
mainForm.addComponent(new Label("Fifth"));
constraint = layout.createConstraint() ;
constraint.setHorizontalSpan(3);
Label span = new Label("Spanning");
span.getStyle().setBorder(Border.createLineBorder(2));
span.setAlignment(Component.CENTER);
mainForm.addComponent(constraint, span);
mainForm.show();

Layered Layout
The layered layout just places the components in order one on top of the other and sizes
them all to the size of the largest component. This is useful when trying to create an

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

26 of 212

overlay on top of an existing component e.g. an “x” button to allow removing the
component.

E.g. this code will place a green “online” icon at the bottom right position on top of an icon
for instance to indicate that a friend is currently online:

Label pictureOfFriend = new Label(..) ;
Label onlineGreenImage = new Label(greenImage);
Container layered = new Container(new LayeredLayout()) ;
layered.addComponent(pictureOfFriend);

// assuming you want bottom right position
Layout flow = new FlowLayout(Component.RIGHT);
flow.setValign(Component.BOTTOM);
Container bottomRight = new Container(flow);
bottomRight.addComponent(onlineGreenImage);
layered.addComponent(bottomRight);

Form’s have a built in layered layout that you can access via getLayeredPane(), this will
allow you to overlay elements on top of the content pane.

Understanding Preferred Size
The component class contains many useful methods, one of the most important ones is
calcPreferredSize() which is invoked to recalculate the size a component “wants” when
something changes (by default Codename One calls getPreferredSize() which caches the
value).
The preferred size is decided by the component based on many constraints such as the
font size, border sizes, padding etc. When a layout places the component it will size it
based on its preferred size or ignore its preferred size either entirely or partially. Eg.
FlowLayout always gives components their exact preferred size yet BorderLayout resizes
the center component by default (and the other components on one of their axis).

Layout Reflow
When adding a component to a form, which isn’t shown on the screen there is no need to
tell the UI to repaint or reflow. This happens implicitly. However, when adding a
component to a UI that is already visible the component will not show by default.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

27 of 212

The reason for this is performance based. E.g. imagine adding 100 components to an
already visible form with 100 components within it. If we laid out automatically layout would
have happened 100 times when it can happen only once.
That is why when you add components to a form that is already showing you should
invoke revalidate or animate the layout appropriately. This also enables layout animation
behavior explained below.

Layout Animations
To understand animations you need to understand a couple of things about Codename
One components. When we add a component to a container it's generally just added but
not positioned anywhere. A novice might notice the setX/Y/Width/Height methods on a
component and just try to position it absolutely.

This won't work since these methods are meant for the layout manager, which is implicitly
invoked when a form is shown (internally in Codename One) and the layout manager uses
these methods to position the components as it sees fit.

However, if you add components to a Codename One Form that is already shown it is
your responsibility to invoke revalidate (or layoutContainer) to arrange the newly added
components. Codename One doesn't "reflow" implicitly since that would be hugely
expensive; imagine doing the layout calculations for every component added to the
container the cost would be closer to a factorial of the original cost of adding a component.

The animateLayout() is simply a fancy form of revalidate. After changing the layout when
you invoke this method it will animation the components to their new sizes and positions
seamlessly.

The first example in the tipster demo shows an "interlace" effect in which the components
slide from separate directions into the screen. This is the code we used before showing
the form:

 f.revalidate();
 for(int iter = 0 ; iter < c.getComponentCount() ; iter++) {
 Component current = c.getComponentAt(iter);
 i f (iter % 2 == 0) {
 current.setX(-current.getWidth()) ;
 } else {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

28 of 212

 current.setX(current.getWidth()) ;
 }
 }
 c.setShouldCalcPreferredSize(true);
 c.animateLayout(1000);

Lets go over this line-by-line:

 f.revalidate();

I make sure the layout is valid so I can start from the correct component positions.

 i f (iter % 2 == 0) {
 current.setX(-current.getWidth()) ;
 } else {
 current.setX(current.getWidth()) ;
 }

I manually position every component outside of the screen, if they are odd I place them to
the right and if they are even I place them to the left.

 c.setShouldCalcPreferredSize(true);

I mark the UI as needing layout. This is crucial since I validated the UI earlier (by calling
revalidate). Changing the X/Y/Width/Height doesn't trigger a validation! Codename One
doesn't know I made that change!
By calling setShouldCalcPreferredSize I'm explicitly telling Codename One that I changed
something in the UI and I want it to validate, normally this method is implicitly invoked by
Codename One.

 c.animateLayout(1000);

Perform the animation over the length of a second, this might seem like much but the
animation starts before the form entry transition so it isn't that much.

The other animations are even simpler than this one and all follow the same basic rules,
place the components wherever you want either manually (or by changing the layout) and
use animateLayout() to automatically rearrange them to the new position.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

29 of 212

Bui lding Your Own Layout Manager
Codename One LayoutManagers are a remarkably powerful tool. We won't go into all the
elaborate ways in which you can modify the layout in Codename One since this is covered
rather well in the tutorial and developer guide. Instead I will try to show something that is a
bit under documented, mostly because its almost exactly like its Swing/AWT equivalent:
building a layout manager.

A layout manager contains all the logic for positioning Codename One components, it
essentially traverses a Codename One container and positions components absolutely
based on internal logic. When we build our own component we need to take padding into
consideration, when we build the layout we need to take margin into consideration.
Building a layout manager involves two simple methods: layoutContainer &
getPreferredSize.

layoutContainer is invoked whenever Codename One decides the container needs
rearranging, Codename One tries to avoid calling this method and only invokes it at the
last possible moment. Since this method is generally very expensive (imagine the recursion
with nested layouts...), Codename One just marks a flag indicating layout is "dirty" when
something important changes and tries to avoid "reflows".

getPreferredSize allows the layout to determine the size desired for the container, this
might be a difficult call to make for some layout managers that try to provide both flexibility
and simplicity. Most of flow layout bugs stem from the fact that this method is just
impossible to implement for flow layout. The size of the final layout won't necessarily
match the requested size (it probably won't) but the requested size is taken into
consideration, especially when scrolling and also when sizing parent containers.

This is a layout manager that just arranges components in a center column aligned to the
middle:

publ ic class CenterLayout extends Layout {
publ ic void layoutContainer(Container parent) {
 int components = parent.getComponentCount();
 Style parentStyle = parent.getStyle();
 int centerPos = parent.getLayoutWidth() / 2 +
parentStyle.getMargin(Component.LEFT);
 int y = parentStyle.getMargin(Component.TOP);

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

30 of 212

 for(int iter = 0 ; iter < components ; iter++) {
 Component current = parent.getComponentAt(iter);
 Dimension d = current.getPreferredSize();
 current.setSize(d);
 current.setX(centerPos - d.getWidth() / 2);
 Style currentStyle = current.getStyle();
 y += currentStyle.getMargin(Component.TOP);
 current.setY(y);
 y += d.getHeight() + currentStyle.getMargin(Component.BOTTOM);
 }
}

publ ic Dimension getPreferredSize(Container parent) {
 int components = parent.getComponentCount();
 Style parentStyle = parent.getStyle();
 int height = parentStyle.getMargin(Component.TOP) +
parentStyle.getMargin(Component.BOTTOM);
 int marginX = parentStyle.getMargin(Component.RIGHT) +
parentStyle.getMargin(Component.LEFT);
 int width = marginX;
 for(int iter = 0 ; iter < components ; iter++) {
 Component current = parent.getComponentAt(iter);
 Dimension d = current.getPreferredSize();
 Style currentStyle = current.getStyle();
 width = Math.max(d.getWidth() + marginX +
currentStyle.getMargin(Component.RIGHT)
 + currentStyle.getMargin(Component.LEFT), width);
 height += currentStyle.getMargin(Component.TOP) + d.getHeight() +
 currentStyle.getMargin(Component.BOTTOM);
 }
 Dimension size = new Dimension(width, height);
 return size;
}
}

Here is a simple example of using it:
Form f = new Form("Centered");
f.setLayout(new CenterLayout()) ;

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

31 of 212

for(int iter = 1 ; iter < 20 ; iter++) {
 f.addComponent(new Button("Button: " + iter)) ;
}
f.addComponent(new Button("Really Wide Button Text!!!")) ;
f.show();

Port ing a Swing/AWT Layout Manager
We recently ported GridBagLayout to Codename One and while that was pretty easy
considering the complexity of that layout there are still some tips you should take into
account when evaluating this:

1. Codename One doesn't have Insets, we added some support for them in order to
port gridbag but components in Codename One have a Margin they need to
consider instead of the insets (the padding is in the preferred size).

2. AWT layout managers also synchronize a lot on the AWT thread. This is no longer
necessary since Codename One is single threaded like Swing.

3. Components are positioned relatively to container so the layout code can start at 0,
0 (otherwise it will be slightly offset).

Other than those things it’s mostly just fixing method signatures and import statements,
which are slightly different. Pretty trivial stuff and GridBagLayout from project Harmony is
now working on Codename One.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

32 of 212

Theme Basics
This chapter covers the creation of a simple hello world style theme and how it can be
customized visually. It uses the Codename One Designer tool to demonstrate basic
concepts in theme creation such as 9-piece borders, selectors and style types.

Codename One themes are effectively a set of UIID's mapped to a Style object; we can
create a new theme by adding it in the Designer tool and customizing the UIID values.

We can add a component style to a component such as Button; typically UIID's are
named with the same name as the Component class. You can modify the UIID of a
component by invoking setUIID(String) on an arbitrary component or changing the UIID
property in the GUI builder.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

33 of 212

Styles can have one of 4 states:

1. Default (unselected) - the way a component appears when its in none of the other
states.

2. Selected - shown when the component has focus or is active (on a touch screen
device this only appears when the user interacts with the device with touch or with
a physical key).

3. Pressed - shown when the component is pressed. This is only active for Button's.
4. Disabled - shown when the component is disabled.

You can add a style to any one of the states in the Designer to make the component
appear as expected in those cases.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

34 of 212

When editing the style of the component you can customize multiple things such as the
background image, the way such a background image is displayed or a gradient/solid
color background. You can customize colors, fonts, padding/margin, border etc.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

35 of 212

Border’s are a remarkably powerful tool for customizing the appearance of a Component.
The most powerful approach is the 9-piece image border, which is easiest to use when
using the Image Border Wizard.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

36 of 212

The image border wizard allows you to take an image and "cut it" into 9 distinct pieces: 4
corners, top, bottom, left, right & center.
The corners are placed as usual in the edges of the component and the other elements
are tiled to fill up the available space.

Its important when using a gradient effect within the image border to make sure the center
section (piece) is as narrow as possible to avoid a case of a "broken" gradient.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

37 of 212

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

38 of 212

Advanced Theming
This chapter covers the advanced concepts of theming as well as deeper understanding of
how to build/design a Codename One Theme.

Understanding Codename One Themes
Codename One themes are pluggable CSS like elements that allow developers to
determine/switch the look of the application in runtime. A theme can be installed via the
UIManager class and themes can be layered one on top of the other (like CSS).

By default Codename One themes derive the native operating system themes although
this behavior is entirely optional.

A theme initializes the Style objects, which are then used by the components to render
themselves or by the LookAndFee/DefaultLookAndFeel class to create the appearance of
the application.

Codename One themes have some builtin defaults, e.g. borders for buttons and
padding/margin/opacity for various components. These are a set of “common sense”
defaults that can be overridden within the theme.

Working With UIID
UIID’s (User Interface IDentifier) are effectively a unique name given to a UI component that
allows associating a set of theme definitions with a specific component. The class name of
the component is commonly the same as the UIID but they are separate entities for a few
important reasons.

One of the biggest advantages with UIID’s is the ability to change the UIID of a component,
e.g. to create a multiline label one can use something like:

TextArea t = …;
t.setUIID("Label");
t.setEditable(false);

UIID can be customized via the GUI builder and allows for powerful selection of individual
components.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

39 of 212

Style Inheritance
There are multiple defaults defined for elements within Codename One, e.g. a Container
defaults to zero padding/margin and full transparency.

By default every style inherits from these common cross platform defaults. Other than that
a theme may derive from the platform native theme providing further defaults.

In the designer we can define whether a specific entry derives from the global default or
defines its own override:

By unchecking the derive flag we can override the appearance of a specific entry within the
style.

The Derive entry within the style allows a specific style to derive and extend another style,
e.g. a Button selected style can derive from a Button unselected style thus removing the

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

40 of 212

need to redefine style behavior for every state. This is very useful when defining
commonalities among entries in a theme.

Colors & Transparency
The colors of the style are represented as web style RGB entries, the foreground color is
usually used to draw text. The background color applies when a border isn’t defined.
Transparency is only used to draw the background color when applicable.

Backgrounds
The background tab is one of the more elaborate entries within the style section. Notice
that a background will only apply when no border is defined.

In general 2 types of background are supported: Image or Gradient. You can pick several
modes for each. For the gradients you can pick one of horizontal, vertical or radial gradient.

In the case of gradients you need to define all the gradient variables mentioned within the
screen to define the source/destination colors and in the case of a radial the properties
relevant to that.

When using an image background there are basically three options: Scaled, Tiled or
Aligned.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

41 of 212

An image can be scaled across the background of the component; this can create a
decent effect in some cases but often causes some distortion. You can use scale to fit/fill
both of which create a more compelling scale effect that preserves aspect ratio.

An image can be aligned to a specific location within the component background, in which
case the component will be painted based on the transparency setting and the image will
be painted in the appropriate location based on the alignment.
Finally an image can be tiled either completely over the background or tiled as a single
row/column aligned to a specific area within the component.

Fonts

Codename One supports 2 major font types2 system fonts and truetype fonts (TTF). The
system fonts are very limited in selection but are highly recommended for portability. They
use the built in font on the given device, which is often the font the user is used to. A

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2 Historically bitmap fonts were also supported, however this functionality is deprecated and might be
removed in a future revision. We highly recommend you avoid using the bitmap font functionality.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

42 of 212

developer has a selection from one of 3 generic sizes small, medium or large and basic
style choices: bold/plain/italic.
When a specific truetype font is needed Codename One allows the developer to place a
truetype font within the src directory of the project. This font will be automatically detected
by the designer tool and offered as an option. Since truetype fonts are only supported on
iOS, Android and RIM devices you should still define a system font which will be used as a
fallback on unsupported platforms.
Notice that the file must have the ".ttf" extension otherwise the build server won't be able
to recognize the file as a font and set it up accordingly (devices need fonts to be defined in
very specific ways). Once you do that you can use the font from code or from the theme.

Truetype fonts allow specifying their sizes using one of 3 approaches:

1. System font size scheme - the truetype font will have the same size as a small,
medium or large system font. This allows the developer to size the font based on
the device DPI.

2. Millimeter size - allows sizing the font in a more DPI aware size.
3. Pixels - a font can be sized in pixels, which is useful for some unique cases but

highly problematic in multi-DPI scenarios.

To use fonts from code just use:
i f (Font.isTrueTypeFileSupported()) {
 Font myFont = Font.createTrueTypeFont(fontName, fontFileName);
 myFont = myFont.derive(sizeInPixels, Font.STYLE_PLAIN);
 // do something with the font
}

Notice that in code only pixel sizes are supported so it’s up to you to decide how to
convert that. You also need to derive the font with the proper size unless you want a 0
sized font which probably isn't very useful.
The font name is the difficult bit, iOS requires the name of the font which doesn't always
correlate to the file name in order to load the font, its sometimes viewable within a font
viewer but isn't always intuitive so be sure to test that on the device to make sure you got
it right.

Borders
See the theme basics above about cutting a 9-piece border using the image border class.
Codename One supports configuring the border according to several configurations:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

43 of 212

When pressing the ‘...’ button you can customize the border using multiple configuration
types:

There are several border types that can be used to customize the look of the component.

Padding/Margin
Padding and margin are concepts derived from the CSS box model. Its slightly different in
Codename One where the border spacing is part of the padding but other than that they
are pretty similar:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

44 of 212

In the above diagram we can see the component represented in yellow occupying its
preferred size. The padding portion in blue effectively increases the components size. The
margin is an area, which effectively belongs to the component, but the component doesn’t
draw anything within that area it is represented in red.

The theme allows us to customize the padding/margin and specify them for all 4 sides of a
component. They can be specified in pixels, millimeters, or screen percentage:

Padding is especially important when a border is defined and we need to space the
component drawing from the edge of the border. Margin allows us to space components
from one another easily and create “whitespace” within the user interface.

Theme Constants
The Codename One Designer has a tab for creating constants which can be used to add
global values of various types and behavior hints to Codename One and its compoennts.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

45 of 212

Constants are always strings, they have some conventions where a constant ending with
Bool is treated as a boolean true/false value and a constant ending with Int or Image (for
image the string name of the image is stored but the image instance will be returned).

To use a constant one can use the UIManager's methods to get the appropriate constant
type specifically:
getThemeConstant
isThemeConstant
getThemeImageConstant

Internally Codename One has several built in constants and the list is constantly growing
as we add features to Codename One, we will try to keep this list up to date when
possible.

Constant Descript ion/Argument

alwaysTensileBool Enables tensile drag even when there is no scrolling in the
container (only for scrollable containers though)

defaultCommandImage Image to give a command with no icon

dialogButtonCommandsBo
ol

Place commands in the dialogs as buttons

dialogPosition Place the dialog in an arbitrary border layout position (e.g.
North, South, Center etc.)

centeredPopupBool Popup of the combo box will appear in the center of the
screen
checkBoxCheckDisImage CheckBox image to use
instead of Codename One drawing it on its own

checkBoxCheckedImage CheckBox image to use instead of Codename One
drawing it on its own

checkBoxUncheckDisImag
e

CheckBox image to use instead of Codename One
drawing it on its own

checkBoxUncheckedImage CheckBox image to use instead of Codename One
drawing it on its own

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

46 of 212

comboImage Combo image to use instead of Codename One drawing it
on its own

commandBehavior Indicates how commands should act, as a touch menu,
native menu etc. Possible values: SoftKey, Touch, Bar,
Title, Right, Native

ComponentGroupBool Enables component group which allows components to
be logically grouped together so the UIID's of components
would be modified based on their group placement. This
allows for some unique styling effects where the first/last
elements have different styles from the rest of the
elements. Its disabled by default thus leaving its usage up
to the designer.

dialogTransitionIn Default transition for dialog

dialogTransitionInImage Default transition Image for dialog, causes a Timeline
transition effect

dialogTransitionOut Default transition for dialog

dialogTransitionOutImage Default transition Image for dialog, causes a Timeline
transition effect

disabledColor Color to use when disabling entries by default

dlgCommandButtonSizeInt Minimum size to give to command buttons in the dialog

dlgCommandGridBool Places the dialog commands in a grid for uniform sizes

dlgSlideDirection Slide hints

dlgSlideInDirBool Slide hints

dlgSlideOutDirBool Slide hints

fadeScrollBarBool Boolean indicating if the scrollbar show fade when there is
inactivity

fadeScrollEdgeBool Places a fade effect at the edges of the screen to indicate
that its possible to scroll until we reach the edge (common
on Android).

fadeScrollEdgeInt Amount of pixels to fade out at the edge

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

47 of 212

firstCharRTLBool Indicates to the GenericListCellRenderer that it should
determine RTL status based on the first character in the
sentence

fixedSelectionInt Number corresponding to the fixed selection constants in
List

formTransitionIn Default transition for form

formTransitionInImage Default transition Image for form, causes a Timeline
transition effect

formTransitionOut Default transition for form

formTransitionOutImage Default transition Image for form, causes a Timeline
transition effect

hideEmptyTitleBool Indicates that a title with no content should be hidden
even if the border for the title occupies space

ignorListFocusBool Hide the focus component of the list when the list doesn't
have focus

includeNativeBool True to derive from the platform native theme, false to
create a blank theme that only uses the basic defaults.

listItemGapInt Builtin item gap in the list, this defaults to 2 which
predated padding/margin in Codename One

menuHeightPercent Allows positioning and sizing the menu

menuPrefSizeBool Allows positioning and sizing the menu

menuSlideDirection Defines menu entrance effect

menuSlideInDirBool Defines menu entrance effect

menuSlideOutDirBool Defines menu entrance effect

menuTransitionIn Defines menu entrance effect

menuTransitionInImage Defines menu entrance effect

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

48 of 212

menuTransitionOut Defines menu exit effect

menuTransitionOutImage Defines menu entrance effect

menuWidthPercent Allows positioning and sizing the menu

minimizeOnBackBool Indicates whether the form should minimize the entire
application when the physical back button is pressed (if
available) and no command is defined as the back
command. Defaults to true.

otherPopupRendererBool

Indicates that a separate renderer UIID/instance should be
used to the list within the combo box popup

PackTouchMenuBool Enables preferred sized packing of the touch menu (true
by default), when set to false this allows manually
determining the touch menu size using percentages

popupCancelBodyBool Indicates that a cancel button should appear within the
combo box popup

popupTitleBool Indicates that a title should appear within the combo box
popup

pureTouchBool Indicates the pure touch mode

radioSelectedDisImage Radio button image

radioSelectedImage Radio button image

radioUnselectedDisImage Radio button image

radioUnselectedImage Radio button image

rendererShowsNumbersBo
ol

Indicates whether renderers should render the entry
number

reverseSoftButtonsBool Swaps the softbutton positions

slideDirection Default slide transition settings

slideInDirBool Default slide transition settings

slideOutDirBool Default slide transition settings

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

49 of 212

snapGridBool Snap to grid toggle

tabPlacementInt The placement of the tabs in the Tabs component: TOP =
0, BOTTOM = 2, LEFT = 1, RIGHT = 3

tabsFillRowsBool Indicates if the tabs should fill the row using flow layout

tabsGridBool Indicates whether tabs should use a grid layout thus
forcing all tabs to have identical sizes

textCmpVAlignInt The vertical alignment of the text component: TOP = 0,
CENTER = 4, BOTTOM = 2

textFieldCursorColorInt The color of the cursor as an integer (not hex)

tickerSpeedInt The speed of label/button etc. tickering in ms.

tintColor The aarrggbb hex color to tint the screen when a dialog is
shown

touchCommandFillBool Indicates how the touch menu should layout the
commands within

touchCommandFlowBool Indicates how the touch menu should layout the
commands within

transitionSpeedInt Indicates the default speed for transitions

tensileDragBool Indicates that tensile drag should be enabled/disabled.
This is usually set by platform themes.

One "odd" behavior of constants is that once they are set by a theme they don't get "lost"
when replacing the theme. E.g. if one would set the comboImage constant to a specific
value in theme A and then switch to theme B that doesn't define the comboImage, the
original theme A comboImage might remain. The reason for this is simple, when extracting
the constant values components keep the values in cache locally and just don't track the
change in value. Furthermore, since the components allow manually setting values its
impractical for them to track whether a value was set by a constant or explicitly by the user.
The solution for this is to either manually reset undesired values before replacing a theme
(e.g. for the case above by calling the default look and feel method for setting the combo
image with a null value) or defining a constant value to replace the existing value.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

50 of 212

How Does A Theme Work
Codename One themes are effectively a simple hashtable containing key/value pairs. Such
a hashtable is passed on to the setThemeProps() method of the UIManager (or one of its
equivalents e.g. addThemeProps()) to install a theme.
When a Codename One component is rendered or laid out, style related data is requested,
in which case the UIManager generates a Style object based on the theme hashtable
values.

A theme hashtable key is comprised of:
[UIID.][type#]attribute

The UIID, corresponds to the component’s UIID e.g. Button, CheckBox etc. It is optional
and may be omitted to address the global default style.
The type is omitted for the default unselected type and may be one of sel (selected type),
dis (disabled type) or press (pressed type). The attribute should be one of:

● derive - the value for this attribute should be a string representing the base
component.

● bgColor - represents the background color for the component if applicable in a web
hex string format RRGGBB e.g. ff0000 for red.

● fgColor - represents the foreground color if applicable.
● border - an instance of the border class, used to display the border for the

component.
● bgImage - an Image object used in the background of a component
● transparency - a String containing a number between 0-255 representing the alpha

value for the background. This only applies to the bgColor.
● margin - the margin of the component as a String containing 4 comma separated

numbers for top,bottom,left,right.
● padding - the padding of the component, it has an identical format to the margin

attribute.
● font - A Font object instance
● alignment - an Integer object containing the LEFT/RIGHT/CENTER constant values

defined in Component.
● textDecoration - an Integer value containing one of the TEXT_DECORATION_*

constant values defined in Style.
● backgroundType - a Byte object containing one of the constants for the

background type defined in Style under BACKGROUND_*.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

51 of 212

● backgroundGradient - contains an Object array containing 2 integers for the colors
of the gradient. If the gradient is radial it contains 3 floating points defining the x, y &
size of the gradient.

So to set the foreground color of a selected button to red a theme will define a property
like:
Button.sel#fgColor=ff0000

This information is mostly useful for understanding how things work within Codename One,
but it can also be useful in runtime.

E.g. to increase the size of all fonts in the application we can do something like:
Hashtable h = new Hashtable();
h.put("font", largeFont);
UIManager.getInstance().addThemeProps(h);
Display.getInstance().getCurrent().refreshTheme();

Understanding Images & Mult i- Images
When working with a theme we often use images for borders or backgrounds. We also
use images within the GUI for various purposes and most such images will be extracted
from the resource file.
Adding a standard JPEG/PNG image to the resource file is straightforward and it can be
viewed within the images section. However, due to the wide difference between device
types an image that would be appropriate in size for an iPhone 3gs would not be
appropriate in size for a Nexus device or an iPhone 4 (but perhaps surprisingly it will be just
right for iPad 1 & iPad 2).
The reason for this is DPI or device density, the density of the devices varies significantly
and Codename One tries to make matters simple by unifying everything into one set of
values to indicate density. For simplicities sake density is expressed in terms of pixels but it
is mapped internally to actual screen measurements where possible.

A multi-image is an image that has multiple varieties for different densities and thus looks
much better on all the different resolutions. Since scaling on the device can’t interpolate
the data (due to performance considerations) scaling on the device becomes impractical.
However, a multi-image will just provide the “right” resolution image for the given device
type.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

52 of 212

From the programming perspective this is completely seamless, a developer just access
one image and has no ability to access the images in the different resolutions. Within the
designer however, we can explicitly define images for multiple resolutions and perform high
quality scaling so the “right” image is available.

To add a multi-image we can use two basic methods: quick add & standard add.
Both rely on understanding the source resolution of the image, e.g. you have an icon that
you expect to be 128x128 pixels on iPhone 4, 102x102 on nexus one and 64x64 on
iPhone 3gs. You can provide the source image as the 128 pixel image and just perform a
quick add option while picking the Very High density option as an option.
This will indicate to the algorithm that your source image is designed for very high density
and it will scale for the rest of the densities accordingly.

Alternatively you can use the standard add multi-image dialog and set it like this:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

53 of 212

Notice that I selected square images essentially eliminating the height option. Setting
values to 0 prevents the system from generating a multi-image entry for that resolution,
which will mean a device in that category will fall on the closest alternative.

The percentage value will change the entire column and it means the percentage of the
screen. E.g. We know the icon is 128 for the very high resolution, we can just move the
percentage until we reach something close to 128 in the “Very High” row and the other
rows will represent a size that should be pretty close in terms of physical size to the 128
figure.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

54 of 212

Working With The GUI Bui lder

Basic Concepts
The basic premise is this: the designer creates a UI version and names GUI components,
he can create commands as well including navigation commands, exit, minimize. He can
also define a long running command, which will by default trigger a thread to execute...

All UI elements can be loaded using the UIBuilder class. Why not just use the Resources
API?

Since the Resources class is essential for using Codename One, adding the UIBuilder as
an import would cause any application (even those that don't use the UIBuilder) to
increase in size! We don't want people who aren't using the feature to pay the penalty for
its existence!

The UI Builder is designed for use as a state machine carrying out the current state of the
application so when any event occurs a subclass of the UIBuilder can just process it. The
simplest way and most robust way for changes is to use the Codename One Designer to
generate some code for you (yes we know its not a code generation tool but there is a
hack...).

When using a GUI builder project it will constantly regenerate the state machine base class
which is a UIBuilder subclass containing most of what you need...
The tr ick is not to touch that code! DO NOT CHANGE THAT CODE!

Sure you can change it and everything will be just fine, however it you will make changes
to the GUI regenerating that file will obviously lose all those changes which is not
something you want!
To solve it you need to write your code within the State machine class which is a subclass
of the state machine base class and just override the appropriate methods, then when the
UI changes the GUI builder just safely overwrites the base class since you didn't change
anything there...

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

55 of 212

The Components Of Codename One
This chapter covers the components of Codename One, not all are covered but it tries to
go deeper than the JavaDocs.

Container
The Codename One container is a base class for many high level components; a container
is basically a component that can contain other components. That is all.
Every component has a parent container that can be null if it isn’t within a container at the
moment or is a top-level container. A container can have many children.
Components are arranged in containers using layout managers which are just algorithms
to determine the flow within a specific container.
You can read more about layout managers in the section below dedicated to layout
managers. The default layout of a Container is flow layout, which is useful for simple types
of layouts but problematic with many scenarios. We recommend you read about this in the
layout manager section.

Composite Components
Codename One components share a very generic hierarchy of inheritance e.g. Button
derives from Label and thus receives all its abilities.
However, some components are composites and derive from the Container class. E.g. the
Multi-Button is a composite button that derives from Container but acts as a button
externally. Normally this is pretty seamless for the developer with a few things to keep in
mind.
You should not use the Container derived methods on such a composite component.
You can’t cast it to the type that it relates to e.g. you can’t cast MultiButton to Button.

Form
The top-level container of Codename One, Form derives container and it is effectively the
element we “show”. Only one form can be visible at any given time and we can get the
currently visible form using the code:
Form currentForm = Display.getInstance().getCurrent();

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

56 of 212

A form is a unique container in the sense that it has a title, a content area and optionally a
menu/menu bar area. When invoking methods such as add/removeComponent on a form
you are in fact invoking something that looks like:
myForm.getContentPane().addComponent(...) ;

Which makes sense since a form is really just a Container that has a border layout, its
north section is occupied by the title area and its south section by the optional menu bar.
The center (which stretches) is the content pane. The content pane is where you place all
your components.

There is one important piece missing from this image which is the glass pane (more on
that soon), but basically you can see that every form has space allocated for the title/menu
bar. If you don’t set the title if won’t show up (its size will be zero) but it will still be there.
The same isn’t always true for the case of the menu bar which can vary significantly.
Effectively the section that matters is the content pane, so the form tries to do the “right
thing” by pretending to be the content pane. However, this isn’t always seamless and
sometimes code needs to just invoke getContentPane() in order to work directly with the
container.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

57 of 212

In addition to this the form has a layer on top of the content pane that is added implicitly
when you invoke getLayeredPane(). This is a container that is placed on top of the content
pane and allows you to place a component over another. Notice that you still need to
place components using layout managers in order to get them to appear in the right place
when using the layered pane.

Form’s have an additional layer painted on top of them called the glass pane, this allows
developers to overlay UI on top of existing UI and paint as they see fit. This is useful for
things that provide notification but don’t want to intrude with application functionality.

Dialog
A dialog is a special kind of form that can occupy only a portion of the screen, it also has
the additional functionality of the modal show method. When showing a dialog we have
two basic options modless and modal. Modal dialogs (the default) block the current EDT
thread until the dialog is dismissed (to understand how they do it read about
invokeAndBlock).
Modal dialogs are an extremely useful way to prompt the used since the code has the
users response on the next line of execution promoting a very linear way of coding.
The dialog class contains multiple static helper methods to quickly show user notifications,
but also allows a developer to create a dialog instance, add information to its content pane
and show the dialog. When showing a dialog in this way you can either ask Codename
One to position the dialog in a specific general location (taken from the BorderLayout
concept for locations) or position it by spacing it (in pixels) from the 4 edges of the screen.

Label
Label allows drawing text or placing an icon, it is a single line label that might ticker and
might end with “...” in some cases where appropriate. Developers can determine the
placement of the label relatively to its icon in quite a few powerful ways.
Label serves as the base class for button which inherits all its functionality.

Label doesn’t break lines since line break support is expensive in terms of CPU, however
TextArea does break lines and a common use case for creating a multi-line label is to set
the UIID of text area to “Label” and invoke its setEditable(false) method.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

58 of 212

Button
A button is a subclass of label and so it inherits much of its functionality, specifically icon
placement, tickering etc.
Besides being “pressable” which is a unique feature to Button and its subclasses, it also
allows for icons based on its states (pressed, hover etc.).

CheckBox/Radio Button
CheckBox & Radio Button are both subclasses of button that allow for either a toggle state
or exclusive selection state. Both of these components can be displayed as toggle buttons
(see the toggle button section below) or just use the default check mark/filled circle
appearance based on the type/OS.

Mult i-Button
A multi button is a special component that allows
button like functionality (it’s a composite component)
with more advanced features. It supports up to 4
lines of text (it doesn’t automatically wrap the text), an
emblem (usually navigational arrow, or check box)
and an icon.
It can be used as a button, a label, a checkbox or a
radio button and allows creating richer UI’s.

The MultiButton is meant to provide developers with the ability to replicate some of the UI
paradigms that are common to the UITableView iOS UI's. The MultiButton doesn't include
anything radically special, its just a standard container with a Lead Component based UI.

The MultiButton is mostly designed for use with the GUI builder although using it from
code is similar. A common source of confusion is the difference between the icon and the
emblem since both may have an icon image associated with them. The icon is an image
representing the entry while the emblem is an optional visual representation of the action
that will be undertaken when the element is pressed. Both may be used simultaneously or
individually of one another.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

59 of 212

Span Button
SpanButton is a composite component that looks/acts like a button but can break lines
rather than crop them when the text is very long.

Span Label
SpanLabel is a composite component that looks/acts like a Label but can break lines
rather than crop them when the text is very long.

On Off Switch
The OnOffSwitch allows you to write an application where the user can swipe a switch
between two states on/off. This is a common UI paradigm in Android and iOS although its
implemented in a radically different way in both platforms.
This is a rather elaborate component because of its very unique design on iOS but we
were able to accommodate most of the small behaviors of the component into our version
and it seamlessly adapts between the Android style and the iOS style.

TextField/TextArea
The TextField class derives from the TextArea class and both are the mechanisms for user
text input in Codename One. The semantic difference between the two classes dates back
to the roots of Codename One in LWUIT where feature phones don’t have “proper” in-
place editing capabilities.
Text field allowed input on various device types without opening the native full screen
editing facilities. This is not used in any smartphone platform other than Symbian. On
those platforms TextField and TextArea are practically identical. Both provide multi-line
editing capabilities etc.
One small difference in text field is the blinking cursor animation, which doesn’t appear in
the text area implementation when it isn’t edited.

A common alternative use case of text area is as a multi-line label, to understand more
about that please read the label section above.

Toggle Button
A toggle button is a button that is pressed and then stays pressed, when pressed again
it's released. Hence the button has a selected state to indicate if it's pressed or not. Just
like the radio button or checkbox components in Codename One. So Codename One's

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

60 of 212

new toggle buttons are really any button (checkbox
& radio buttons derive from Button) that has the
setToggle() method invoked with true. It thus paints
itself with the toggle button style unless explicitly
defined otherwise (note that the UIID will be implicitly
changed to "ToggleButton").

The cool thing about this is that you can effectively take your knowledge about
checkboxes & radio buttons and apply it to toggle buttons.

That's half the story though, to get the full effect of some cool toggle button UI's we would
like to assign the buttons on the edges with a rounded feel like some platforms choose to
do... That's pretty easy, you can just assign a different UIID to the first/last buttons and be
over with it.

But what if you want your code to be generic? After all you might add/remove a button in
runtime based on application state and you would like it to have the right style.

To solve this we introduced the ComponentGroup.

The ComponentGroup is a special container that can be either horizontal or vertical (Box X
or Y respectively). By default ComponentGroup does nothing else. You need to explicitly
activate it in the theme by setting a theme property to true (by default you need to set
ComponentGroupBool to true). The ComponentGroupBool flag is true by default in the iOS
themes.

When ComponentGroupBool is set to true the component group will modify the styles of
all components placed within it to match the element UIID given to it (by default
GroupElement) with special caveats to the first/last/only elements. E.g.
1. If I have one element within a component group it will have the UIID: GroupElementOnly
2. If I have two elements within a component group they will have the UIID's
GroupElementFirst, GroupElementLast
3. If I have three elements within a component group they will have the UIID's
GroupElementFirst, GroupElement, GroupElementLast
4. If I have four elements within a component group they will have the UIID's
GroupElementFirst, GroupElement, GroupElement, GroupElementLast

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

61 of 212

You get the picture... This allows you to define special styles for the sides (don't forget to
use the derive attribute to generalize your theme) and provide toggle buttons that include
special effects simply by placing them into this group.
You can customize the UIID set by the component group by calling setElementUIID in the
component group e.g. setElementUIID("ToggleButton") for the picture above will result in:
ToggleButtonFirst, ToggleButton, ToggleButtonLast

This is a short sample:

ComponentGroup buttons = new ComponentGroup();
buttons.setElementUIID("ToggleButton");
buttons.setHorizontal(true);
RadioButton plain = new RadioButton("Plain");
RadioButton underline = new RadioButton("Underline");
RadioButton strikeout = new RadioButton("Strikethru");
ButtonGroup bg = new ButtonGroup();
initRb(bg, buttons, listener, plain);
initRb(bg, buttons, listener, underline);
initRb(bg, buttons, listener, strikeout);
Container centerFlow = new Container(new FlowLayout(Component.CENTER));
f.addComponent(centerFlow);
centerFlow.addComponent(buttons);

private void initRb(ButtonGroup bg, Container buttons, ActionListener listener,
RadioButton rb) {
 bg.add(rb);
 rb.setToggle(true);
 buttons.addComponent(rb);
 rb.addActionListener(listener);
}

L ist, ContainerList, Renderers & Models
Warning: This is a rather complex chapter. I f you are just interested in
creating a simple l ist we suggest you skip ahead to the Mult iList section.
A Codename One list doesn't contain components but rather arbitrary data; this seems
odd at first but makes perfect sense... If you want a list to contain components just use a
Container.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

62 of 212

The advantage of using a List in this way is that we can display it in many ways (e.g. fixed
focus positions, horizontally etc.) and that we can have more than a million entries without
performance overhead. We can also do some pretty nifty things like filter the list on the fly
or fetch it dynamically from the Internet as the user scrolls down the list.
To achieve these things the list uses two interfaces: ListModel and ListCellRenderer.
List model represents the data; its responsibility is to return the arbitrary object within the
list at a given offset. Its second responsibility is to notify the list when the data changes so
the list can refresh, think of it as an array of objects that can notify you when you get
changes.
The list renderer is like a rubber stamp that knows how to draw an object from the model,
its called many times per entry in an animated list and must be very fast. Unlike standard
LWUIT components it is only used to draw the entry in the model and immediately
discarded hence it has no memory overhead but if it takes too long to process a model
value it can be a big bottleneck!
This is all very generic but a bit too much for most, doing a list "properly" requires some
understanding. The main source of confusion for developers is the stateless nature of the
list and transfer of state to the model (e.g. a checkbox list needs to listen to action events
on the list and update the model in order for the renderer to display that state... Once you
understand that it’s easy).

Important - Lists & Layout Managers
Usually when working with lists you want the list to handle the scrolling (otherwise it will
perform badly). This means you should place the list in a non-scrollable container (no
parent can be scrollable), notice that the content pane is scrolled by default so you should
disable that.
It is also recommended to place the list in the CENTER location of a BorderLayout to
produce the most effective results. e.g.:
form.setScrollable(false);
form.setLayout(new BorderLayout()) ;
form.addComponent(BorderLayout.CENTER, myList);

Using Lists In The GUI Bui lder
The Codename One GUI builder provides several simplifications to the concepts outlined
below, you can build all portions of the list through the GUI builder or build portions of
them using code if you so desire.
This is a step-by-step guide with explanations on how to achieve this. Again you might
prefer using the MultiList component mentioned below which is even easier to use.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

63 of 212

Start by creating a new GUI form, set its scrollable Y to false and set its layout to border
layout

Next drag a list into the center of the layout and you should now have a functioning basic
list with 3 items.

Next we will create the Renderer, which indicates how an individual item in the list appears,
start by pressing the Add New GUI Element button and select the “Blank Container”
option! Fill the name as “MyRenderer” or anything like that.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

64 of 212

Within the renderer you can drag any component you would like to appear, labels,
checkboxes, etc. You can nest them in containers and layouts as you desire. Give them
names that are representative of what you are trying to accomplish e.g. Firstname,
selected etc.

You can now go back to the list, select it and click the Renderer property in order to select
the render container you created previously resulting in something like this.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

65 of 212

You’ll notice that the data doesn’t match the original content of the list, that is because the
list contains strings instead of Hashtables. To fix this we must edit the list data.

You can place your own data in the list using the GUI builder which is generally desired
regardless of what you end up doing since this allows you to preview your designer in the
GUI builder.
If you wish to populate your list from code just click the events tab and press the ListModel
button, you can fill up the model with an array of Hashtables as we explain soon enough
(you can read more about the list model below).

To populate the list via the GUI builder click the properties of the list and within them click
the ListItems entry. The entries within can be strings or Hashtables, however in order to be
customizable in the rendering stage we will need them all to be Hashtables. Remove all the
current entries and add a new entry:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

66 of 212

After adding two entries as such:

We now have a customized list that’s adapted to its renderer:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

67 of 212

Understanding MVC
Lets recap, what is MVC:

Model - Represents the data for the component (list), the model can tell us exactly how
many items are in it and which item resides at a given offset within the model. This differs
from a simple Vector (or array) since all access to the model is controlled (the interface is
simpler) and unlike a Vector/Array the model can notify us of changes that occur within it.

View - The view draws the content of the model. It is a "dumb" layer that has no notion of
what is displayed and only knows how to draw. It tracks changes in the model (the model
sends events) and redraws itself when it changes.

Controller - The controller accepts user input and performs changes to model which in
turn cause the view to refresh.

Codename One's List component uses the MVC paradigm to separate its implementation.
List itself is the Controller (with a bit of View mixed in). The ListCellRenderer interface is a
View and the ListModel is (you guessed it by now) the model.

When the list is painted it iterates over the visible elements in the model and asks for them,
it then draws them using the renderer.

Why is this useful?

Since the model is a lightweight interface it can be implemented by you and replaced in
runtime if so desired, this allows several very cool use cases:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

68 of 212

1. A list can contain thousands of entries but only load the portion visible to the user. Since
the model will only be queried for the elements that are visible to the user it won't need to
load into memory a very large data set until the user starts scrolling down (at which point
other elements may be offloaded from memory).

2. A list can cache efficiently. E.g. a list can mirror data from the server into local RAM
without actually downloading all the data. Data can also be mirrored from RMS for better
performance and discarded for better memory utilization.

3. No need for state copying. Since renderers allow us to display any object type, the list
model interface can be implemented by the applications data structures (e.g.
persistence/network engine), which would return internal application data structures saving
you the need of copying application state into a list specific data structure.

4. Using the proxy pattern (as explained in a previous post) we can layer logic such as
filtering, sorting, caching etc. on top of existing models without changing the model source
code.

5. We can reuse generic models for several views e.g. a model that fetches data from the
server can be initialized with different arguments to fetch different data for different views.
View objects in different Form's can display the same model instance in different view
instances thus they would update automatically when we change one global model.

Most of these use cases work best for lists that grow to a larger size or represent complex
data which is what the list object is designed to do.

List Cel l Renderer
List is one of the most important widgets in Codename One, unfortunately it is also one of
the most difficult widgets to understand.

The List component uses the MVC model inspired from Swing (which was inspired from
SmallTalk), we created a data model to encapsulate the data and a renderer to display the
data items on the screen.

Let's have a closer look at the List Renderer; the Renderer is a simple interface with 2
methods:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

69 of 212

publ ic interface ListCellRenderer {
//This method is called by the List for each item, when the List paints itself.
publ ic Component getListCellRendererComponent(List list, Object value, int index,
boolean isSelected);

//This method returns the List animated focus which is animated when list selection
changes
publ ic Component getListFocusComponent(List list);

}

Let's try to implement our own renderer.
The most simple/naive implementation may choose to implement the renderer as follows:

publ ic Component getListCellRendererComponent(List list, Object value, int index,
boolean isSelected){
 return new Label(value.toString()) ;
}

publ ic Component getListFocusComponent(List list){
 return nul l ;
}

This will compile and work, but won't give you much, notice that you won't see the List
selection move on the List, this is just because the renderer returns a Label with the same
style regardless if it's being selected or not.

Now Let's try to make it a bit more useful.

publ ic Component getListCellRendererComponent(List list, Object value, int index,
boolean isSelected){
 Label l = new Label(value.toString()) ;
i f (isSelected) {
 l.setFocus(true);
 l.getStyle().setBgTransparency(100);
 } else {
 l.setFocus(false);

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

70 of 212

 l.getStyle().setBgTransparency(0);
 }
 return l;
} publ ic Component getListFocusComponent(List list){
 return nul l ;
}

In this renderer we set the Label.setFocus(true) if it's selected, calling to this method
doesn't really gives the focus to the Label, it simply indicates to the LookAndFeel to draw
the Label with fgSelectionColor and bgSelectionColor instead of fgColor and bgColor.
Then we call to Label.getStyle().setBgTransparency(100) to give the selection semi
transparency and 0 for full transparency if not selected.
OK that's a bit more functional, but not very efficient that's because we create a new Label
each time the method is called.

To make it more device friendly keep a reference to the Component or extend the Widget.

class MyRenderer extends Label implements ListCellRenderer {

publ ic Component getListCellRendererComponent(List list, Object value, int index,
boolean isSelected){
setText(value.toString()) ;
i f (isSelected) {
 setFocus(true);
 getStyle().setBgTransparency(100);
} else {
setFocus(false);
 getStyle().setBgTransparency(0);
}
return this;
}
}
}

Now Let's have a look at a more advanced Renderer

class ContactsRenderer extends Container implements ListCellRenderer {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

71 of 212

 private Label name = new Label("");
 private Label email = new Label("");
 private Label pic = new Label("");

 private Label focus = new Label("");

 publ ic ContactsRenderer() {
 setLayout(new BorderLayout()) ;
 addComponent(BorderLayout.WEST, pic);
 Container cnt = new Container(new BoxLayout(BoxLayout.Y_AXIS));
 name.getStyle().setBgTransparency(0);
 name.getStyle().setFont(Font.createSystemFont(Font.FACE_SYSTEM,
Font.STYLE_BOLD, Font.SIZE_MEDIUM));
 email.getStyle().setBgTransparency(0);
 cnt.addComponent(name);
 cnt.addComponent(email) ;
 addComponent(BorderLayout.CENTER, cnt);

 focus.getStyle().setBgTransparency(100);
 }

 publ ic Component getListCellRendererComponent(List list, Object value, int index,
boolean isSelected) {

 Contact person = (Contact) value;
 name.setText(person.getName());
 email.setText(person.getEmail()) ;
 pic.setIcon(person.getPic()) ;
 return this;
 }

 publ ic Component getListFocusComponent(List list) {
 return focus;
 }
}

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

72 of 212

In this renderer we want to renderer a Contact Object to the Screen, we build the
Component in the constructor and in the getListCellRendererComponent we simply
updates the Labels texts according to the Contact Object.
Notice that in this renderer we return a focus Label with semi transparency, as mentioned
before the focus component can be modified within this method.
For example I can modify the focus Component to have an icon.
 focus.getStyle().setBgTransparency(100);
try {
 focus.setIcon(Image.createImage("/duke.png"));
 focus.setAlignment(Component.RIGHT);
} catch (IOException ex) {
 ex.printStackTrace();
}

Generic List Cel l Renderer
Codename One is really powerful and flexible, we took the power and flexibility of Swing
and went even further (styles, painters) and one such power is the cell renderer. This is a
concept we derived from Swing, which is both remarkably powerful and pretty hard for
newbies to figure out, frankly it’s pretty hard for everyone...

As part of the GUI builder work we needed a way to customize rendering for a List but the
renderer/model approach seemed impossible to adapt to a GUI builder (it seems the
Swing GUI builders had a similar issue). Our solution was to introduce the
GenericListCellRenderer, which while introducing limitations and implementation
requirements still manages to make life easier both in the GUI builder and outside of it.

GenericListCellRenderer is a renderer designed to be as simple to use as a Component-
Container hierarchy, we effectively crammed most of the common renderer use cases into
one class. To enable that we need to know the content of the objects within the model, so
the GenericListCellRenderer assumes the model contains only Hashtable objects. Since
Hashtable's can contain arbitrary data the list model is still quite generic and allows storing
application specific data, furthermore a Hashtable can still be derived and extended to
provide domain specific business logic.
The GenericListCellRenderer accepts two container instances (more later on why at least
two and not one) which it maps to individual Hashtable entries within the model by finding
the appropriate components within the given container hierarchy. Components are
mapped to the Hashtable entries based on the name property of the component
(get/setName) and the key value within the Hashtable e.g.:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

73 of 212

For a model that contains a Hashtable entry like this:
"Foo": "Bar"
"X": "Y"
"Not": "Applicable"
"Number": Integer(1)

A renderer will loop over the component hierarchy in the container searching for
component's whose name matches Foo, X, Not and Number and assign to them the
appropriate value. Notice that you can also use image objects as values and they will be
assigned to labels as expected. However, you can't assign both an image and a text to a
single label since the key will be taken. That isn't a big problem since two labels can be
used quite easily in such a renderer.
To make matters even more attractive the renderer seamlessly supports list tickering when
appropriate and if a CheckBox appears within the renderer it will toggle a boolean flag
within the Hashtable seamlessly.
One issue that crops up with this approach is that if a value is missing from the hashtable it
is treated as empty and the component is reset, this can pose an issue if we hardcode an
image or text within the renderer and we don't want them replace (e.g. an arrow graphic).
The solution for this is to name the component with Fixed in the end of the name e.g.:
HardcodedIconFixed.
Naming a component within the renderer with $number will automatically set it as a
counter component for the offset of the component within the list.

Styling the GenericListCellRenderer is slightly different, the renderer uses the UIID of the
container passed to the generic list cell renderer and the background focus uses that
same UIID with the word "Focus" appended.
It is important to notice that the generic list cell renderer will grant focus to the child
components of the selected entry if they are focusable thus changing the style of said
entries. E.g. a Container might have a child label that has one style when the parent
container is unselected and another when its selected (focused), this can be easily
achieved by defining the label as focusable. Notice that the component will never receive
direct focus since it is still a par of a renderer.

Last but not least, the generic list cell renderer accepts two or four instances of a
Container rather than the obvious choice of accepting only one instance. This allows the
renderer to treat the selected entry differently which is especially important to tickering
although its also useful for fisheye. Since it might not be practical to seamlessly clone the
Container for the renderer's needs Codename One expects the developer to provide two

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

74 of 212

separate instances, they can be identical in all respects but they must be separate
instances for tickering to work. The renderer also allows for a fisheye effect where the
selected entry is actually different from the unselected entry in its structure, it also allows
for a pinstripe effect where odd/even rows have different styles (this is accomplished by
providing 4 instances of the containers selected/unselected for odd/even).

The best way to learn about the generic list cell renderer and the hashtable model is by
playing with them in the GUI builder, however they can be used in code without any
dependency on the GUI builder and can be quite useful at that.

Here is a simple sample for a list with checkboxes that get updated automatically:

List list = new List(createGenericListCellRendererModelData()) ;
list.setRenderer(new GenericListCellRenderer(createGenericRendererContainer(),
createGenericRendererContainer())) ;

private Container createGenericRendererContainer() {
 Container c = new Container(new BorderLayout()) ;
 c.setUIID("ListRenderer");
 Label name = new Label() ;
 name.setFocusable(true);
 name.setName("Name");
 c.addComponent(BorderLayout.CENTER, name);
 Label surname = new Label() ;
 surname.setFocusable(true);
 surname.setName("Surname");
 c.addComponent(BorderLayout.SOUTH, surname);
 CheckBox selected = new CheckBox();
 selected.setName("Selected");
 selected.setFocusable(true);
 c.addComponent(BorderLayout.WEST, selected);
 return c;
}

private Hashtable[] createGenericListCellRendererModelData() {
 Hashtable[] data = new Hashtable[5];
 data[0] = new Hashtable();

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

75 of 212

 data[0].put("Name", "Shai");
 data[0].put("Surname", "Almog");
 data[0].put("Selected", Boolean.TRUE);
 data[1] = new Hashtable();
 data[1].put("Name", "Chen");
 data[1].put("Surname", "Fishbein");
 data[1].put("Selected", Boolean.TRUE);
 data[2] = new Hashtable();
 data[2].put("Name", "Ofir");
 data[2].put("Surname", "Leitner");
 data[3] = new Hashtable();
 data[3].put("Name", "Yaniv");
 data[3].put("Surname", "Vakarat");
 data[4] = new Hashtable();
 data[4].put("Name", "Meirav");
 data[4].put("Surname", "Nachmanovitch");
 return data;
}

The List Model
Swing's approach to MVC is one of the hardest concepts for people to fully grasp, which
is a real shame as it is probably the most important and powerful feature in Swing.
Codename One copied Swing's approach to MVC almost entirely but on a smaller scale.

To show off the power of the list model we create a list with one million entries... What I am
trying to prove here is that a list and a model have a very low overhead when used
properly. Most of the overhead for rendering a list is in the renderer and the model
implementation, both of which you can optimize to your hearts content. This is a very small
price to pay for something as flexible, powerful and customizable as the Codename One
list!

class Contact {
 private String name;
 private String email;
 private Image pic;

 publ ic Contact(String name, String email, Image pic) {
 this.name = name;

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

76 of 212

 this.email = email;
 this.pic = pic;
 }

 publ ic String getName() {
 return name;
 }

 publ ic String getEmail() {
 return email;
 }

 publ ic Image getPic() {
 return pic;
 }
}

class ContactsRenderer extends Container implements ListCellRenderer {

 private Label name = new Label("");
 private Label email = new Label("");
 private Label pic = new Label("");

 private Label focus = new Label("");

 publ ic ContactsRenderer() {
 setLayout(new BorderLayout()) ;
 addComponent(BorderLayout.WEST, pic);
 Container cnt = new Container(new BoxLayout(BoxLayout.Y_AXIS));
 name.getStyle().setBgTransparency(0);
 email.getStyle().setBgTransparency(0);
 cnt.addComponent(name);
 cnt.addComponent(email) ;
 addComponent(BorderLayout.CENTER, cnt);
 }

 publ ic Component getListCellRendererComponent(List list, Object value, int index,
boolean isSelected) {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

77 of 212

 Contact person = (Contact) value;
 name.setText(index + ": " + person.getName());
 email.setText(person.getEmail()) ;
 pic.setIcon(person.getPic()) ;
 return this;
 }

 publ ic Component getListFocusComponent(List list) {
 return focus;
 }
}
String[] [] CONTACTS_INFO = {
 {"Nir V.","Nir.V@Sun.COM"},
 {"Tidhar G.","Tidhar.G@Sun.COM"},
 {"Iddo A.","Iddo.A@Sun.COM"},
 {"Ari S.","Ari.S@Sun.COM"},
 {"Chen F.","Chen.F@Sun.COM"},
 {"Yoav B.","Yoav.B@Sun.COM"},
 {"Moshe S.","Moshe.S@Sun.COM"},
 {"Keren S.","Keren.S@Sun.COM"},
 {"Amit H.","Amit.H@Sun.COM"},
 {"Arkady N.","Arcadi.N@Sun.COM"},
 {"Shai A.","Shai.A@Sun.COM"},
 {"Elina K.","Elina.K@Sun.COM"},
 {"Yaniv V.","Yaniv.V@Sun.COM"},
 {"Nadav B.","Nadav.B@Sun.COM"},
 {"Martin L.","Martin.L@Sun.COM"},
 {"Tamir S.","Tamir.S@Sun.COM"},
 {"Nir S.","Nir.S@Sun.COM"},
 {"Eran K.","Eran.K@Sun.COM"}
 };

int contactWidth= 36;
int contactHeight= 48;
int cols = 4;
Resources images = Resources.open("/images.res");
Image contacts = images.getImage("people.jpg");
Image[] persons = new Image[CONTACTS_INFO.length];

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

78 of 212

for(int i = 0; i < persons.length ; i++){
 persons[i] = contacts.subImage((i%cols)*contactWidth, (i/cols)*contactHeight,
contactWidth, contactHeight, true);
}

f inal Contact[] contactArray = new Contact[persons.length];
for (int i = 0; i < contactArray.length; i++) {
 int pos = i % CONTACTS_INFO.length;
 contactArray[i] = new Contact(CONTACTS_INFO[pos][0], CONTACTS_INFO[pos][1],
persons[pos]);
}

Form millionList = new Form("Million");
millionList.setScrollable(false);
List l = new List(new ListModel() {
 private int selection;
 publ ic Object getItemAt(int index) {
 return contactArray[index % contactArray.length];
 }

 publ ic int getSize() {
 return 1000000;
 }

 publ ic int getSelectedIndex() {
 return selection;
 }

 publ ic void setSelectedIndex(int index) {
 selection = index;
 }

 publ ic void addDataChangedListener(DataChangedListener l) {
 }

 publ ic void removeDataChangedListener(DataChangedListener l) {
 }

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

79 of 212

 publ ic void addSelectionListener(SelectionListener l) {
 }

 publ ic void removeSelectionListener(SelectionListener l) {
 }

 publ ic void addItem(Object item) {
 }

 publ ic void removeItem(int index) {
 }
});
l.setListCellRenderer(new ContactsRenderer()) ;
l.setFixedSelection(List.FIXED_NONE_CYCLIC);
millionList.setLayout(new BorderLayout()) ;
millionList.addComponent(BorderLayout.CENTER, l) ;
millionList.show();

Mult iList
The MultiList is a preconfigured list that contains a ready made renderer with defaults that
make sense for the most common use cases. It still retains most of the power available to
the list component but reduces the complexity of one of the hardest things to grasp for
most developers: rendering.
It still has the full power of the model and allows you to create a million entry list with just a
few lines of code, however the objects the model returns should always be in the form of
Hashtables and not any arbitrary object like the standard list allows.
You can create a MutiList by just dropping it into place in the GUI builder and just editing
the list data property (see the instructions above for creating a list in the GUI builder, you
won’t need the renderer portion).

Sl ider
A slider is an empty component that can be filled horizontally or vertically to allow
indicating progress/volume etc. It can be editable to allow the user to determine its value
or none editable to just relay that information to the user.
It can have a thumb on top to show its current position.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

80 of 212

The interesting part about the slider is that it has two separate style UIID’s, Slider &
SliderFull. The Slider UIID is always painted and SliderFull is rendered on top based on the
amount the slider should be filled.

Table
Unlike list the table is a composite component, which means it is really a subclass of a
Container and is effectively built from multiple components. The general thought process is
that Table is an elaborate component and should include complex editing, while the list is
more of a selection component designed for scalability.

Here is a minor sample of using the standard table component; it should be pretty self-
explanatory:

f inal Form f = new Form("Table Test");
TableModel model = new DefaultTableModel(new String[] {"Col 1", "Col 2", "Col 3"},
new Object[] [] {
{"Row 1", "Row A", "Row X"},
{"Row 2", "Row B", "Row Y"},
{"Row 3", "Row C", "Row Z"},
{"Row 4", "Row D", "Row K"},
}) {
publ ic boolean isCellEditable(int row, int col) {
 return col != 0;
}
};
Table table = new Table(model);
table.setScrollableX(true);
f.setLayout(new BorderLayout()) ;
f.addComponent(BorderLayout.CENTER, table);
f.show();

However, the more "interesting" aspect of the table is the table layout and its ability to
create rather unique layouts relatively easily similarly to HTML's tables. You can use the
layout constraints (also exposed in the table class) to create spanning and elaborate UI's.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

81 of 212

In order to customize the table cell behavior you can now derive the table to create a
"renderer like" widget, however unlike the list this component is "kept" and used as is. This
means you can bind listeners to this component and work with it as you would with any
other component in Codename One.

Tree
A tree allows displaying hierarchical data such as folders and files in a
collapsible/expandable UI. Like the Table it is a Container derived component that works
against a model to construct its user interface on the fly.
In order for the tree to have content you need to create a tree model e.g. this:
class StringArrayTreeModel implements TreeModel {
 String[] [] arr = new String[] [] {
 {"Colors", "Letters", "Numbers"},
 {"Red", "Green", "Blue"},
 {"A", "B", "C"},
 {"1", "2", "3"}
 };

 publ ic Vector getChildren(Object parent) {
 i f (parent == nul l) {
 Vector v = new Vector();
 for(int iter = 0 ; iter < arr[0].length ; iter++) {
 v.addElement(arr[0][iter]) ;
 }
 return v;
 }
 Vector v = new Vector();
 for(int iter = 0 ; iter < arr[0].length ; iter++) {
 i f (parent == arr[0][iter]) {
 i f (arr.length > iter + 1 && arr[iter + 1] != nul l) {
 for(int i = 0 ; i < arr[iter + 1].length ; i++) {
 v.addElement(arr[iter + 1][i]) ;
 }
 }
 }
 }
 return v;

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

82 of 212

 }

 publ ic boolean isLeaf(Object node) {
 Vector v = getChildren(node);
 return v == nul l || v.size() == 0;
 }
}

Tree dt = new Tree(new StringArrayTreeModel()) ;

Will result in this:

Share Button
The share button allows you to help your users market your application by sharing it with
their friends easily. When they press the button they will be faced with either the native
sharing capability of the platform (as is available on Android & iOS) or a builtin set of
sharing features such as facebook, email, SMS etc. You can customize the button to add
additional sharing options.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

83 of 212

Inf inite Progress
The infinite progress indicator spins an image infinitely; it is automatically associated with a
default image for infinite progress from the native theme. This can be used in several ways
e.g. you can place this component into a layout to indicate work underway.
A useful function in the infinite progress component is the showInifiniteBlocking() method
which modelessly shows a translucent dialog with the infinite progress indicator in it.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

84 of 212

Tabs
The Tabs component allows arranging components into groups within containers, its a
container type that allows leafing through its children using labeled buttons. The tabs can
be placed in multiple different ways (top, bottom, left or right) with the default being
determined by the platform. This class also allows swiping between components to leaf
between said tabs (for this purpose the tabs themselves can also be hidden).

MediaPlayer
The media player allows you to control video playback e.g. to show a video one can simply
use something like this:
f inal MediaPlayer mp = new MediaPlayer();
try {
 mp.setDataSource(myMediaFile);
} catch (IOException ex) {
 ex.printStackTrace();
}
player.addComponent(BorderLayout.CENTER, mp);

In order to run the media/video in the simulator you will need to run a version of Java 7
update 6 or newer. We rely on features that were integrated into that version in order to
provide proper video codec support.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

85 of 212

ImageViewer
The image viewer allows you to inspect, zoom and pan into an image. It also allows
swiping between images if you have a set of images (using an image list model).

Here is a simple example of using the ImageViewer:
ImageViewer imv = new ImageViewer();
DefaultListModel<Image> images = new DefaultListModel<Image>(new Image[] {
EncodedImage.create("/a.jpg"), EncodedImage.create("/b.jpg"),
EncodedImage.create("/c.jpg")
});
imv.setImage(images.getItemAt(0));
imv.setImageList(images);
imv.setSwipePlaceholder(Image.createImage(5, 5));

Notice that we use a list to allow swiping between images (unnecessary if you have only
one image), we also create a placeholder image to show while the image is still loading.
Notice that encoded images aren't always fully loaded and so when you swipe if the
images are really large you might see delays!

WebBrowser
The web browser component shows the native device web browser when supported by
the device and the HTMLComponent when the web browser isn’t supported on the given
device.
To create a simple web browser component we can do something like this (assuming
page.html is present in the jar):
WebBrowser wb = new WebBrowser();
wb.setURL("jar:///Page.html");

However, on devices where more elaborate HTML rendering exists we can also do things
such as communicate with the HTML code using JavaScript calls (notice that opening an
alert in an embedded native browser might not work). E.g. we can create HTML like this:
<html lang="en">
 <head>
 <meta charset="utf-8">
 <t it le>Test</t it le>
 <script>

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

86 of 212

 function fnc(message) {
 document.write(message);
 };
 </script>
 </head>
 <body >
 <p>Demo</p>
 </body>
</html>

And then communicate with the function from code like this:
WebBrowser web = new WebBrowser(){
 @Override
 publ ic void onLoad(String url) {
 Component c = getInternal() ;
 i f (c instanceof BrowserComponent) {
 BrowserComponent b = (BrowserComponent)c;
 b.execute("fnc('<p>Hello World</p>')");
 }
 }
};
f.addComponent(BorderLayout.CENTER, web);
web.setURL("jar:///page.html");

In order to see the native web browser in the simulator you will need to run using Java 7
update 6 or newer.

Auto Complete
The AutoCompleteTextField allows us to write text
into a text field and select a completion entry from
the list in a similar way to a search engine.

This is really easy to incorporate into your code, just
replace your usage of TextField with
AutoCompleteTextField and define the data that the
autocomplete should work from. There is a default

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

87 of 212

implementation that accepts a String array or a ListModel for completion strings, this can
work well for a "small" set of thousands (or tens of thousands) of entries.

However, if you wish to query a database or a web service you will need to derive the
class and perform more advanced filtering by overriding the filter method and the
getSuggestionModel method. You might also need to invoke updateFilterList() if your filter
algorithm is asynchronous.

Here is a sample of a simple auto-complete that doesn't use the advanced features:
Form test = new Form("Complete");
test.setLayout(new BoxLayout(BoxLayout.Y_AXIS));
AutoCompleteTextField at = new AutoCompleteTextField(new String[] {"Common",
"Code", "Codename One", "Correct", "Correlation", "Co-location", "Corporate"});
test.addComponent(at);
test.show();

Spinner & Picker
Spinner is a form of list that allows picking specific
platform values from a spinning wheel in a similar way to
the iOS date control. We are in the process of de-
emphasizing Spinner, which varies too much between
platforms in favor of the new Picker component that uses a native interface to pick an
entry.
A Picker acts very much like a text field which will popup a Spinner dialog when tapped,
this should work nicely on all platforms since the Picker will popup the native
dialog/spinner when available.

Embedded Container
EmbeddedContainer solves a problem that exists only within the GUI builder and the class
makes no sense outside of the context of the GUI builder.
The necessity for EmbeddedContainer came about due to iPhone inspired designs that
relied on tabs (iPhone style tabs at the bottom of the screen) where different features of
the application are within a different tab.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

88 of 212

This didn't mesh well with the GUI builder navigation logic and so we needed to rethink
some of it. We wanted to reuse GUI as much as possible while still enjoying the advantage
of navigation being completely managed for me.
Android does this with Activities and the iPhone itself has a view controller, we don't like
both approaches and think they both suck. The problem is that you have what is
effectively two incompatible hierarchies to mix and match which is why Android needed to
"invent" fragments and Apple can't mix view controllers within a single application.

The Component/Container hierarchy is powerful enough to represent such a UI but we
needed a "marker" to indicate to the UIBuilder where a "root" component exists so
navigation occurs only within the given "root". Here EmbeddedContainer comes into play,
its a simple container that can only contain another GUI from the GUI builder. Nothing else.
So we can place it in any form of UI and effectively have the UI change appropriately and
navigation would default to "sensible values".

Navigation replaces the content of the embedded container; it finds the embedded
container based on the component that broadcast the event. If you want to navigate
manually just use the showContainer() method which accepts a component, you can give
any component that is under the EmbeddedContainer you want to replace and Codename
One will be smart enough to replace only that component.

The nice part about using the EmbeddedContainer is that the resulting UI can be very
easily refactored to provide a more traditional form based UI without duplicating effort and
can be easily adapted to a more tablet oriented UI (with a side bar) again without much
effort.

The Map Component
The MapComponent uses the OpenStreetMap webservice by default to display a
navigatable map.
The code was contributed by Roman Kamyk and was originally used for a LWUIT
application.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

89 of 212

The screenshot above was produced using the following code:

 Form map = new Form("Map");
 map.setLayout(new BorderLayout()) ;
 map.setScrollable(false);
 f inal MapComponent mc = new MapComponent();

 try {
 //get the current location from the Location API
 Location loc = LocationManager.getLocationManager().getCurrentLocation();

 Coord lastLocation = new Coord(loc.getLatitude(), loc.getLongtitude()) ;
 Image i = Image.createImage("/blue_pin.png");
 PointsLayer pl = new PointsLayer();
 pl.setPointIcon(i) ;
 PointLayer p = new PointLayer(lastLocation, "You Are Here", i) ;
 p.setDisplayName(true);

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

90 of 212

 pl.addPoint(p);
 mc.addLayer(pl);
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 mc.zoomToLayers();

 map.addComponent(BorderLayout.CENTER, mc);
 map.addCommand(new BackCommand());
 map.setBackCommand(new BackCommand());
 map.show();

The example below shows how to integrate the MapComponent with the Google Location
API.
make sure to obtain your secret api key from the Google Location data API at:
https://developers.google.com/maps/documentation/places/

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

91 of 212

 f inal Form map = new Form("Map");
 map.setLayout(new BorderLayout()) ;
 map.setScrollable(false);
 f inal MapComponent mc = new MapComponent();
 Location loc = LocationManager.getLocationManager().getCurrentLocation();
 //use the code from above to show you on the map
 putMeOnMap(mc);
 map.addComponent(BorderLayout.CENTER, mc);
 map.addCommand(new BackCommand());
 map.setBackCommand(new BackCommand());

 ConnectionRequest req = new ConnectionRequest() {

 protected void readResponse(InputStream input) throws IOException {
 JSONParser p = new JSONParser();
 Hashtable h = p.parse(new InputStreamReader(input));
 // "status" : "REQUEST_DENIED"
 String response = (String)h.get("status");
 i f (response.equals("REQUEST_DENIED")){
 System.out.println("make sure to obtain a key from "
 + "https://developers.google.com/maps/documentation/places/");
 progress.dispose();
 Dialog.show("Info", "make sure to obtain an application key from "
 + "google places api's"
 , "Ok", nul l) ;
 return;
 }

 f inal Vector v = (Vector) h.get("results");

 Image im = Image.createImage("/red_pin.png");
 PointsLayer pl = new PointsLayer();
 pl.setPointIcon(im);
 pl.addActionListener(new ActionListener() {

 publ ic void actionPerformed(ActionEvent evt) {
 PointLayer p = (PointLayer) evt.getSource();
 System.out.println("pressed " + p);

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

92 of 212

 Dialog.show("Details", "" + p.getName(), "Ok", nul l) ;
 }
 }) ;

 for (int i = 0; i < v.size(); i++) {
 Hashtable entry = (Hashtable) v.elementAt(i) ;
 Hashtable geo = (Hashtable) entry.get("geometry");
 Hashtable loc = (Hashtable) geo.get("location");
 Double lat = (Double) loc.get("lat");
 Double lng = (Double) loc.get("lng");
 PointLayer point = new PointLayer(new Coord(lat.doubleValue(),
lng.doubleValue()) ,
 (String) entry.get("name"), nul l) ;
 pl.addPoint(point);
 }
 progress.dispose();

 mc.addLayer(pl);
 map.show();
 mc.zoomToLayers();

 }
 };
 req.setUrl("https://maps.googleapis.com/maps/api/place/search/json");
 req.setPost(false);
 req.addArgument("location", "" + loc.getLatitude() + "," + loc.getLongtitude()) ;
 req.addArgument("radius", "500");
 req.addArgument("types", "food");
 req.addArgument("sensor", "false");

 //get your own key from
https://developers.google.com/maps/documentation/places/
 //and replace it here.
 String key = "yourAPIKey";

 req.addArgument("key", key);

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

93 of 212

 NetworkManager.getInstance().addToQueue(req);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

94 of 212

Animations & Transit ions
There are many ways to animate and liven the data within a Codename One application,
one which we already discussed is the layout animations mechanism however there is a
great more.

Low Level Animations
To understand the flow of animations in Codename One we can start by discussing the
underlying low-level animations and the motivations behind them. The Codename One
event dispatch thread has a special animation “pulse” allowing an animation to update its
state and draw itself. Code can make use of this pulse to implement repetitive polling tasks
that have very little to do with drawing.
This is helpful since the callback will always occur on the event dispatch thread.

Every component in Codename One contains an animate() method that returns a boolean
value, you can also implement the Animation interface in an arbitrary component to
implement your own animation. In order to receive animation events you need to register
yourself within the parent form, it is the responsibility of the parent for to call animate().
If the animate method returns true then the animation will be painted. It is important to
deregister animations when they aren’t needed to conserve battery life. However, if you
derive from a component, which has its own animation logic you might damage its
animation behavior by deregistering it, so tread gently with the low level API’s.

myForm.registerAnimated(this);

private int spinValue;
publ ic boolean animate() {
 i f (userStatusPending) {
 spinValue++;
 super.animate();
 return true;
 }
 return super.animate();
}

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

95 of 212

Transit ions
Transitions allow us to replace one component with another, most typically forms or
dialogs are replaced with a transition however a transition can be applied to replace any
arbitrary component.
Developers can implement their own custom transition and install it to components by
deriving the transition class, although most commonly the built in CommonTransition class
is used for almost everything.
You can define transitions for forms/dialogs/menus globally either via the theme constant
or via the LookAndFeel class. Alternatively you can install a transition on top-level
components via setter methods.
To apply a transition to a component we can just use the Container.replace method as
such:
Container c = replace.getParent();
ta.setPreferredSize(replace.getPreferredSize()) ;
c.replaceAndWait(replace, ta,
CommonTransitions.createSlide(CommonTransitions.SLIDE_VERTICAL, true, 500));
c.replaceAndWait(ta, replace,
CommonTransitions.createSlide(CommonTransitions.SLIDE_VERTICAL, false, 500));

In addition we can implement our own transitions, e.g. the following code demonstrates an
explosion transition in which an explosion animation is displayed on every component as
the explode one by one while we move from one screen to the next.

publ ic class ExplosionTransition extends Transition {
 private int duration;
 private Image[] explosions;

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

96 of 212

 private Motion anim;
 private Class[] classes;
 private boolean done;
 private int[] locationX;
 private int[] locationY;
 private Vector components;
 private Vector sequence;
 private boolean sequential;
 private int seqLocation;
 publ ic ExplosionTransition(int duration, Class[] classes, boolean sequential) {
 this.duration = duration;
 this.classes = classes;
 this.sequential = sequential;
 }

 publ ic void initTransition() {
 try {
 explosions = new Image[] {
 Image.createImage("/explosion1.png"),
 Image.createImage("/explosion2.png"),
 Image.createImage("/explosion3.png"),
 Image.createImage("/explosion4.png"),
 Image.createImage("/explosion5.png"),
 Image.createImage("/explosion6.png"),
 Image.createImage("/explosion7.png"),
 Image.createImage("/explosion8.png")
 };
 done = false;
 Container c = (Container)getSource();
 components = new Vector();
 addComponentsOfClasses(c, components);
 i f (components.size() == 0) {
 return;
 }
 locationX = new int[components.size()] ;
 locationY = new int[components.size()] ;
 int w = explosions[0].getWidth();
 int h = explosions[0].getHeight();

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

97 of 212

 for(int iter = 0 ; iter < locationX.length ; iter++) {
 Component current = (Component)components.elementAt(iter);
 locationX[iter] = current.getAbsoluteX() + current.getWidth() / 2 - w / 2;
 locationY[iter] = current.getAbsoluteY() + current.getHeight() / 2 - h / 2;
 }
 i f (sequential) {
 anim = Motion.createSplineMotion(0, explosions.length - 1, duration /
locationX.length);
 sequence = new Vector();
 } else {
 anim = Motion.createSplineMotion(0, explosions.length - 1, duration);
 }
 anim.start() ;
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 private void addComponentsOfClasses(Container c, Vector result) {
 for(int iter = 0 ; iter < c.getComponentCount() ; iter++) {
 Component current = c.getComponentAt(iter);
 i f (current instanceof Container) {
 addComponentsOfClasses((Container)current, result);
 }
 for(int ci = 0 ; ci < classes.length ; ci++) {
 i f (current.getClass() == classes[ci]) {
 result.addElement(current);
 break;
 }
 }
 }
 }

 publ ic void cleanup() {
 super.cleanup();
 explosions = nul l ;
 i f (sequential) {
 components = sequence;

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

98 of 212

 }
 i f (components != nul l) {
 for(int iter = 0 ; iter < components.size() ; iter++) {
 ((Component)components.elementAt(iter)) .setVisible(true);
 }
 components.removeAllElements();
 }
 }

 publ ic Transition copy() {
 return new ExplosionTransition(duration, classes, sequential) ;
 }

 publ ic boolean animate() {
 i f (sequential) {
 i f (anim != nul l && anim.isFinished() && components.size() > 0) {
 Component c = (Component)components.elementAt(0);
 components.removeElementAt(0);
 sequence.addElement(c);
 c.setVisible(false);
 i f (components.size() > 0) {
 seqLocation++;
 anim.start() ;
 }

 return true;
 }
 return components.size() > 0;
 }
 i f (anim != nul l && anim.isFinished() && !done) {
 // allows us to animate the last frame, we should animate once more when
 // finished == true
 done = true;
 return true;
 }
 return !done;
 }

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

99 of 212

 publ ic void paint(Graphics g) {
 getSource().paintComponent(g);
 int offset = anim.getValue();
 i f (sequential) {
 g.drawImage(explosions[offset], locationX[seqLocation], locationY[seqLocation]);
 return;
 }
 for(int iter = 0 ; iter < locationX.length ; iter++) {
 g.drawImage(explosions[offset], locationX[iter], locationY[iter]) ;
 }
 i f (offset > 4) {
 for(int iter = 0 ; iter < components.size() ; iter++) {
 ((Component)components.elementAt(iter)) .setVisible(false);
 }
 }
 }
}

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

100 of 212

The EDT - Event Dispatch Thread

What Is The EDT
Codename One allows developers to create as many threads as they want; however in
order to interact with the Codename One user interface components a developer must use
the EDT. The EDT is the main thread of Codename One, by using just one thread
Codename One can avoid complex synchronization code and focus on simple functionality
that assumes only one thread.
This has huge advantages in your code as well, you can normally assume that all code will
occur on a single thread, however this also comes with a price...

Normally, every call you receive from Codename One will occur on the EDT. E.g. every
event, calls to paint(), lifecycle calls (start etc.) should all occur on the EDT. This is pretty
powerful, however it means that as long as your code is processing nothing else can
happen in Codename One... If your code takes too long to execute then no painting or
event processing will occur during that time, so a call to Thread.sleep() will actually stop
everything!

The solution is pretty simple, if you need to perform something that requires intensive CPU
you can spawn a thread, Codename One’s networking code automatically spawns a
separate thread (see that NetworkManager chapter for more). However, we now run into a
problem... Codename One assumes all modifications to the UI are performed on the EDT
but we just spawned a separate thread. How do we force our modifications back into the
EDT?

Codename One includes 3 methods in the Display class to help in these situations: isEDT(),
callSerially(Runnable) & callSeriallyAndWait(Runnable).

isEDT() is useful for generic code that needs to test whether the current code is executing
on the EDT.

Debugging EDT Violat ions
There are two types of EDT violations:

1. Blocking the EDT thread so the UI performance is considerably slower.
2. Invoking UI code on a separate thread

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

101 of 212

Codename One provides a tool to help you detect some of these violations some caveats
my apply though… It’s an imperfect tool. It might fire “false positives” meaning it might
detect a violation for perfectly legal code and it might miss some illegal calls.
However, it is a valuable tool in the process of detecting hard to track bugs that are
sometimes only reproducible on the devices (due to race condition behavior).
To activate this tool just select the Debug EDT menu option in the simulator and pick the
level of output you wish to receive:

Full output will include stack traces to the area in the code that is suspected in the violation.

Cal l Serial ly (And Wait)
callSerially(Runnable) should normally be called off the EDT (in a separate thread), the run
method within the submitted runnable will be invoked on the EDT. E.g.:

// this code is executing in a separate thread
f inal String res = methodThatTakesALongTime();
Display.getInstance().callSerially(new Runnable() {
 publ ic void run() {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

102 of 212

 // this occurs on the EDT so I can make changes to UI components
 resultLabel.setText(res);
 }
});

This allows code to leave the EDT and then later on return to it to perform things within the
EDT.

The callSeriallyAndWait(Runnable) method blocks the current thread until the method
completes, this is useful for cases such as user notification e.g.:

// this code is executing in a separate thread
methodThatTakesALongTime();
Display.getInstance().callSeriallyAndWait(new Runnable() {
 publ ic void run() {
 // this occurs on the EDT so I can make changes to UI components
 globalFlag = Dialog.show("Are You Sure?", "Do you want to continue?", "Continue",
"Stop");
 }
});
// this code is executing the separate thread
// global flag was already set by the call above
i f (!globalFlag) {
 return;
}
otherMethod();

It sometimes makes sense to invoke callSerially (but not call serially and wait) on the EDT.
We sometimes want to postpone an action to the next cycle of the EDT loop, but that is a
rare occurrence.

Invoke And Block
Invoke and block is the exact opposite of callSeriallyAndWait(), it blocks the EDT and
opens a separate thread for the runnable call.
Codename One has some nifty threading tools inspired by Foxtrot, which is a remarkably
powerful tool most Swing developers don't know enough about.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

103 of 212

When people talk about dialog modality they often mean two separate things, the first
indicates that the dialog intercepts all input and blocks the background form/window
which is the true definition of modality. However, there is another aspect often associated
with modality that is really important from a programmer’s perspective and simplified our
code considerably:

publ ic void actionPerformed(ActionEvent ev) {
 // will return true if the user clicks "OK"
 i f (!Dialog.show("Question", "How Are You", "OK", "Not OK")) {
 // ask what went wrong...
 }
}

Notice that the dialog show method will block the calling thread until the user clicks OK or
Not OK...
If you read a bit about Codename One you would notice that we are blocking the EDT
(Event Dispatch Thread), which is also responsible for painting, how does the dialog paint
itself or handle events?

The secret is invokeAndBlock, it allows us to "block" the EDT and resume it while keeping
a "nested" EDT functioning. The semantics of this logic are a bit hairy so I won't try to
explain them further, this functionality is also available in Swing which has the exact same
modality feature however Swing doesn't expose the "engine" to developers. Foxtrot,
exposes this undocumented engine to Swing developers, in Codename One we chose to
expose the ability to block the EDT (without "really" blocking it) as a simple API:
invokeAndBlock.

The best way to explain this is by example:
publ ic void actionPerformed(ActionEvent ev) {
 label.setText("Initiating IO, please wait...");
 Display.getInstance().invokeAndBlock(new Runnable() {
 publ ic void run() {
 // perform IO operation...
 }
 }) ;
 label.setText("IO completed!");
 // update UI...
}

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

104 of 212

Notice that the behavior here is similar to the modal dialog, invokeAndBlock "blocked" the
current thread despite the fact that it is the EDT and performed the run() method in a
separate thread. When run() completes the EDT is resumed. All the while repaints and
events occur as usual, you can have invokeAndBlock calls occurring while another
invokeAndBlock is still pending there are no limitations here although we would
recommend against it since invokeAndBlock does carry some overhead.

As you can see this is a very simple approach for thread programming in UI, you don't
need to block your flow and track the UI thread. You can just program in a way that seems
sequential (top to bottom) but really uses multi-threading correctly without blocking the
EDT.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

105 of 212

Monetization
Codename One tries to make the lives of software developers easier by integrating several
forms of builtin monetization solutions such as ad network support, in-app-purchase etc.
The Codename One integration is only applicable when developing the application, the
actual integration is a matter of runtime relationship with the service provider3.

Ad Networks
vserv
The vserv ad network provides a unique proposition where ads are displayed in full screen
before during and sometimes after application execution. The biggest feature within vserv
is its ability to seamlessly integrate with an existing application and provide value to the
developers without changing a single line of application code.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3 To Clarify: all payment and financial transactions go through the monetization provider and not through
Codename One. E.g. Ad network revenue is the property of the developer and Codename One doesn’t take
any cut from the developers!

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

106 of 212

Codename One provides deep integration with this unique ad network the the IDE plugin
where developers can input their vserv Zone Id (login to vserv to acquire a zone Id). Setting
the zone ID to an empty string disables vserv ads, zone ID 6216 is useful for debugging
purposes.

The transition ad timeout indicates the amount of time to wait before pushing an ad
between transitions in milliseconds. You can set it to a very large number to disable that
functionality.

The other properties are entirely optional and allow vserv to better target its ads to different
application needs.

Inneractive
To integrate Inneractive banner ad's please register first using http://console.inner-
active.com/iamp/publisher/register?ref_id=affiliate_CodenameOne.

Once registered you will be able to create an application id with which you will be able to
associate ads with your account.

To initiate the inneractive ads you will need to enter the following line in your application
init(Object) or start() method:

AdsService.setAdsProvider(InnerActive.class);

From here on you can just use the standard Codename One Ads Component and place it
as you wish within the UI or drag it into place within the GUI builder. The Ads Component
has multiple properties you can set to indicate your activity but the most important one is
the setAppID() attribute (appId in the GUI builder) with which you can determine the
application that will receive the payouts for the ads.

Google Play Ads
The most effective network is the simplest banner ad
support. To enable mobile ads just create an ad unit in
Admob's website, you should end up with the key similar to
this: ca-app-pub-8610616152754010/3413603324

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

107 of 212

To enable this for Android just define the android.googleAdUnitId=ca-app-pub-
8610616152754010/3413603324 in the build arguments and for iOS use the same as in
ios.googleAdUnitId. The rest is seamless, the right ad will be created for you at the bottom
of the screen and the form should automatically shrink to fit the ad. This shrinking is
implemented differently between iOS and Android due to some constraints but the result
should be similar and this should work reasonably well with device rotation as well.

In App Purchase
Codename One’s in app purchase API’s try to generalize 3 different concepts for
purchase:

1. Google's in app purchase
2. Apple's in app purchase
3. Mobile payments for physical goods

While all 3 approaches end up with the developer getting paid, all 3 take a different
approach to the same idea. Google and Apple work with “products” which you can define
and buy through their respective stores. You need to define the product in the
development environment and then send the user to purchase said product.
Once the product is purchased you receive an event that the purchase was completed
and you can act appropriately. On the other hand mobile payments are just a transfer of a
sum of money.
Both Google’s and Apple’s stores prohibit the sale of physical goods via the stores, so a
mobile payment system needs to be used for those cases.
This is where the similarity ends between the Google & Apple approach. Google expects
developers to build their own storefront and provides developers with an API to extract the
data in order to construct said storefront. Apple expects the developers to open its
storefront to perform everything.
We tried to encode all 3 approaches into the purchase API which means you would need
to handle all 3 cases when working. Unfortunately these things are very hard to simulate
and can only be properly tested on the device.

So to organize the above we have:

1. Managed payments - payments are handled by the platform. We essentially buy an
item not transfer money (in app purchase).

2. Manual payments - we transfer money, there are no items involved.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

108 of 212

f inal Purchase p = Purchase.getInAppPurchase();

i f (p != nul l) {
 i f (p. isManualPaymentSupported()) {
 purchaseDemo.addComponent(new Label("Manual Payment Mode"));
 f inal TextField tf = new TextField("100");
 t f .setHint("Send us money, thanks");
 Button sendMoney = new Button("Send Us Money");
 sendMoney.addActionListener(new ActionListener() {
 publ ic void actionPerformed(ActionEvent evt) {
 p.pay(Double.parseDouble(tf.getText()) , "USD");
 }
 }) ;
 purchaseDemo.addComponent(tf) ;
 purchaseDemo.addComponent(sendMoney);
 }
 i f (p. isManagedPaymentSupported()) {
 purchaseDemo.addComponent(new Label("Managed Payment Mode"));
 for(int i ter = 0 ; i ter < ITEM_NAMES.length ; i ter++) {
 Button buy = new Button(ITEM_NAMES[iter]) ;
 f inal Str ing id = ITEM_IDS[iter];
 buy.addActionListener(new ActionListener() {
 publ ic void actionPerformed(ActionEvent evt) {
 p.purchase(id);
 }
 }) ;
 purchaseDemo.addComponent(buy);
 }
 }
} else {
 purchaseDemo.addComponent(new Label("Payment unsupported on this
device"));
}

The item names in the demo code above should be hard coded and added to the
appropriate stores inventory. Which is a very platform specific process for iTunes and
Google play. Once this is done you should be able to issue a purchase request either in
the real or the sandbox store.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

109 of 212

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

110 of 212

Graphics, Drawing, Images & Fonts
This chapter covers the basics of drawing manually using the Codename One API, notice
that drawing is considered a low level API that might introduce some platform
fragmentation.

Basics - Where & How Do I Draw Manual ly?
The Graphics class is responsible for drawing basics, shapes, images and text, it is never
instantiated by the developer and is always passed on by the Codename One API.
You can gain access to a Graphics object by doing one of the following:

● Derive Component or a subclass of Component - within Component there are
several methods that allow developers to modify the drawing behavior, notice that
Form is a subclass of component and thus features all of these methods. These
can be overridden to change the way the component is drawn:

○ paint(Graphics) - invoked to draw the component, this can be overridden to
draw the component from scratch.

○ paintBackground(Graphics)/paintBackgrounds(Graphics) - these allow
overriding the way the component background is painted although you
would probably be better off implementing a painter (see below).

○ paintBorder(Graphics) - allows overriding the process of drawing a border,
notice that border drawing might differ based on the style of the component.

○ paintComponent(Graphics) - allows painting only the components contents
while leaving the default paint behavior to the style.

○ paintScrollbars(Graphics),paintScrollbarX(Graphics),paintScrollbarY(Graphics
) - allows overriding the behavior of scrollbar painting.

● Implement the painter interface, this interface can be used as a GlassPane or a
background painter.
The painter interface is a simple interface that includes 1 paint method, this is a
useful way to allow developers to perform custom painting without subclassing
component. Painters can be chained together to create elaborate paint behavior by
using the PainterChain class.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

111 of 212

○ Glass pane - a glass pane allows developers to paint on top of the form
painting. This allows an overlay effect on top of a form.
For a novice it might seem that a glass pane is similar to overriding the
Form’s paint method and drawing after super.paint(g) completed. This isn’t
the case.
When a component repaints (by invoking the repaint() method) only that
component is drawn and Form’s paint() method wouldn’t be invoked.
However, the glass pane painter is invoked for such cases and would work
exactly as expected.
Container has a glass pane method called paintGlass(Graphics), which can
be overridden to provide a similar effect on a Container level. This is
especially useful for complex containers such as Table which draws its lines
using such a methodology.

○ Background painter - the background painter is installed via the style, by
default Codename installs a custom background painter of its own. Installing
a custom painter allows a developer to completely define how the
background of the component is drawn.

A paint method can be implemented by deriving a Form as such:
publ ic MyForm {
 publ ic void paint(Graphics g) {
 // red color
 g.setColor(0xff0000);

 // paint the screen in red
 g.fillRect(getX(), getY(), getWidth(), getHeight()) ;

 // draw hi world in white text at the top left corner of the screen
 g.setColor(0xffffff) ;
 g.drawString(“Hi World”, getX(), getY()) ;
 }
}

Images
Codename One has quite a few image types: loaded, RGB (builtin), RGB (Codename One),
Mutable, EncodedImage,SVG, Multi-Image & Timeline. There are also FileEncodedImage,

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

112 of 212

FileEncodedImageAsync, StorageEncodedImage/Async that will be covered in the IO
section.

Here are the pros/cons and logic behind every image type and how it’s created:

● Loaded Image - this is the basic image you get when loading an image from the jar
or network using
Image.createImage(String)/Image.createImage(InputStream)/Image.createImage(byt
e[], int, int).
In some platforms (e.g. MIDP) calling getGraphics() on an image like this will throw
an exception (its immutable in MIDP terms), this is true for almost all other images
as well. This restriction might not apply for all platforms.
The image is encoded based on device logic and should be reasonably efficient.

● RGB Image (internal) - close cousin of the loaded image. This image is created
using the method Image.createImage(int[], int, int) and receives ARGB data forming
the image. It is usually (although not always) a high color image. Its more efficient
than the Codename One RGB image but can't be modified, at least not on the pixel
level.

● RGBImage (Codenme One) - constructed via the RGBImage constructors this
image is effectively an ARGB array that can be drawn by Codename One. On many
platforms this is quite inefficient but for some pixel level manipulations there is just
no other way.

● EncodedImage - created via the encoded image static methods, the encoded
image is effectively a loaded image that is "hidden". When creating an encoded
image only the PNG (or jpeg etc.) is loaded to an array in RAM. Normally such
images are very small relatively so they can be kept in memory without much effect.
When image information is needed (e.g. pixels, dimension etc.) the image is
decoded into RAM and kept in a weak/sort reference.
This allows the image to be cached for performance and allows the garbage
collector to reclaim it when the memory becomes scarce.
Encoded image is not final and can be derived to produce complex image fetching
strategies such as lazily loading an image from the filesystem (read more about it in
the IO section).

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

113 of 212

● SVG - SVG's can be loaded directly via Image.createSVG() if
Image.isSVGSupported() returns true. When adding SVG's via the Codename One
Designer fallback images are produced for devices that do not support SVG. The
fallback images are effectively multi-images.

● Multi-Image - The multi-image is seamless to developers it is strictly a design time
feature, during runtime an EncodedImage is returned whenever a multi-image is
used. In the Codename One Designer one can add several images based on the
DPI of the device (one of several predefined ranges). When loading the resource file
irrelevant images are skipped thus saving the additional memory.
Multi-images are ideal for icons or small artifacts that are hard to scale properly.
They are not meant to replace things such as 9-image borders etc. since adapting
them to every resolution or to device rotation isn't practical.
9-image borders use multi-images by default internally to keep their appearance
more refined on the different DPI’s.

● Timeline - Timeline's allow rudimentary animation and enable GIF importing using
the Codename One Designer. Effectively a timeline is a set of images that can be
moved rotated, scaled & blended to provide interesting animation effects. It can be
created manually using the Timeline class.

All image types are mostly seamless to use and will just work with drawImage and various
image related image API's for the most part with caveats on performance etc. For
animation images the code must invoke images animate() method (this is done
automatically by Codename One when placing the image as a background or as an icon!
You only need to do it if you invoke drawImage in code rather than use a builtin
component).
All images might also be animated in theory e.g. my gif implementation returned animated
gifs from the standard Loaded Image methods and this worked pretty seamlessly (since
Icons's and backgrounds just work). To find out if an image is animated you need to use
the isAnimation() method, currently SVG images are animated in MIDP but most of our
ports don't support GIF animations by default (although it should be easy to add to some
of them).

Performance and memory wise you should read the above carefully and be aware of the
image types you use. The Codename One designer tries to conserve memory and be
"clever" by using only encoded images, while these are great for low memory they are not
as efficient as loaded images in terms of speed. Also when scaled these images have

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

114 of 212

much larger overhead since they need to be converted to RGB, scaled and then a new
image is created. Keeping all these things in mind when optimizing a specific UI is very
important.

Understanding Encoded Images & Image Locking
To understand locking we first need to understand EncodedImage. EncodedImage stores
the data of the image in RAM (png or JPEG data), which is normally pretty small, unlike the
full-decoded image, which can take up to width X height X 4. When a user tries to draw an
encoded image we check a WeakReference cache and if the image is cached then we
show it otherwise we load the image, cache it then draw.

Naturally loading the image is more expensive so we want the images that are on the
current form to remain in cache (otherwise GC will thrash a lot). That's where lock() kicks in,
when lock() is active we keep a hard reference to the actual native image so it won't get
GC'd. This REALLY improves performance!
Internally we invoke this automatically for bg images, icons etc. which results in a huge
performance boost. This makes sense since these images are currently showing so they
will be in RAM anyway. However, if you use a complex renderer or custom drawing UI you
should lock() your images where possible!

To verify that locking might be a problem you can launch the performance monitor tool, if
you get log messages that indicate that an unlocked image was drawn you might have a
problem.

Glass Pane
The GlassPane in Codename One is inspired by the Swing GlassPane & layered pane with
quite a few twists. We tried to imagine how Swing developers would have implemented
the glass pane knowing what they do now about painters and Swings learning curve. But
I'm getting ahead of myself, what is the glass pane?

A typical Codename One application is essentially composed of 3 layers (this is a gross
simplification though), the bg painters are responsible for drawing the background of all
components including the main form. The component draws its own content (which might
overrule the painter) and the glass pane paints last...

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

115 of 212

Essentially the glass pane is a painter that allows us to draw an overlay on top of the
Codename One application. Initially we didn't think we need a glass pane, we used to
suggest that people should override the form's paint() method to reach the same result.
Feel free to try and guess why this failed before reading the explanation in the next
paragraph.

Overriding the paint method of a form worked initially, when you enter a form this behaves
just as you would expect. However, when modifying an element within the form only that
element gets repainted not the entire form! So if I had a form with a Button and text drawn
on top using the Form's paint method it would get erased whenever the button got focus.

Thats good for the forms paint method, calling the forms paint method would be REALLY
expensive for every little thing that occurs in Codename One. However, we do want
overlays for some things and we don't need to repaint every component in the screen to
get them. The glass pane is called whenever a component gets painted, it only paints
within the clipping region of the component hence it won't break the rest of the glass pane.

The painter chain is a tool that allows us to chain several painters together to perform
different logistical tasks such as a validation painter coupled with a fade out painter. The
sample below shows a crude validation panel that allows us to draw error icons next to
components while exceeding their physical bounds as is common in many user interfaces

publ ic class ValidationPane implements Painter {
 private Vector components = new Vector();
 private stat ic Image error;
 publ ic ValidationPane(Form parentForm) {
 try {
 i f (error == nul l) {
 error = Image.createImage("/error.png");
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
PainterChain.installGlassPane(parentForm, this);
 }

 publ ic void paint(Graphics g, Rectangle rect) {
 for(int iter = 0 ; iter < components.size() ; iter++) {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

116 of 212

 Component c = (Component) components.elementAt(iter);
 i f (c == nul l) {
 components.removeElementAt(iter);
 continue;
 }
 Object p = c.getClientProperty(VALIDATION_PROP);
 int x = c.getAbsoluteX();
 int y = c.getAbsoluteY();
 x -= error.getWidth() / 2;
 y += c.getHeight() - error.getHeight() / 2;
 g.drawImage(error, x, y);
 }
 }

 publ ic void addInvalid(Component c) {
 components.addElement(c);
 }

 publ ic void removeInvalid(Component c) {
 components.removeElement(c);
 }
}

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

117 of 212

Fi le System, Storage, Network &
Parsing
In this chapter we cover the IO frameworks, which include everything from network to
storage, filesystem and parsing.

External izable Objects
Codename One provides the externalizable interface, which is similar to the Java SE
externalizable interface. This interface allows an object to declare itself as externalizable for
serialization (so an object can be stored in a file/storage or sent over the network).
However, due to the lack of reflection and use of obfuscation these objects must be
registered with the Util class.
Codename One will probably never support the Java SE Serialization API due to the size
issues and complexities related to obfuscation.

The major objects used by Codename One are externalizable by default:
String, Vector, Hashtable, Integer, Double, Float, Byte, Short, Long, Character, Boolean,
Object[], byte[], int[], float[], long[], double[].

Externalizing an object such as h below should work just fine:
Hashtable h = new Hashtable();
h.put("Hi","World");
h.put("data", new byte[] {...}) ;

However, notice that some things aren’t polymorphic e.g. if I will externalize a String array I
will get back an Object array since String arrays aren’t supported.

So implementing the Externalizable interface is only important when we want to store a
proprietary object. In this case we must register the object with the com.codename1.io.Util
class so the externalization algorithm will be able to recognize it by name by invoking:
Util.register("MyClass", MyClass.class);

A externalizable objects must have a default public constructor and must implement the
following 4 methods:
 publ ic int getVersion();
 publ ic void externalize(DataOutputStream out) throws IOException;

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

118 of 212

 publ ic void internalize(int version, DataInputStream in) throws IOException;
 publ ic String getObjectId();

The version just returns the current version of the object allowing the algorithm to change
in the future (the version is then passed when internalizing the object). The object id is a
String uniquely representing the object; it usually corresponds to the class name (in the
example above the Unique Name should be MyClass).
Developers need to write the data of the object in the externalize method using the
methods in the data output stream and read the data of the object in the internalize
method e.g.:
 publ ic void externalize(DataOutputStream out) throws IOException {
 out.writeUTF(name);
 i f (value != nul l) {
 out.writeBoolean(true);
 out.writeUTF(value);
 } else {
 out.writeBoolean(false);
 }
 i f (domain != nul l) {
 out.writeBoolean(true);
 out.writeUTF(domain);
 } else {
 out.writeBoolean(false);
 }
 out.writeLong(expires);
 }

 publ ic void internalize(int version, DataInputStream in) throws IOException {
 name = in.readUTF();
 i f (in.readBoolean()) {
 value = in.readUTF();
 }
 i f (in.readBoolean()) {
 domain = in.readUTF();
 }
 expires = in.readLong();
 }

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

119 of 212

Storage vs. Fi le System
The question of storage vs. file system is often confusing for novice mobile developers.

Generally storage is where you store information that will be deleted if the application is
removed. It is private to the application and is supported by every platform although
implementations sometimes differ by a great deal (e.g. in J2ME/RIM storage is really a type
of byte array store called RMS and not a file system, Codename One hides that fact).

A file system can span over an SD card area and has a hierarchy/rules. Not all phones
support a “proper” file system e.g. the iPhone doesn’t work well with such stepping
outside of the applications boxed area.

When in doubt we always recommend using Storage, which is simpler.

Storage
Storage is accessed via the com.codename1.io.Storage class. It is not a hierarchy and
contains the ability to list/delete and write to named storage entries.
The Storage API also provides convenient methods to write objects to Storage and read
them from Storage specifically readObject & writeObject.

Storage also offers a very simple API in the form of the Preferences class. The Preferences
class allows developers to store simple variables, strings, numbers, booleans etc. in
storage without wringing any storage code. This is a common usage within applications
e.g. you have a server token that you need to store:
Preferences.set("token", myToken);

// token will be null if it was never set
String token = Preferences.get("token", nul l) ;

F i le System
The file system is accessed via the com.codename1.io.FileSystemStorage class. It maps
to the underlying OS’s file system API providing all the common operations on a file name
from opening to renaming and deleting.
Notice that the file system API is somewhat platform specific in its behavior, all paths used
the API should be absolute otherwise they are not guaranteed to work.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

120 of 212

Cloud Storage
Notice: the cloud storage is a premium paid service. Codename One offers a free quota for
all developers using its platform.

Cloud storage is an API that allows us to persist objects into Codename One’s cloud
servers hosted by the Google App Engine. This guarantees high reliability and speed, it
also implies some constraints.

Cloud objects are stored using a distributed object database, don’t think of them as you
would of tables or typical SQL like storage since they are backed by Google’s big table API.
Each cloud object is very much like a Map allowing set/get operations on properties. An
object can have a type associated with it as well as a visibility scope for the world.

A simple example might be in order:
CloudObject obj = new CloudObject("MyObject",
 CloudObject.ACCESS_PUBLIC_READ_ONLY);
obj.setString("txt", title.getText()) ;
obj.setIndexString(1, title.getText()) ;
CloudStorage.getInstance().save(obj);
int result = CloudStorage.getInstance().commit();
i f (result != CloudStorage.RETURN_CODE_SUCCESS) {
 Dialog.show("Cloud Error", "Error " + result, "OK", nul l) ;
}

As you can see, the code above creates and stores a cloud object; there are several
things to notice about the example above:

1. Cloud object is a Codename One specific type; you cannot store arbitrary objects in
the cloud.

2. Values can be anything
3. We can define object visibility scope
4. There is a special index column
5. Save doesn’t actually send data to the server
6. Commit is synchronous which means we know whether the commit succeeded in

the next line.

Lets go over this line by line:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

121 of 212

CloudObject obj = new CloudObject("MyObject",
 CloudObject.ACCESS_PUBLIC_READ_ONLY);

Here we create a new cloud object, we give it a type (sort of like a class). Notice that
properties we store into the object can be anything and don’t have to be identical for
objects that have the same type, this is mostly for your convenience as developers.
Then we give the object its visibility scope, when the visibility is defined you will only be
able to work with an object that is within your scope. Cloud objects have 5 levels of
visibility:

● ACCESS_PUBLIC - A world visible/modifiable object!
● ACCESS_PUBLIC_READ_ONLY - A world visible object! Can only be modified by

its creator.
● ACCESS_APPLICATION - An application visible/modifiable object!
● ACCESS_APPLICATION_READ_ONLY - An application scope readable object! Can

only be modified by its creator
● ACCESS_PRIVATE - An object that can only be viewed or modified by its creator

When creating an object you determine its scope and once the scope is assigned it
cannot be modified, you will need to create a new object to do so. When querying you can
only query one scope (more on that later).
Application scope is determined by your application package and developer email, since
these are entirely unique and can’t be occupied by another developer you are safe to
assume that only your applications have access to that data. However, since this data is
visible it isn’t hacker safe. Any sensitive data should be password protected.
Some of the scopes require a user identity in order to modify or access an object, a unique
user is automatically created when logging into an application. However, you can login
explicitly with a specific user by using the CloudPersona API. E.g.:
CloudPersona.createFromToken(String);

The creatFromToken method initializes the persona based on a token, since this method
assumes binary transfer of a completed token the token isn't verified in any way and the
user is considered logged in. The idea here is that when a user logs in using some other
means (e.g. Facebook), identifying information e.g. the users email can be used as a
“token”. That way when a user logs in from another device the same token (email) would
be used and he would have the same objects visible to him on both devices.
A user doesn’t have to be a single person, it can be a corporation identity or any such
group thus allowing the whole group to share a single token to get access to the private
scope together.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

122 of 212

obj.setString("txt", title.getText()) ;
Here we see a string being placed into the object store, you can place Strings and
numbers into the object store but not too much data. String length is limited to 500 bytes
and objects can’t be too large or you will get a server failure. We suggest staying well
below the 100kb mark.
To store large files you will need to use the filestore API, which will be, explained below.

obj.setIndexString(1, title.getText()) ;
Querying in an object datastore is pretty difficult, since you can define a property to be
almost anything, we also want the queries to be REALLY fast even on stores containing
more than 1 million entries.
To accomplish both goals we created 10 index entries in the object store (from 1 to 10)
into which you can put any arbitrary data that you can query or sort. E.g. say you have an
entity such as:
CloudObject o = ...;
o.setString("firstName", first);
o.setString("surname", last);

And you would like to sort them in a case insensitive way based on firstName-lastName
and by lastName-firstName. To do this you will need to create two indexes:
o.setIndexString(1, (first + " " + last).toLowerCase());
o.setIndexString(2, (last + " " + first).toLowerCase());

This will allow you to order your responses either based on the first or the second index.
This is a bit difficult but it guarantees ridiculously fast queries since every query is
effectively an object lookup.

CloudStorage.getInstance().save(obj);
The cloud storage class is the singleton that allows you to save, delete, query and refresh
your objects.

int result = CloudStorage.getInstance().commit();
Most modification operations aren’t sent to the server immediately, they should be
committed or rolled back which can be done synchronously on the EDT or asynchronously.
Commit returns a server response, which can indicate the type of failure if a failure has
occurred.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

123 of 212

Do not mistake commit/rollback to SQL type transactions, unlike SQL part of the operation
can succeed while another part can fail, the commit command allows you to batch several
operations into a single ordered server request which is more performant than sending
multiple small requests.

A couple of other things we should keep in mind:

● Every object has a modification date, which is tested against the server timestamp.
This prevents two users/devices from changing a cloud object concurrently.

● Every object has a unique ID String identifying it, you can instantly access any
object via that CloudId

We can now fetch the data we committed:
CloudObject[] objects = CloudStorage.getInstance().querySorted("MyObject", 1, true, 0,
10, CloudObject.ACCESS_PUBLIC_READ_ONLY);

Notice that this query is synchronous (there is an asynchronous version of this query as
well), its functionality is relatively simple though.
It searches for objects of type MyObject and returns them sorted in ascending order (the
true argument) based on index number 1. It only returns the first 10 objects (start offset 0
and destination 10) and only searches the public read only scope.

Once fetched you can modify/save the objects and commit them.

This can be further simplified by binding a user interface directly to a Cloud Object using
our Cloud Bind™ feature. To bind a component UI tree created in the GUI builder use the
following:
CloudObject objectToBind = …;
objectToBind.bindTree(form, CloudObject.BINDING_IMMEDIATE, true);

There are several things happening here. The UI is assumed to have names associated
with the relevant components; these names are used as the keys for the Cloud Object’s
created. The last argument indicates whether the UI should get the initial values for the
entries from the cloud object or visa versa (true means the Cloud Object determines initial
values).
The binding options in between has 3 different levels:

● BINDING_DEFERRED - Changes to the bound property won't be reflected into the
bound cloud object until commit binding is invoked.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

124 of 212

● BINDING_IMMEDIATE - Changes to the bound property will be reflected instantly
into the cloud object

● BINDING_AUTO_SAVE - Changes to the bound property will be reflected instantly
into the cloud object and the object would be saved immediately (not committed!).

These 3 essentially match typical UI use cases. Deferred binding is great for UI that has a
“cancel” option, if the user presses cancel you don’t have to do anything (although you
can invoke cancelBinding() to cleanup). If the user presses save you will need to invoke the
method commitBinding() and your changes will be applied (but not saved or committed
despite the name).
Binding immediate changes the cloud object instantly which is great for UI’s that don’t
have a save option (as is common on mobile devices and the Mac). The same is true for
the last option only it goes further and invokes save for you. It still doesn’t invoke commit,
which you will have to do at some point.

Cloud Fi le Storage
Notice: the cloud file storage is a premium paid service. Codename One offers a free
quota for all developers using its platform.

The cloud file storage is a complimentary service to the cloud storage API, it allows storing
large files such as images, videos etc. It doesn’t allow file modification only upload, delete
and getting a URL to the file.
To use it with the Cloud Storage API just store the file key within a cloud object.
The code to work with cloud files is encoded into the CloudStorage class, simply use the
methods uploadCloudFile, deleteCloudFile or getUrlForCloudFileId. The upload method
returns an id, which is improbable to guess. You can use this id to delete or to get a URL,
which you can use to show the file.

SQL
Most new devices contain one version of sqlite or another; sqlite is a very lightweight SQL
database designed for embedding into devices. For portability we recommend avoiding
SQL altogether since it is both fragmented between devices (different sqlite versions) and
isn’t supported on other devices.
In general SQL seems overly complex for most embedded device programming tasks.

If you wish to use SQL and are willing to work around the limitations just use

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

125 of 212

Database db = Display.getInstance().openOrCreate(“databaseName”);

Notice that db will be null if the SQL API isn’t supported on the given platform. You can
invoke standard queries on the database and traverse it using a Cursor object.

Network Manager & Connection Request
One of the more common problems in Network programming is spawning a new thread to
handle the network operations. In Codename One this is done seamlessly and becomes
unessential thanks to the NetworkManager class, which effectively alleviates the need for
managing network threads. The connection request class can be used to facilitate
WebService requests when coupled with the JSON/XML parsing capabilities.
Currently Codename One only supports http/https connections due to limitations inherent
in many devices/network operator backends. To open a connection one needs to use a
ConnectionRequest object, which has some similarities to the networking mechanism in
JavaScript but is obviously somewhat more elaborate.

To send a get request to a URL one performs something like:
ConnectionRequest request = new ConnectionRequest();
request.setUrl(url) ;
request.setPost(false);
request.setContentType(contentType);
request.addRequestHeader(headerName, headerValue);
requestElement.addArgument(parameter, value);
request.addResponseListener(new ActionListener() {
 publ ic void actionPerformed(ActionEvent ev) {
 NetworkEvent e = (NetworkEvent)ev;
 // … process the response
 }
});

// request will be handled asynchronously
NetworkManager.addToQueue(request);

Notice that you can also implement the same thing and much more by avoiding the
response listener code and instead overriding the methods of the ConnectionRequest
class which offers multiple points to override e.g.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

126 of 212

ConnectionRequest request = new ConnectionRequest() {
 protected void readResponse(InputStream input) {
 // just read from the response input stream
 }

 protected void postResponse() {
 // invoked on the EDT after processing is complete to allow the networking code
 // to update the UI
 }

 protected void buildRequestBody(OutputStream os) {
 // writes post data, by default this “just works” but if you want to write this
 // manually then override this
 }
};

Debugging Network
Connections
Codename One includes a Network Monitor tool
which you can access via the file menu of the
simulator, this tool reflects all the requests made
through the connection requests and echos them all.
Allowing you to track issues in your code/web service
and see everything “going through the wire”.

This is a remarkably useful tool for optimizing and for

figuring out what exactly is happening with your server connection logic.

Network Services
Codename One ships with a few default bindings for common network services, e.g. for
downloading, caching images locally, RSS etc. You can find out more about these
services in the services package.

Of note is the MultiPartRequest, which allows submitting large blocks of data to a server
without the limitations of typical requests. It includes special API’s to add files thus allows

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

127 of 212

upload of images, video etc. Notice that the server to which the upload request submits
data needs to be able to process a multipart request, which is a special mime request.

UI Bindings & Uti l i t ies
Codename One provides several tools to simplify the path between networking/IO & GUI.
A common task of showing a wait dialog or progress indication while fetching network
data can be simplified by using the InfiniteProgress class e.g.:

InfiniteProgress ip = new InfiniteProgress();
Dialog dlg = ip.showInifiniteBlocking();
request.setDisposeOnCompletion(dlg);

The process of showing a progress bar for a long IO operation such as downloading is
automatically mapped to the IO stream in Codename One using the SliderBridge class.

Logging & Crash Protection
Codename One includes a Log API that allows developers to just invoke Log.p(String) or
Log.e(Throwable) to log information to storage.
As part of the premium cloud features it is possible to invoke Log.sendLog() in order to
email a log directly to the developer account. Codename One can do that seamlessly
based on changes printed into the log or based on exceptions that are uncaught or logged
e.g.:

Log.setReportingLevel(Log.REPORTING_DEBUG);
DefaultCrashReporter.init(true, 2);

This code will send a log every 2 minutes to your email if anything was changed. You can
place it within the init(Object) method of your application.
For a production application you can use Log.REPORTING_PRODUCTION which will only
email the log on exception.

Codename One also supports a crash_protection: true build parameter. However, this
argument causes significant performance overhead at the moment and is only
recommended during development time. It allows developers to receive a stack trace for
crashes and in logging. However, the stack traces are only limited to the Codename One
and developer classes and don’t apply to operating system classes.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

128 of 212

Parsing: JSON, XML & CSV
Codename One has several built in parsers for JSON, XML & CSV formats which you can
use to parse data from the Internet or data that is shipping with your product. E.g. use the
CSV data to setup default values for your application.

The parsers are all geared towards simplicity and small size; they don't validate and will fail
in odd ways when faced with broken data.

CSV is probably the easiest to use, the "Comma Separated Values" format is just a list of
values separated by commas (or some other character) with new lines to indicate another
row in the table. These usually map well to an Excel spreadsheet or database table.

To parse a CSV just use the CSVParser class as such:

CSVParser parser = new CSVParser();
String[] [] data = parser.read(stream);

The data array will contain a two dimensional array of the CSV data. You can change the
delimiter character by using the CSVParser constructor that accepts a character.

The JSON "Java Script Object Notation" format is popular on the web for passing values
to/from webservices since it works so well with JavaScript. Parsing JSON is just as easy
but has two different variations. You can use the JSONParser class to build a tree of the
JSON data as such:

JSONParser parser = new JSONParser();
Hashtable response = parser.parse(reader);

The response is a Hashtable containing a nested hierarchy of Vectors, Strings and
numbers to represent the content of the submitted JSON. To extract the data from a
specific path just iterate the Hashtable keys and recurs into it. Notice that there is a
webservices demo as part of the kitchen sink showing the returned data as a Tree
structure.

An alternative approach is to use the static data parse() method of the JSONParser class
and implement a callback parser e.g.:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

129 of 212

JSONParser.parse(reader, callback);

Notice that a static version of the method is used! The callback object is an instance of the
JSONParseCallback interface, which includes multiple methods. These methods are
invoked by the parser to indicate internal parser states, this is similar to the way traditional
XML SAX event parsers work.

Advanced readers might want to dig deeper into the processing language contributed by
Eric Coolman, which allows for xpath like expressions when parsing JSON & XML. Read
about it in Eric's blog.

Last but not least is the XML parser, to use it just create an instance of the XMLParser
class and invoke parse:

XMLParser parser = new XMLParser();
Element elem = parser.parse(reader);

The element contains children and attributes and represents a tag element within the XML
document or even the document itself. You can iterate over the XML tree to extract the
data from within the XML file.

On the opposite side of the XMLParser we also have the XMLWriter class which can
generate XML from the Element hierarachy thus allowing a developer to mutate (modify)
the elements and save them to a writer stream.

Cached Data Service
The CachedDataService pretty useful, say you have an image stored locally as image X.
Normally the ImageDownloadService will never check for update if it has a local cache of
the image. This isn't a bad thing, its pretty efficient.
However, it might be important to update the image if it changed but you don't want to
fetch the whole thing...

The cached data service will fetch data if it isn't cached locally and cache it. When you
"refresh" it will send a special HTTP request that will only send back the data if it has been
updated since the last refresh:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

130 of 212

CachedDataService.register() ;
CachedData d = (CachedData)Storage.getInstance().readObject("LocallyCachedData");

i f (d == nul l) {
 d = new CachedData();
 d.setUrl("http://....");
}
// check if there is a new version of this on the server
CachedDataService.updateData(d, new ActionListener() {
 publ ic void actionPerformed(ActionEvent ev) {
 // invoked when/if the data arrives, we now have a fresh cache
 Storage.getInstance().writeObject("LocallyCachedData", d);
 }
});

GZIP
Gzip is a very common compression format based on the lz algorithm, it’s used by web
servers around the world to compress data.
Codename One supports GZipInputStream and GZipOutputStream, which allow you to
compress data seamlessly into a stream and extract compressed data from a stream. This
is very useful and can be apprlied to every arbitrary stream.

Codename One also features a GZConnectionRequest, which will automatically unzip an
HTTP response if it is indeed gzipped. Notice that some devices (iOS) always request
gzip’ed data and always decompress it for us, however in the case of iOS it doesn’t
remove the gziped header. The GZConnectionRequest is aware of such behaviors so its
better to use that when connecting to the network (if applicable).

By default GZConnectionRequest doesn't request gzipped data (only unzips it when its
received) but its pretty easy to do so just add the HTTP header Accept-Encoding: gzip
e.g.:
GZConnectionRequest con = new GZConnectionRequest();
con.addRequestHeader("Accept-Encoding", "gzip");

Do the rest as usual and you should have smaller responses by potential.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

131 of 212

This capability isn’t in the global ConnectionRequest since it will increase the size of the
distribution to everyone. If you do not need the gzip functionality the obfuscator will just
strip it out during the compile process.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

132 of 212

Miscel laneous Features
This chapter covers various features of Codename One that don’t quite fit in any of the
other chapters.

SMS, Dial (Phone) & E-Mail
SMS calling and emailing seem unrelated yet they are all available in Display as a one line
command specifically Display’s sendSMS, sendMessage & dial all allow you to perform
these common tasks usually by launching the native application that performs the task.

The email messaging API has an additional ability within the Message class in
sendMessageViaCloud. This method allows you to use the Codename One cloud to send
an email without end user interaction. This feature is available to pro users only since it
makes use of the Codename One cloud:
Message m = new Message("<html><body>Check out Codename One</body></html>");
m.setMimeType(Message.MIME_HTML);

// notice that we provide a plain text alternative as well in the send method
boolean success = m.sendMessageViaCloudSync("Codename One",
"destination@domain.com", "Name Of User", "Message Subject",
 "Check out Codename One at http://www.codenameone.com/");

Contacts API
The contacts API provides us with the means to query the phone’s addressbook, delete
elements from it and create new entries into it. To get the platform specific list of contacts
you can use String[] contacts = ContactsManager.getAllContacts();

Notice that on some platforms this will prompt the user for permissions (specifically iOS)
and the user might choose not to grant that permission. To detect whether this is the case
you can invoke isContactsPermissionGranted() after invoking getAllContacts(). This can
help you adapt your error message to the user.

Once you have a Contact you can use the getContactById method, however the default
method is a bit slow if you want to pull a large batch of contacts. The solution for this is to

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

133 of 212

only extract the data that you need via getContactById(String id, boolean
includesFullName,
 boolean includesPicture, boolean includesNumbers, boolean includesEmail,
 boolean includeAddress)
Here you can specify true only for the attributes the at actually matter to you.

You can use createContact(String firstName, String familyName, String officePhone, String
homePhone, String cellPhone, String email) to add a new contact and
deleteContact(String id) to delete a contact.

If you just want to display all contacts in a List to allow the user to pick a contact you can
use the ContactsModel with a set of ID’s.

Local ization & International ization (L10N & I18N)
Localization (l10n) means adapting to a locale which is more than just translating to a
specific language but also to a specific language within environment e.g. en_US != en_UK.
Internationalization (i18n) is the process of creating one application that adapts to all
locales and regional requirements.

Codename One supports automatic localization and seamless internationalization of an
application using the Codename One design tool. Notice that although localization is
performed in the design tool most features apply to hand coded applications as well. The
only exception is the tool that automatically extracts localizable strings from the GUI.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

134 of 212

To translate an application you need to use the localization section of the Codename One
Designer. This section features a handy tool to extract localization called Sync With UI, its
a great tool to get you started assuming you used the GUI builder.
You can add additional languages by pressing the Add Locale button.

This generates “bundles” in the resource file which are really just key/value pairs mapping
a string in one language to another language.
You can install the bundle using code like this:
UIManager.getInstance().setBundle(res.getL10N("l10n", local)) ;
Once installed a resource bundle takes over the UI and every string set to a label (and label
like components) will be automatically localized based on the bundle. You can also use the
localize method of UIManager to perform localization on your own.
An exception for localization is the TextField/TextArea components both of which contain
user data, in those cases the text will not be localized to avoid accidental localization of
user input.

You can preview localization in the theme mode within the Codename One designer by
selecting advanced and picking your locale then clicking the theme again.

You can export and import resource bundles as standard Java properties files, CSV and
XML. The formats are pretty standard for most localization shops, the XML format

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

135 of 212

Codename One supports is the one used by Android’s string bundles which means most
shops should easily localize it.

Local izat ion Manager
The LocalizationManager class includes a multitude of features useful for common
localization tasks. It allows formatting numbers/dates & time based on platform locale. It
also provides a great deal of the information you need such as the language/locale
information you need to pick the proper resource bundle.

RTL/Bidi
RTL stands for right to left, in the world of internationalization it refers to languages that are
written from right to left (Arabic, Hebrew, Syriac, Thaana).

Most western languages are written from left to right (LTR), however some languages are
normally written from right to left (RTL) speakers of these languages expect the UI to flow
in the opposite direction otherwise it seems weird just like reading this word would be to
most English speakers: "drieW".

The problem posed by RTL languages is known as BiDi (Bi-directional) and not as RTL
since the "true" problem isn't the reversal of the writing/UI but rather the mixing of RTL and
LTR together. E.g. numbers are always written from left to right (just like in English) so in an
RTL language the direction is from right to left and once we reach a number or English text
embedded in the middle of the sentence (such as a name) the direction switches for a
duration and is later restored.

The main issue in the Codename One world is in the layouts, which need to reverse on the
fly. Codename One supports this via an RTL flag on all components that is derived from
the global RTL flag in UIManager.

Resource bundles can also include special case constant @rtl, which indicates if a
language is written from right to left. This allows everything to automatically reverse.

When in RTL mode the UI will be the exact mirror so WEST will become EAST, RIGHT will
become LEFT and this would be true for paddings/margins as well.
If you have a special case where you don’t want this behavior you will need to wrap it with
an isRTL check.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

136 of 212

Codename One's support for bidi includes the following components:

● Bidi algorithm - allows converting between logical to visual representation for
rendering

● Global RTL flag - default flag for the entire application indicating the UI should flow
from right to left

● Individual RTL flag - flag indicating that the specific component/container should be
presented as an RTL/LTR component (e.g. for displaying English elements within a
RTL UI).

● RTL text field input
● RTL bitmap font rendering

Most of Codename One's RTL support is under the hood, the LookAndFeel global RTL
flag can be enabled using:

UIManager.getInstance().getLookAndFeel() .setRTL(true);

(Notice that setting the RTL to true implicitly activates the bidi algorithm).

Once RTL is activated all positions in Codename One become reversed and the UI
becomes a mirror of itself. E.g. A softkey placed on the left moves to the right, padding on
the left becomes padding on the right, the scroll moves to the left etc.
This applies to the layout managers (except for group layout) and most components. Bidi
is mostly seamless in Codename One but a developer still needs to be aware that his UI
might be mirrored for these cases.

Location - GPS
The location API allows us to track changes in device location or the current user position.
The most basic usage for the API allows us to just fetch a device Location, notice that this
API is blocking and can take a while to return:
Location position = LocationManager.getLocationManager().getCurrentLocationSync();

Notice that there is a method called getCurrentLocation() which will return the current state
immediately and might not be accurate for some cases.
The getCurrentLocationSync() method is very good for cases where you only need to fetch
a current location once and not repeatedly query location. It activates the GPS then turns it

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

137 of 212

off to avoid excessive battery usage. However, if an application needs to track motion or
position over time it should use the location listener API to track location as such:
publ ic MyListener implements LocationListener {
 publ ic void locationUpdated(Location location) {
 // update UI etc.
 }

 publ ic void providerStateChanged(int newState) {
 // handle status changes/errors appropriately
 }
}
LocationManager.getLocationManager().setLocationListener(new MyListener()) ;

Capture - Photos, Video, Audio
The capture API allows us to use the camera to capture photographs or the microphone
to capture audio. It even includes an API for video capture.
The API itself couldn’t be simpler:
String filePath = Capture.capturePhoto();

Just captures and returns a path to a photo (temporary file which you should copy locally),
you can either open it using the Image class or copy it using the FileSystemStorage class.
Video and audio include similar API’s.

Codescan - Barcode & QR code scanner
The codescan package allows us to scan barcodes and qr codes using the device camera.
Notice that on weaker devices (feature phones and RIM devices) this functionality is very
limited and as of this writing this feature isn’t available on Windows Phone.

Using the API is quite simple, just invoke the call to scan and implement the proper
callback to get the results:
i f (CodeScanner.getInstance() != nul l) {
 f inal Button qrCode = new Button("Scan QR");
 cnt.addComponent(qrCode);
 qrCode.addActionListener(new ActionListener() {
 publ ic void actionPerformed(ActionEvent evt) {
 CodeScanner.getInstance().scanQRCode(new ScanResult() {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

138 of 212

 publ ic void scanCompleted(String contents, String formatName, byte[]
rawBytes) {
 qrCode.setText("QR: " + contents);
 }

 publ ic void scanCanceled() {
 }

 publ ic void scanError(int errorCode, String message) {
 }
 }) ;
 }
 }) ;
 f inal Button barCode = new Button("Scan Barcode");
 cnt.addComponent(barCode);
 barCode.addActionListener(new ActionListener() {
 publ ic void actionPerformed(ActionEvent evt) {
 CodeScanner.getInstance().scanBarCode(new ScanResult() {
 publ ic void scanCompleted(String contents, String formatName, byte[]
rawBytes) {
 barCode.setText("Bar: " + contents);
 }

 publ ic void scanCanceled() {
 }

 publ ic void scanError(int errorCode, String message) {
 }
 }) ;
 }
 }) ;
}

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

139 of 212

Analyt ics Integration
One of the features in Codename One is builtin support for analytic instrumentation.
Currently Codename One has builtin support for Google Analytics, which provides
reasonable enough statistics of application usage.

The infrastructure is there to support any other form of analytics solution of your own
choosing.

Analytics is pretty seamless for a GUI builder application since navigation occurs via the
Codename One API and can be logged without developer interaction. However, to begin
the instrumentation one needs to add the line:

 AnalyticsService.init(agent, domain);

To get the value for the agent value just create a Google Analytics account and add a
domain, then copy and paste the string that looks something like UA-99999999-8 from
the console to the agent string. Once this is in place you should start receiving statistic
events for the application.

If your application is not a GUI builder application or you would like to send more detailed
data you can use the Analytics.visit() method to indicate that you are entering a specific
page.

In 2013 Google introduced an improved application level analytics API that is specifically
built for mobile apps. However, it requires a slightly different API from the server. You can
activate this specific mode by invoking setAppsMode(true).
When using this mode you can also report errors and crashes to the Google analytics
server using the sendCrashReport(Throwable, String message, boolean fatal) method.

Facebook Support (legacy)
Facebook uses the Graph API4, which is a JSON based
web protocol that allows developers to traverse the
information within facebook and update it. To work with
Facebook you need to read about the process of creating a
facebook application. A Facebook application identifies
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4 See http://developers.facebook.com/docs/reference/api/

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

140 of 212

your application to Facebook and allows them to associate invocations/changes made by
your application with you.
The main issue with Facebook is the authentication process which requires the OAuth
standard to validate against the website. OAuth forces the user to login to the website and
approve the permissions requested by the application, once these credentials are given in
the web browser the application is given a token which it can use for all its calls. This token
can be reused between invocations so the user doesn’t need to re-enter his password.
However, the token needs to be revalidated in case the user is logged out or changed his
settings.

The main class of interest is FaceBookAccess with which we obtain the token, notice that
in the following code you should probably update all the strings to match your actual
needs:

 FaceBookAccess.setClientId("132970916828080");
 FaceBookAccess.setClientSecret("6aaf4c8ea791f08ea15735eb647becfe");
 FaceBookAccess.setRedirectURI("http://www.codenameone.com/");
 FaceBookAccess.setPermissions(new String[]{"user_location", "user_photos",
"friends_photos", "publish_stream", "read_stream", "user_relationships", "user_birthday",
 "friends_birthday", "friends_relationships", "read_mailbox", "user_events",
"friends_events", "user_about_me"});
 FaceBookAccess.getInstance().showAuthentication(new ActionListener() {

 publ ic void actionPerformed(ActionEvent evt) {
 i f (evt.getSource() instanceof String) {
 String token = (String) evt.getSource();
 String expires = Oauth2.getExpires();
 System.out.println("recived a token " + token + " which expires on " +
expires);
 Storage.getInstance().writeObject("autheniticated", "true");
 i f (main != nul l){
 main.showBack();
 }
 } else {
 Exception err = (Exception) evt.getSource();
 err.printStackTrace();
 Dialog.show("Error", "An error occurred while logging in: " + err, "OK", nul l) ;
 }

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

141 of 212

 }
 }) ;

You can then get access to the wall by doing something like:

FaceBookAccess.getInstance().getWallFeed("me", (DefaultListModel) wall.getModel() ,
nul l) ;

Native Facebook Support
The previous section covered support for Facebook that at the time of this writing works
on all platforms, however this support is being deprecated partially by Facebook. Currently
the old method will still work but developers are expected to migrate to the native login
over time.
The after deprecation the FaceBookAccess class should still work for the most part, the
only major change should be in the login process.

If you just want something in the form of a "share button" we suggest you refer to the
builtin share button, which uses native sharing on both iOS and Android.

The new Facebook API is very simple; in fact as of this writing it includes only 5 methods.
There are really 3 significant methods in the API, login/logout and isLoggedIn(). You can
also bind a listener to login event callbacks, which is really pretty simple. The difficulty isn't
here though.

Before you get started you need to go to the page on Facebook for app
creation:https://developers.facebook.com/apps
Here you should create your app and make sure to enter the package name of the
Codename One application both for the section marked as Bundle Id and Package Name
(see the red highlighting in the figure below).

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

142 of 212

Once you do that you need to define the build argument facebook.appId to the app ID in
the Facebook application (see the red marking at the top of the image).

Now when you send a build and invoke FacebookConnect.login() this should work as
expected on iOS but it will fail on Android. The reason is that Facebook requires a hash

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

143 of 212

from Android developers to identify your app. However, their instructions to generate said
hash don't work... The only way we could find for generating the hash properly is on an
Android device.
If you have DDMS you can connect the device to your machine and see the printouts
including the hashcode (notice the hashcode will change whenever you send a debug
build so make sure to only use Android release builds). You can also get the value of the
hashcode from Display.getInstance().getProperty("facebook_hash", null);
This will return the hash only on Android of course.

You can take this hash and paste it into the section marked Key Hashes in the native
android app section. Notice you can have multiple hashes if you have more than one
certificates or applications.

Once login is successful the existing facebook API's from the Facebook package should
work pretty much as you would expect.

SideMenuBar - Hamburger Sidemenu
The Hambuger sidemenu is the menu style popularized by the Facebook app, its called a
Hamburger because of the 3-line icon on the top left resembling a hamburger patty
between two buns (get it: its a side menu...)!
To enable the side menu set the command behavior to side menu and it just works. You
can do this by setting the commandBehavior theme constant in the Codename One
designer to "Side" or via the setCommandBehavior method in Display. You will also need
to invoke:

Then just add commands and watch them make their way into the side menu allowing you
to build any sort of navigation you desire.

The side menu goes much deeper than that, e.g. the ability to place a side menu on the
right, top or on both sides of the title (as in the facebook app). You can accomplish this by
using code such as cmd.putClientProperty(SideMenuBar.COMMAND_PLACEMENT_KEY,
SideMenuBar.COMMAND_PLACEMENT_VALUE_RIGHT);

Or as you might see in this more detailed example where you can just swap menu
placements on the fly:
publ ic class MyApplication {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

144 of 212

 private Form current;
 private enum SideMenuMode {
 SIDE, RIGHT_SIDE {
 publ ic String getCommandHint() {
 return SideMenuBar.COMMAND_PLACEMENT_VALUE_RIGHT;
 }
 }, BOTH_SIDES {
 boolean b;
 publ ic String getCommandHint() {
 b = !b;
 i f (b) {
 return nul l ;
 }
 return SideMenuBar.COMMAND_PLACEMENT_VALUE_RIGHT;
 }
 }, TOP {
 publ ic String getCommandHint() {
 return SideMenuBar.COMMAND_PLACEMENT_VALUE_TOP;
 }
 };

 publ ic String getCommandHint() {
 return nul l ;
 }
 publ ic void updateCommand(Command c) {
 String h = getCommandHint();
 i f (h == nul l) {
 return;
 }
 c.putClientProperty(SideMenuBar.COMMAND_PLACEMENT_KEY, h);
 }
 };

 SideMenuMode mode = SideMenuMode.SIDE;

 publ ic void init(Object context) {
 try{
 Resources theme = Resources.openLayered("/theme");

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

145 of 212

UIManager.getInstance().setThemeProps(theme.getTheme(theme.getThemeResourceNa
mes()[0])) ;

UIManager.getInstance().getLookAndFeel() .setMenuBarClass(SideMenuBar.class);

Display.getInstance().setCommandBehavior(Display.COMMAND_BEHAVIOR_SIDE_NAVI
GATION);
 }catch(IOException e){
 e.printStackTrace();
 }
 }

 publ ic void start() {
 i f (current != nul l){
 current.show();
 return;
 }
 newHiForm("Clean");
 }

 void newHiForm(String title) {
 Form hi = new Form(title);
 hi.setName(title);
 buildSideMenu(hi);
 hi.show();
 }

 void buildSideMenu(Form hi) {
 Command changeToSideMenuLeft = new Command("Left Menu") {
 publ ic void actionPerformed(ActionEvent ev) {
 mode = SideMenuMode.SIDE;
 newHiForm("Left");
 }
 };
 Command changeToSideMenuRight = new Command("Right Menu") {
 publ ic void actionPerformed(ActionEvent ev) {
 mode = SideMenuMode.RIGHT_SIDE;

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

146 of 212

 newHiForm("Right");
 }
 };
 Command changeToSideMenuBoth = new Command("Both Menu") {
 publ ic void actionPerformed(ActionEvent ev) {
 mode = SideMenuMode.BOTH_SIDES;
 newHiForm("Both");
 }
 };
 Command changeToSideMenuTop = new Command("Top Menu") {
 publ ic void actionPerformed(ActionEvent ev) {
 mode = SideMenuMode.TOP;
 newHiForm("Top");
 }
 };

 Command dummy = new Command("Dummy 1");
 Command dummy2 = new Command("Dummy 2");

 mode.updateCommand(dummy);
 hi.addCommand(dummy);
 mode.updateCommand(dummy2);
 hi.addCommand(dummy2);
 mode.updateCommand(changeToSideMenuLeft);
 hi.addCommand(changeToSideMenuLeft);
 mode.updateCommand(changeToSideMenuRight);
 hi.addCommand(changeToSideMenuRight);
 mode.updateCommand(changeToSideMenuBoth);
 hi.addCommand(changeToSideMenuBoth);
 mode.updateCommand(changeToSideMenuTop);
 hi.addCommand(changeToSideMenuTop);
 }

 publ ic void stop() {
 current = Display.getInstance().getCurrent();
 }

 publ ic void destroy() {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

147 of 212

 }
}

One of the nice things about the side menu bar is that you can add just about anything
into the side menu bar by using the SideComponent property e.g.:
Component customCmp = ...;
Command cmd = ...;
cmd.putClientProperty("SideComponent", customCmp);

This is remarkably useful but its also somewhat problematic for some developers, the
SideMenuBar is pretty complex so if we just set a button to the custom component and
invoke showForm() we will not have any transition out of the side menu bar. Thankfully we
added several options to solve these issues.
The first is actionable which you enable by just turning it on as such:
cmd.putClientProperty("Actionable", Boolean.TRUE);

This effectively means that the custom component will look exactly the same, but when it's
touched/clicked it will act like any other command on the list. This uses a lead component
trick to make the hierarchy (or component) in customCmp act as a single action.

There are several additional options that allow you to just bind action events and then
"manage" the SideMenuBar e.g.:

● SideMenuBar.isShowing() - useful for writing generic code that might occur when
the SideMenuBar is on the form.

● SideMenuBar.closeCurrentMenu() - allows you to close the menu, this is useful if
you are not navigating to another form.

● SideMenuBar.closeCurrentMenu(Runnable) - just like closeCurrentMenu() however
it will invoke the run() method when complete. This allows you to navigate to
another form after the menu close animation completed.

The TitleCommand property allows you to flag a command as something you would want
to see in the right hand title area and not within the SideMenu area. Just place it into a
component using cmd.putClientProperty("TitleCommand", Boolean.TRUE);

Last but not least we also have some helpful theme constants within the side menu bar
that you might not be familiar with:

● sideMenuImage - pretty obvious, this is the hamburger image we use to open the
menu.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

148 of 212

● sideMenuPressImage - this is the pressed version of the image above. Its optional
and the sideMenuImage will be used by default.

● rightSideMenuImage/rightSideMenuPressImage - identical to the
sideMenuImage/sideMenuPressImage only specific to the right side navigation.

● sideMenuFoldedSwipeBool - by default a swipe will open the side menu. You can
disable that functionality by setting this theme constant to false.

● hideBackCommandBool - often comes up in discussion, allows hiding the back
command from the side menu so it only appears in the hardware button/iOS
navigation.

● hideLeftSideMenuBool - allows hiding the left hand menu which is useful for a case
of top or right based side menu.

● sideMenuShadowImage - image that represents the drop shadow drawn on the
side of the menu.

● sideMenuTensileDragBool - allows disabling the tensile draw within the side menu
command area

Pul l To Refresh
Pull to refresh is the common UI paradigm that Twitter popularized where the user can pull
down the form/container to receive an update. Adding this to Codename One couldn’t be
simpler! Just invoke addPullToRefresh(Runnable) on a scrollable container (or form) and
the runnable method will be invoked when the refresh operation occurs.

Inf inite Scrol l Adapter
Pull to refresh is only half the story although it is a really nice feature useful for pulling new
updates. Codename One has the ability to have infinite (or really large lists) but making a
container with arbitrary components grow infinitely is normally a bit of a hassle.

In some of the newer web UI's such as Tumblr and Twitter the data is fetched dynamically
when you reach a fixed location in the form, this
is a simpler approach than the one demonstrated
by the list model but in some regards its more
practical. A user can't just start jumping around
and fetching the entire list, this works better with
most REST API's and is pretty powerful on its
own.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

149 of 212

For this purpose we created the InfiniteScrollAdapter, which is a really simple class that
binds to a container and gives you the ability to add components to it. The API is
remarkably simple you just invoke the static method
InfiniteScrollAdapter.createInfiniteScroll() with an empty container then wait for it to invoke
the runnable you submit to it.
The runnable will be invoked on the EDT so be sure not to block it (unless you use an
AndWait or invokeAndBlock method), in it you can fetch data and once you are done add
any set of components you like using the addMoreComponents() method. Notice that you
shouldn't just add/remove components on your own since this will mess up the container.

Here is a simple example that adds buttons and sleeps to simulated slow network activity:
f inal Form test = new Form("Infinite");

test.setLayout(new BoxLayout(BoxLayout.Y_AXIS));
InfiniteScrollAdapter.createInfiniteScroll(test.getContentPane(), new Runnable() {
 private int counter = 1;
 publ ic void run() {
 // simulate network latency
 Display.getInstance().invokeAndBlock(new Runnable() {
 publ ic void run() {
 try {
 Thread.sleep(2000);
 } catch(InterruptedException e) {}
 }
 }) ;

 Component[] buttons = new Component[20];
 for(int iter = 0 ; iter < buttons.length ; iter++) {
 buttons[iter] = new Button("Button: " + counter);
 counter++;
 }
 InfiniteScrollAdapter.addMoreComponents(test.getContentPane(), buttons, true);
 }
});
test.show();

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

150 of 212

Performance, Size & Debugging

Reducing Resource Fi le Size
It’s easy to lose track of size/performance when you are working within the comforts of a
visual tool like the Codename One Designer. When optimizing resource files you need to
keep in mind one thing: it's all about image sizes.
Images will take up 95-99% of the resource file size; everything else pales in comparison.

Like every optimization the first rule is to reduce the size of the biggest images which will
provide your biggest improvements, for this purpose I introduced the ability to see image
sizes in KB (see the menu option Images -> Image Sizes (KB).
This produces a list of images sorted by size with the amount of KB each takes. Often the
top entries will be multi-images, which include HD resolution values that can be pretty
large. These very high-resolution images take up a significant amount of space! Just going
to the multi-images, selecting the unnecessary resolutions & deleting these HUGE images
(note you can see the size in KB at the top right side in the image viewer) saves a HUGE
amount of space.

Next you should probably use the "Delete Unused Images" menu option (it’s also under
the Images menu). This tool allows detecting and deleting images that aren’t used within
the theme/GUI.

If you have a very large image that is opaque you might want to consider converting it to
JPEG and replacing the built in PNG’s. Notice that JPEG's work on all supported devices
and are typically smaller.

You can use the excellent OptiPng tool to optimize image files right from the Codename
One designer. To use this feature you need to install OptiPng then select "Images ->
Launch OptiPng" from the menu. Once you do that the tool will automatically optimize all
your PNG's.

When faced with size issues make sure to check the size of your res file, if your JAR file is
large open it with a tool such as 7-zip and sort elements by size. Start reviewing which
element justifies the size overhead.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

151 of 212

Improving Performance
There are quite a few things you can do as a developer in order to improve the
performance and memory footprint of a Codename One application. This sometimes
depends on specific device behaviors but some of the tips here are true for all devices.
The simulator contains some tools to measure performance overhead of a specific
component and also detect EDT blocking logic. Other than that follow these guidelines to
create more performance code:

● Avoid round rect borders - they have a huge overhead on all platforms. Use image
borders instead (counter intuitively they are MUCH faster).

● Bitmap fonts are pretty slow on many platforms, we recommend avoiding them.
Methods such as stringWidth, can also be very slow on some platforms. This
means that reflowing the UI (preferred size calls string width) can become very
expensive.

● Read carefully the Image section and make sure to make conscious choices
regarding the image types you choose.

● Some older devices (symbian mostly) perform very badly with translucent images.
● Use larger images when tiling or building image borders, using a 1 pixel (or event a

few pixels) wide or high image and tiling it repeatedly can be very expensive.

Performance Monitor
The performance monitor tool is accessible via the menu option in the simulator and it
pops up a dialog showing some information that can help you in debugging slow
performing UI’s.
You will be able to see the amount of time and amount of paint operations that occur for
every component as well as printouts about every image allocation and RAM statistics for
said allocations.

Network Speed
This feature is actually more useful for general
debugging however it is sometimes useful to
simulate a slow/disconnected network to see
how this affects performance. For this purpose
the Codename One simulator allows you to slow

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

152 of 212

down networking or even fake a disconnected network to see how your application
handles such cases.

Debugging Codename One Sources
One of the biggest advantages in Codename One over pretty much any other mobile
solution is that its realistically open source. Realistically means that even an average
developer can dig into 90% of the Codename One source code change it and contribute
to it!

However, sadly most developers don't even try and most of those who do focus only on
the aspect of building for devices rather than the advantage of much easier debugging. By
incorporating the Codename One sources you can instantly see the effect of changes we
made in SVN without waiting for a plugin update. You can, debug into Codename One
code which can help you pinpoint issues in your own code and also in resolving issues in
Codename One!

Start by checking out the Codename One sources from SVN, use the following URL
http://codenameone.googlecode.com/svn/trunk/ which should allow for anonymous
readonly checkout of the latest sources!

Now that you have the sources open the CodenameOne project that is in the root and the
JavaSEPort that is in the Ports directory using NetBeans. Notice that these projects might
be marked in red and you will probably need to right click on them and select Resolve
Reference Problems. You will probably need to fix the JDK settings, and the libraries to
point at the correct local paths.
Once you do that you can build both projects without a problem. Notice that you will
probably get a minor compilation error due to a
build.xml line in the Codename One project, don't
fret. Just edit that line and comment it out.

Select any Codename One project in NetBeans,
right click and click properties.

Now select "Libraries" from the tree to your right select all the jars within the compile tab.
Click remove.

Click the Add Project button and select the project for Codename One in the SVN.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

153 of 212

Now select the Run tab and remove the JavaSE.jar file from there by selecting it and
pressing remove.

Add the JavaSEPort project using the Add Project
button and then use the Move Up button to make
sure it is at the top most position since it needs to
override everything else at runtime.

You are now good to go, now you can just place breakpoints within Codename One
source code, edit it and test it. You can step into it with the debugger which can save you
a lot of time when tracking a problem.

Device Testing Framework/Unit Testing
Codename One includes a built in testing framework and test recorder tool as part of the
simulator. This allows developers to build both functional and unit test execution on top of
Codename One. It even enables sending tests for execution on the device (pro-only
feature).

To get started with the testing framework, launch the application and open the test
recorder in the simulator menu. Once you press record a test will be generate for you as
you use the application.
You can build tests using the Codename One testing package to manipulate the
Codename One UI programmatically and perform various assertions.

EDT Error Handler and sendLog
Handling errors or exceptions in a deployed product is pretty difficult, most users would
just throw away your app and some would give it a negative rating without providing you
with the opportunity to actually fix the bug that might have happened.

Google improved on this a bit by allowing users to submit
stack traces for failures on Android devices but this
requires the users approval for sending personal data
which you might not need if you only want to receive the
stack trace and maybe some basic application state
(without violating user privacy).

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

154 of 212

For quite some time Codename One had a very powerful feature that allows you to both
catch and report such errors, the error reporting feature uses the Codename One cloud
which is exclusive for pro/enterprise users. Normally in Codename One we catch all
exceptions on the EDT (which is where most exceptions occur) and just display an error to
the user as you can see in the picture. Unfortunately this isn't very helpful to us as
developers who really want to see the stack; furthermore we might prefer the user doesn't
see an error message at all!

Codename One allows us to grab all exceptions that occur on the EDT and handle them
using the method addEdtErrorHandler in the Display class. Adding this to the Log's ability
to report errors directly to us and we can get a very powerful tool that will send us an email
with information when a crash occurs!

Display.getInstance().addEdtErrorHandler(new ActionListener() {
 publ ic void actionPerformed(ActionEvent evt) {
 evt.consume();
 Log.p("Exception in AppName version " +
Display.getInstance().getProperty("AppVersion", "Unknown"));
 Log.p("OS " + Display.getInstance().getPlatformName());
 Log.p("Error " + evt.getSource()) ;
 Log.p("Current Form " + Display.getInstance().getCurrent().getName());
 Log.e((Throwable)evt.getSource()) ;
 Log.sendLog();
 }
});

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

155 of 212

Advanced Topics/Under The Hood
This chapter covers the more advanced topics explaining how Codename One actually
works.

Sending Arguments To The Bui ld Server
When sending a build to the server you can provide additional parameters to the build,
which will be incorporated into the build process on the server to hint on multiple different
build time options.

Here is the current list of supported arguments, keep up with this page since we intend to
update it frequently with new options:

Name Descript ion

android.debug true/false defaults to true - indicates whether to include the
debug version in the build

android.release true/false defaults to true - indicates whether to include the
release version in the build

android.installLocation Maps to android:installLocation manifest entry defaults to
auto. Can also be set to internalOnly or preferExternal.

android.min_sdk_versio
n

defaults to '7". Used in the manifest to indicate the
android:minSdkVersion property.

android.xapplication defaults to an empty string. Allows developers of native
Android code to add text within the application block to
define things such as widgets, services etc.

android.xpermissions additional permissions for the Android manifest

android.xintent_filter Allows adding an intent filter to the main android activity

android.licenseKey The license key for the Android app, this is useful when using
features such as purchase to verify that the in-app-purchase
wasn’t injected by an attacker

android.stack_size Size in bytes for the Android stack thread

android.statusbar_hidde true/false defaults to false. When set to true hides the status

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

156 of 212

n bar on Android devices.

android.sharedUserId Allows adding a manifest attribute for the sharedUserId option

android.sharedUserLabe
l

Allows adding a manifest attribute for the sharedUserLabel
option

android.web_loading_hi
dden

true/false defaults to false - set to true to hide the progress
indicator that appears when loading a web page on Android.

block_server_registratio
n

true/false flag defaults to false. By default Codename One
applications register with our server, setting this to true blocks
them from sending information to our cloud. We keep this
data for statistical purposes and intend to provide additional
installation stats in the future.

android.theme Light or Dark defaults to Light. On Android 4+ the default
Holo theme is used to render the native widgets in some
cases and this indicates whether holo light or holo dark is
used. Currently this doesn’t affect the Codename One theme
but that might change in the future.

ios.project_type one of ios, ipad, iphone (defaults to ios). Indicates whether the
resulting binary is targeted to the iphone only or ipad only.

ios.statusbar_hidden true/false defaults to false. Hides the iOS status bar if set to
true.

ios.prerendered_icon true/false defaults to false. The iOS build process adapts the
submitted icon for iOS conventions (adding an overlay) that
might not be appropriate on some icons. Setting this to true
leaves the icon unchanged (only scaled).

ios.application_exits true/false (defaults to false). Indicates whether the application
should exit immediately on home button press. The default is
to exit, leaving the application running is only partially tested
at the moment.

ios.themeMode default/legacy/modern/auto (defaults to default). Default
means you don't define a theme mode. Currently this is
equivalent to legacy. In the future we will switch this to be
equivalent to auto. legacy - this will behave like iOS 6
regardless of the device you are running on. modern - this will
behave like iOS 7 regardless of the device you are running on.
auto - this will behave like iOS 6 on older devices and iOS 7

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

157 of 212

on newer devices.

ios.interface_orientation UIInterfaceOrientationPortrait by default. Indicates the
orientation, one or more of (separated by colon :):
UIInterfaceOrientationPortrait,
UIInterfaceOrientationPortraitUpsideDown,
UIInterfaceOrientationLandscapeLeft,
UIInterfaceOrientationLandscapeRight

ios.no_strip true/false (defaults to false) a pro only feature that keeps
debug information within the built binary thus allowing crash
reports from iOS to contain symbol information (only on
debug builds not on itunes store builds).

ios.xcode_version The version of xcode used on the server. Defaults to 4.5;
currently accepts 5.0 as an option and nothing else.

ios.unsafe true/false (defaults to false). If you define ios.unsafe=true
You will get an application that won't throw
ArrayIndexOutOfBounds exceptions or NullPointerExceptions,
however it might crash for such cases!
This is one of those flags that you will need to test REALLY
well before using in production, however once enabled it
should noticeably improve the performance of Codename
One.

rim.askPermissions true/false defaults to true. Indicates whether the user is
prompted for permissions on RIM devices.

crash_protect true/false defaults to true. Only applicable to paying users.
Instruments an application with on device exception logging
which allows the application to send a crash log to the server
when it fails.

rim.ignor_legacy true/false defaults to false. When set to true the RIM build
targets only 5.0 devices and newer and doesn’t build the 4.x
version.

rim.nativeBrowser true/false defaults to false. Enables the native blackberry
browser on OS 5 or higher. It is disabled by default since it
might casue crashes on some cases.

rim.obfuscation true/false defaults to false. Obfuscate the JAR before invoking
the rimc compiler.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

158 of 212

ios.plistInject entries to inject into the iOS plist file during build.

ios.includePush true/false (defaults to false). Whether to include the push
capabilities in the iOS build.

noExtraResources true/false (defaults to false). Blocks codename one from
injecting its own resources when set to true, the only effect
this has is in slightly reducing archive size.

j2me.iconSize Defaults to 48x48. The size of the icon in the format of width x
height (without the spacing).

The Architecture Of The GUI Bui lder
The Codename One GUI builder has several unique underlying concepts that aren't as
common among such tools, in this article I will try to clarify some of these basic ideas.

Basic Concepts
The Codename One Designer isn't a standard code generator; the UI is saved within the
resource file and can be designed without the source files available. This has several
advantages:

1. No fragile generated code to break.
2. Designers who don't know Java can use the tool.
3. The "Codename One LIVE!" application can show a live preview of your design as

you build it.
4. Images and theme settings can be integrated directly with the GUI without concern.
5. The tool is consistent since the file you save is the file you run.
6. GUI's/themes can be downloaded dynamically without replacing the application

(this can reduce download size).
7. It allows for control over application flow. It allows preview within the tool without

compilation.

This does present some disadvantages and oddities:

1. It’s harder to integrate custom code into the GUI builder/designer tool.
2. The tool is somewhat opaque; there is no "code" you can inspect to see what was

accomplished by the tool.
3. If the resource file grows too large it can significantly impact memory/performance

of a running application.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

159 of 212

4. Binding between code and GUI isn't as intuitive and is mostly centralized in a single
class.

In theory you don't need to generate any code, you can load any resource file that
contains a UI element as you would normally load a Resource file:

Resources r = Resources.open("/myFile.res");

Then you can just create a UI using the UIBuilder API:

UIBuilder u = new UIBuilder();
Container c = u.createContainer(r, "uiNameInResource");

(Notice that since Form & Dialog both derive from Container you can just downcast to the
appropriate type).

This would work for any resource file and can work completely dynamically! E.g. you can
download a resource file on the fly and just show the UI that is within the resource file...
That is what Codename One LIVE! is doing internally.

IDE Bindings
While the option of creating a Resource file manually is powerful, its not nearly as
convenient as modern GUI builders allow. Developers expect the ability to override events
and basic behavior directly from the GUI builder and in mobile applications even the flow
for some cases.

To facilitate IDE integration we decided on using a single Statemachine class, similar to the
common controller pattern. We considered multiple classes for every form/dialog/container
and eventually decided this would make code generation more cumbersome.

The designer effectively generates one class "StatemachineBase" which is a subclass of
UIBuilder (you can change the name/package of the class in the Codename One
properties file at the root of the project). StatemachineBase is generated every time the
resource file is saved assuming that the resource file is within the src directory of a
Codename One project. Since the state machine base class is always generated, all
changes made into it will be overwritten without prompting the user.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

160 of 212

User code is placed within the Statemachine class, which is a subclass of the
Statemachine Base class. Hence it is a subclass of UIBuilder!

When the resource file is saved the designer generates 2 major types of methods into
Statemachine base:
1. Finders - findX(Container c). Finders are shortcut methods that allow us to find a
component instance within the container hierarch. Effectively this is a shortcut syntax for
UIBuilder.findByName(), its still useful since the method is type safe. Hence if a resource
component name is changed the find() method will fail in subsequent compilations.

2. Callback events - these are various callback methods with common names e.g.:
onCreateFormX(), beforeFormX() etc. These will be invoked when a particular
event/behavior occurs.

Within the GUI builder, the event buttons would be enabled and the GUI builder provides a
quick and dirty way to just override these methods. To prevent a future case in which the
underlying resource file will be changed (e.g formX could be renamed to formY) a super
method is invoked e.g. super.onCreateFormX();

This will probably be replaced with the @Override annotation when Java 5 features are
integrated into Codename One.

Working With The Generated Code
The generated code is rather simplistic, e.g. the following code from the tzone demo adds
a for the remove button toggle:

protected void onMainUI_RemoveModeButtonAction(Component c, ActionEvent event)
{
 // If the resource file changes the names of components this call will break notifying you
that you should fix the code
 super.onMainUI_RemoveModeButtonAction(c, event);
 removeMode = !removeMode;
 Container friendRoot = findFriendsRoot(c.getParent()) ;
 Dimension size = nul l ;
 i f (removeMode) {
 i f (Display.getInstance().getDeviceDensity() > Display.DENSITY_LOW) {
 findRemoveModeButton(c.getParent()) .setText("Finish");

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

161 of 212

 }
 } else {
 size = new Dimension(0, 0);
 i f (Display.getInstance().getDeviceDensity() > Display.DENSITY_LOW) {
 findRemoveModeButton(c.getParent()) .setText("Remove");
 }
 }
 for(int iter = 0 ; iter < friendRoot.getComponentCount() ; iter++) {
 Container currentFriend = (Container)friendRoot.getComponentAt(iter);
 currentFriend.setShouldCalcPreferredSize(true);
 currentFriend.setFocusable(!removeMode);
 findRemoveFriend(currentFriend).setPreferredSize(size);
 currentFriend.animateLayout(800);
 }
}

As you can see from the code above implementing some basic callbacks within the state
machine is rather simple. The method findFriendsRoot(c.getParent()); is used to find the
"FriendsRoot" component within the hierarchy, notice that we just pass the parent
container to the finder method. If the finder method doesn't find the friend root under the
parent it will find the "true" root component and search there.
The friends root is a container that contains the full list of our "friends" and within it we can
just work with the components that were instantiated by the GUI builder.
Implementing Custom Components There are two basic approaches for custom
components:

1. Override a specific type - e.g. make all Form's derive a common base class.
2. Replace a deployed instance.

The first uses a feature of UIBuilder which allows overriding component types, specifically
override createComponentInstance to return an instance of your desired component e.g.:

protected Component createComponentInstance(String componentType, Class cls) {
 i f (cls == Form.class) {
 return new MyForm();
 }
 return super.createComponentInstance(componentType, cls);
}

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

162 of 212

This code allows me to create a unified global form subclass. That's very useful when I
want so global system level functionality that isn't supported by the designer normally.

The second approach allows me to replace an existing component:

protected void beforeSplash(Form f) {
 super.beforeSplash(f);

 splashTitle = findTitleArea(f);

 // create a "slide in" effect for the title
 dummyTitle = new Label() ;
 dummyTitle.setPreferredSize(splashTitle.getPreferredSize()) ;
 f.replace(splashTitle, dummyTitle, nul l) ;
}

protected void postSplash(Form f) {
 super.postSplash(f);

 f.replace(dummyTitle, splashTitle,
CommonTransitions.createSlide(CommonTransitions.SLIDE_VERTICAL, true, 1000));
 splashTitle = nul l ;
 dummyTitle = nul l ;
}

Notice that we replace the title with an empty label; in this case we do this so we can later
replace it while animating the replace behavior thus creating a slide-in effect within the title.
It can be replaced though, for every purpose including the purpose of a completely
different custom made component. By using the replace method the existing layout
constraints are automatically maintained.

Native Interfaces
Low level calls into the Codename One system, including support for making platform
native API calls. Notice that when we say "native" we do not mean C/C++ always but
rather the platforms "native" environment. So in the case of J2ME the Java code will be

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

163 of 212

invoked with full access to the J2ME API's, in case of iOS an Objective-C message would
be sent and so forth.
Native interfaces are designed to only allow primitive types, Strings, arrays (single
dimension only!) of primitives and PeerComponent values. Any other type of
parameter/return type is prohibited. However, once in the native layer the native code can
act freely and query the Java layer for additional information.
Furthermore, native methods should avoid features such as overloading, varargs (or any
Java 5+ feature for that matter) to allow portability for languages that do not support such
features (e.g. C).
Important! Do not rely on pass by reference/value behavior since they vary between
platforms.

Implementing a native layer effectively means:

1. Creating an interface that extends NativeInterface and only defines methods with
the arguments/return values declared in the previous paragraph.

2. Creating the proper native implementation hierarchy based on the call conventions
for every platform within the native directory

E.g. to create a simple hello world interface do something like:

 package com.my.code;
 publ ic interface MyNative extends NativeInteface {
 String helloWorld(String hi);
 }

Then to use that interface use MyNative my =
(MyNative)NativeLookup.create(MyNative.class);
Notice that for this to work you must implement the native code on all supported
platforms!
To implement the native code use the following convention. For Java based platforms
(Android, RIM, J2ME):
Just create a Java class that resides in the same package as the NativeInterface you
created and bares the same name with Impl appended e.g.: MyNativeImpl. So for these
platforms the code would look something like this:

 package com.my.code;
 publ ic class MyNativeImpl implements MyNative {
 publ ic String helloWorld(String hi) {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

164 of 212

 // code that can invoke Android/RIM/J2ME respectively
 }
 }

Notice that this code will only be compiled on the server build and is not compiled on the
client. These sources should be placed under the appropriate folder in the native directory
and are sent to the server for compilation.
For Objective-C, one would need to define a class matching the name of the package and
the class name combined where the "." elements are replaced by underscores. One would
need to provide both a header and an "m" file following this convention e.g.:

@interface com_my_code_MyNative : NSObject {
}
- (id) init;
- (NSString*)helloWorld:(NSString *)param1;
@end

Notice that the parameters in Objective-C are named which has no equivalent in Java.
That is why the native method in Objective-C MUST follows the convention of naming the
parameters "param1", "param2" etc. for all the native method implementations. Java
arrays are converted to NSData objects to allow features such as length indication.

PeerComponent return values are automatically translated to the platform native peer as
an expected return value. E.g. for a native method such as this: PeerComponent
createPeer();
Android native implementation would need: View createPeer();
While RIM would expect: Field createPeer()
The iphone would need to return a pointer to a view e.g.: - (UIView*)createPeer; J2ME
doesn't support native peers hence any method that returns a native peer would always
return null.

Notice that if you want to use a native library (jar, .a file etc.) just places it within the
appropriate native directory and it will be packaged into the final executable. You would
only be able to reference it from the native code and not from the Codename One code,
which means you will need to build native interfaces to access it.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

165 of 212

Native Permissions
Normally permissions in Codename One are pretty seamless, we traverse the bytecode
and automatically assign permissions to Android applications based on the API’s used by
the developer.
However, when accessing native functionality this just won’t work since native code might
require specialized permissions and we don’t/can’t run any serious analysis on it (it can be
just about anything).
So if you require additional permissions in your Android native code you need to define
them in the build arguments using the android.xpermissions build argument and setting it
to your additional permissions e.g.: <uses-permission
android:name="android.permission.READ_CALENDAR" />

Libraries - cn1l ib
Support for JAR files in Codename One has been a source of confusion so its probably a
good idea to revisit this subject again and clarify all the details.

The first source of confusion is changing the classpath. You should NEVER change the
classpath or add an external JAR via the IDE classpath UI. The reasoning here is very
simple, these IDE's don't package the JAR's into the final executable and even if they did
these JAR's would probably use features unavailable or inappropriate for the device (e.g.
java.io.File etc.).

There are two use cases for wanting JAR's and they both have very different solutions:

1. Modularity - you want to divide your work to an external group. For this purpose
use the cn1lib approach.

2. Work with an existing JAR. For this you will need native interfaces mentioned in the
section above. Notice that native interfaces can be used within a cn1lib!

Cn1lib’s address the modularity aspect (for existing jars just refer to the native interfaces
section), you can wrap them with a cn1lib but you will need a native interface anyway.
You can create a cn1lib in NetBeans and IDEA, it’s really just a simple ant project with
some special targets and a simple ant task for stubbing. In it you can write all your source
code (including native code and libs as described below), when you build the file you will
get a cn1lib file that you can place in your project's lib directory.

After a right click and refresh project libs completion will be available for you and you will
be able to work as if the code was a part of your project.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

166 of 212

You can automate this process by editing the build.xml and copying/refreshing projects, all
operations with these libs are just simple ant tasks.

Drag & Drop
Unlike other platforms that tried to create overly generic catch all API's we tried to make
things as simple as possible. We always drag a component and always drop it onto
another component, if something else is dragged to some other place it must be wrapped
in a component; the logic of actually performing the operation indicated by the drop is the
responsibility of the person implementing the drop.

There is a minor sample of this in the KitchenSink demo whose drag and drop behavior is
implemented using this API. However, the KitchenSink demo relies on built in drop
behavior of container specifically designed for this purpose.

To enable dragging a component it must be flagged as draggable using setDraggable(true),
to allow dropping the component onto another component you must first enable the drop
target with setDropTarget(true) and override some methods (more on that later).

Notice that is a drop target is a container that has children, dropping a component on the
child will automatically find the right drop target. You don't have to make "everything" into
a drop target.

You can override these methods in the draggable components:
getDragImage - this generates an image preview of the component that will be dragged.
This automatically generates a sensible default so you don't need to override it.
drawDraggedImage - this method will be invoked to draw the dragged image at a given
location, it might be useful to override it if you want to display some drag related
information such an additional icon based on location etc. (e.g. a move/copy icon).

In the drop target you can override the following methods:
draggingOver - returns true is a drop operation at this point is permitted. Otherwise
releasing the component will have no effect.
dragEnter/Exit - useful to track and cleanup state related to draging over a specific
component.
drop - the logic for dropping/moving the component must be implemented here!

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

167 of 212

Notice that the Container class has a simple sample drop implementation you can use to
get started.

Physics - The Motion Class
The motion class represents a physics operation that starts at a fixed time bound to the
system current time millis value. The use case is entirely for UI animations and so many of
its behaviors are simplified for this purpose.
The motion class can be replaced in some of the builting classes to provide a slightly
different feel to some of the transition effects.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

168 of 212

Signing, Cert i f icates & Provisioning
While Codename One can simplify allot of the grunt work in creating cross platform mobile
applications, signing is not something that can be significantly simplified since it represents
the developers individual identity in the markets. In this section we attempt to explain how
to acquire certificates for the various platforms and how to set them up.

The good news is that this is usually a "one time issue" and once its done the work
becomes easier (except for the case of iOS where a provisioning profile should be
maintained).

iOS (iPhone/iPad)
iOS signing has two distinct modes: App Store signing which is only valid for distribution
via iTunes (you won't be able to run the resulting application without submitting it to Apple)
and development mode signing.

You have two major files to keep track of:
Certificate - your signature
Provisioning Profile - details about the application and who is allowed to execute it

You need two versions of each file (4 total files) one pair is for development and the other
pair is for uploading to the itunes App Store.

Important: You need to use a Mac in order to create a cert i f icate f i le for iOS,
methods to achieve this without a Mac produce an inval id cert i f icate that
fai ls on the server and leaves hard to remove residue.

The first step you need to accomplish is signing up as a developer to Apple's iOS
development program, even for testing on a device this is required! This step requires that
you pay Apple 99 USD on a yearly basis.

The Apple website will guide you through the process of applying for a certificate at the
end of this process you should have a distribution and development certificate pair. After
that point you can login to the iOS provisioning portal where there are plenty of videos and
tutorials to guide you through the process. Within the iOS provisioning portal you need to
create an application ID and register your development devices.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

169 of 212

You then create a provisioning profile which comes in two flavors: distribution (for building
the release version of your application) and development. The development provisioning
profile needs to contain the devices on which you want to test.

You can then configure the 4 files in the IDE and start sending builds to the Codename
One cloud.

iOS Code Signing Fai l Checkl ist
Below is a list of common things people get wrong when singing and a set of suggestions
for things to check. Notice that some of these signing failures will sometimes manifest
themselves during build and sometimes will manifest during the install of the application.

1. You must use a Mac to generate the P12 certificates. There is no way around it!
Tutorials that show otherwise will not work!
We would like to automate it in the future (in a similar way to our Android signing
tool), but for now you can use MacInCloud, which has a free version.
Notice that this is something you need to do once a year (generate P12), you will
also need a Mac to upload your final app to the store though.

2. When exporting the P12 certificate make sure that you selected BOTH the public

and the private keys as illustrated here. If you only see one entry (no private key)
then you created the CSR (singing request) on a different machine than the one
where you imported the resulting CER file.

3. Make sure the package matches between the main preferences screen in the IDE
and the iOS settings screen.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

170 of 212

4. Make sure the prefix for the app id in the iOS section of the preferences matches
the one you have from Apple

5. Make sure your provisioning profile's app id matches your package name or is a *
provisioning profile. Both are sampled in the pictures below, notice that you would
need an actual package name for push/in-app-purchase support as well as for app
store distribution.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

171 of 212

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

172 of 212

6. Make sure the certificate and provisioning profile are from the same source (if you
work with multiple accounts), notice that provisioning profiles and certificates expire
so you will need to regenerate provisioning when your certificate expires or is
revoked.

7. If you declare push in the provisioning profile then ios.includePush (in the build
arguments) MUST be set to true, otherwise it MUST be set to false (see pictures

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

173 of 212

below).

Android
Its really easy to sign Android applications if you have the JDK installed. Find the keytool
executable (it should be under the JDK's bin directory) and execute the following
command:
keytool -genkey -keystore Keystore.ks -alias [alias_name] -keyalg RSA -keysize 2048 -
validity 15000 -dname "CN=[full name], OU=[ou], O=[comp], L=[City], S=[State],
C=[Country Code]" -storepass [password] -keypass [password]

The elements in the brackets should be filled up based on this:
Alias: [alias_name] (just use your name/company name without spaces)
Full name: [full name]
Organizational Unit: [ou]
Company: [comp]
City: [City]

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

174 of 212

State: [State]
CountryCode: [Country Code]
Password: [password] (we expect both passwords to be identical)

Executing the command will produce a Keystore.ks file in that directory which you need to
keep since if you lose it you will no longer be able to upgrade your applications! Fill in the
appropriate details in the project properties or in the CodenameOne section in the
Netbeans preferences dialog.

For more details see http://developer.android.com/guide/publishing/app-signing.html

RIM/BlackBerry
You can now get signing keys for free from RIM by going here. Once you obtain the
certificates you need to install them on your machine (you will need the RIM development
environment for this). You will have two files: sigtool.db and sigtool.csk on your machine
(within the JDE directory hierarchy). We need them and their associated password to
perform the signed build for Blackberry application.

J2ME
Currently signing J2ME applications isn't supported. You can use tools such as the Sprint
WTK to sign the resulting jad/jar produced by Codename One.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

175 of 212

Appendix: Working With iOS

Provisioning Profi le & Cert i f icates
One of the hardest parts in developing for iOS is the total mess they made with their overly
complex certificate/provisioning process. Relatively for the complexity the guys at Apple
did a great job of hiding allot of the crude details but its still difficult to figure out where to
start.

Start by logging in to the iOS-provisioning portal

In the certificates section you can download your development and distribution certificates.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

176 of 212

In the devices section add device ids for the development devices you want to
support. Notice no more than 100 devices are supported!

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

177 of 212

Create an application id; it should match the package identifier of your application
perfectly!

Create a provisioning profile for development, make sure to select the right app
and make sure to add the devices you want to use during debug.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

178 of 212

Refresh the screen to see the profile you just created and press the download
button to download your development provisioning profile.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

179 of 212

Create a distribution provisioning profile; it will be used when uploading to the app
store. There is no need to specify devices here.

Download the distribution provisioning profile.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

180 of 212

We can now import the cer files into the key chain tool on a Mac by double clicking
the file, on Windows the process is slightly more elaborate

We can export the p12 files for the distribution and development profiles through
the keychain tool

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

181 of 212

In the IDE we enter the project settings, configure our provisioning profile, the
password we typed when exporting and the p12 certificates. It is now possible to
send the build to the server.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

182 of 212

Push Notif ications
Push notification is only enabled for pro accounts in Codename One due to some of the
server side infrastructure we need to maintain to support this feature.

Push notification allows you to send a message to a device, usually a simple text message
which is sent to the application or prompted to the user appropriately. When supported by
the device it can be received even when the application isn't running and doesn't require
polling which can drain the devices battery.
The keyword here is "when supported" unfortunately not all devices support push
notification e.g. Android device that don't have the Google Play application (formerly
Android Market) don't support push and must fall back to polling the server which isn’t
ideal.

Currently Codename One supports pushing to Google authorized Android devices: GCM
(Google Cloud Messaging), to iOS devices: Push Notification & to blackberry devices.

For other devices we will fallback to polling the server in a given frequency, not an ideal
solution by any means so Codename One provides the option to not fallback.

This is how Apple describes push notification (image source Apple):

The "provider" is the server code that wishes to notify the device. It needs to ask Apple to
push to a specific device and a specific client application. There are many complexities not
mentioned here such as the need to have a push certificate or how the notification to
APNS actually happens but the basic idea is identical in iOS and Android's GCM.

Codename One hides some but not all of the complexities involved in the push notification
process. Instead of working between the differences of APNS/GCM & falling back to
polling, we effectively do everything that's involved.

Push consists of the following stages on the client:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

183 of 212

1. Local Registration - an application needs to
register to ask for push. This is done by
invoking:

2. Display.getInstance().registerPush(metaData,
fallback);

3. The fallback flag indicates whether the
system should fallback to polling if push isn't
supported.

4. On iOS this stage prompts the user
indicating that the application is interested in
receiving push notification messages.

5. Remote registration - once registration in the
client works, the device needs to register to
the cloud. This is an important step since
push requires a specific device registration
key (think of it as a "phone number" for the
device). Normally Codename One registers
all devices that reach this stage so you can
push a notification for everyone, however if
you wish to push to a specific device you will
need to catch this information! To get push
events your main class (important, this must be your main class!) should implement
the PushCallback interface. The registeredForPush(String) callback is invoked with
the device native push ID (not the id you should use. Once this method is invoked
the device is ready to receive push messages.

6. In case of an error during push registration you will receive the dreaded:
pushRegistrationError.

7. This is a very problematic area on iOS, where you must have a package name that
matches EXACTLY the options in your provisioning profile, which is setup to
support push. It is also critical that you do not use a provisioning profile containing
a * character in it.

8. You will receive a push callback if all goes well.

First there are several prerequisites you will need in order to get started with push:

● Android - you can find the full instructions from Google at
http://developer.android.com/google/gcm/gs.html. You will need a project id that
looks something like this: 4815162342.
You will also need the server key, which looks something like this:

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

184 of 212

AIzaSyATSw_rGeKnzKWULMGEk7MDfEjRxJ1ybqo.

● iOS - You will need to create a provisioning profile that doesn't have the * element
within it.
For that provisioning profile you will need to enable push and download a push
certificate. Notice that this push certificate should be converted to a P12 file in the
same manner we used in the signing tutorials.
You will need the password for that P12 file as well.
You will need a distribution P12 and a testing P12.

Warning! The P12 for push is completely different from the one used to build your
application, don't confuse them!
You will need to place the certificate on the web so our push server can access
them, we often use dropbox to store our certificates for push.

● RIM - you need to register with RIM for credentials to use their push servers at

https://developer.blackberry.com/devzone/develop/platform_services/push_overvie
w.html.
Notice that initially you need to register for evaluation and later on move your app to
production. This registration will trigger an email which you will receive that will
contain all the information you will need later on. Such as your app ID, push URL
(which during development is composed from your app ID), special password and
client port number.

To start using push (on any platform) you will need to implement the PushCallback
interface within your main class. The methods in that interface will be invoked when a push
message arrives:
publ ic class PushDemo implements PushCallback {

 private Form current;

 publ ic void init(Object context) {
 }

 publ ic void start() {
 i f (current != nul l){
 current.show();
 return;

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

185 of 212

 }
 new StateMachine("/theme");
 }

 publ ic void stop() {
 current = Display.getInstance().getCurrent();
 }

 publ ic void destroy() {
 }

 publ ic void push(String value) {
 Dialog.show("Push Received", value, "OK", nul l) ;
 }

 publ ic void registeredForPush(String deviceId) {
 Dialog.show("Push Registered", "Device ID: " + deviceId + "\nDevice Key: " +
Push.getDeviceKey() , "OK", nul l) ;
 }

 publ ic void pushRegistrationError(String error, int errorCode) {
 Dialog.show("Registration Error", "Error " + errorCode + "\n" + error, "OK", nul l) ;
 }
}

You will then need to register to receive push notifications (its OK to call register every time
the app loads) by invoking this code below (notice that the google project id needs to be
passed to registration):
@Override
protected void onMain_RegisterForPushAction(Component c, ActionEvent event) {
 Hashtable meta = new Hashtable();
 meta.put(com.codename1.push.Push.GOOGLE_PUSH_KEY, findGoogleProjectId(c));
 Display.getInstance().registerPush(meta, true);
}

Sending the push is a more elaborate affair; we need to pass the elements to the push
that is necessary for the various device types depending on the target device. If we send
null as the destination device our message will be sent to all devices running our app.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

186 of 212

However, if we use the device key which you can get via Push.getDeviceKey() you can
target the device directly. Notice that the device key is not the argument passed
to the registrat ion confirmation cal lback!

Other than that we need to send various arguments whether this is a production push
(valid for iOS where there is a strict separation between the debug and the production
push builds) as well as the variables discussed above:
@Override
protected void onMain_SendPushAction(Component c, ActionEvent event) {
 String dest = findDestinationDevice(c).getText();
 i f (dest.equals("")) {
 dest = nul l ;
 }
 boolean prod = findProductionEnvironement(c).isSelected();
 String googleServerKey = findGoogleServerKey(c).getText();
 String iOSCertURL = findIosCert(c).getText();
 String iOSCertPassword = findIosPassword(c).getText();
 String bbPushURL = findBbPushURL(c).getText();
 String bbAppId = findBbAppId(c).getText();
 String bbPassword = findBbPassword(c).getText();
 String bbPort = findBbPort(c).getText();
 Push.sendPushMessage(findPushMessage(c).getText(), dest, prod, googleServerKey,
iOSCertURL, iOSCertPassword, bbPushURL, bbAppId, bbPassword, bbPort);
}

Unfortunately we aren't done yet!

We must define the following build arguments in the project properties:
ios.includePush=true

rim.includePush=true
rim.ignor_legacy=true
rim.pushPort=...
rim.pushAppId=...
rim.pushBpsURL=...

Once you define all of these push should work for all platforms.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

187 of 212

You can perform the same task using our server API to send a push message directly from
your server using the following web API. Notice that all arguments must be submitted as
post!

URL = https://codename-one.appspot.com/sendPushMessage

Argument Values Descript ion

device numeric id or none Optional, if omitted the
message is sent to all
devices

packageName com.myapp... The package name of your
main class uniquely
identifies your app. This is
required even when
submitting a device ID

email x@y.com The email address of the
developer who built the
app. This provides
validation regarding the
target of the push

type numeric defaults to 1 The type of push, standard
is 1 but there are additional
types like 2 which is a silent
push (nothing will be shown
to the user) or 3 which
combines a hidden payload
with text visible to the user

auth Google authorization key Needed to perform the
GCM push

certPassword password The password for the P12
push certificate for an iOS
push

cert URL A url containing a
downloadable P12 push
certificate for iOS

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

188 of 212

body Arbitrary message The payload message sent
to the device

production true/false Whether the push is sent to
the iOS production or
debug environment

burl URL The blackberry push URL

bbAppId App ID sent by RIM

bbPass Push password from RIM

bbPort Push port from RIM

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

189 of 212

Appendix: Creating Codename One
Maker Plugins
Codename One Maker (http://www.codenameone.com/maker.html) is an on device app
maker tool that includes a drag and drop GUI builder and a host of other features.

Codename One developers can create plugins to extend the functionality of Maker and
leverage the full scope of Codename One’s capabilities within this easy to use tool.

This effectively turns Maker into a tool that is limited only by your imagination and not by
some arbitrary constraints we put forth.

One thing to keep in mind before proceeding: A plugin can't be previewed within Maker.
The user will be able to pass arguments (settings) to the plugin and see it within the app
but he won't be able to launch it (we can't dynamically download code according to store
EULA's and also some technical limitations).

So how does this work?

A Codename One Maker plugin is really just 2 files an XML file and a CN1Lib file.
The XML file describes the requirements of the plugin from the user and gives us basic
details about the plugin, only the XML file is ever downloaded to the device.

When the user sends the build, the details are sent to the server. The server downloads
and incorporates the CN1Lib file, which can include native code or any other capabilities.
Its compiled much in the same way as any Codename One library in that regard. When the
built application on the device the user can see the plugin in action.

So how do we build a hello world plugin?

I created a simple Twitter feed plugin just to show the basic principals (see the full project
at the bottom of this post). To start off we need to create a new Library Project in
NetBeans (sorry currently Eclipse doesn't support Library projects although its theoretically
possible to work with it to build these projects).

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

190 of 212

We can remove the hello world code and create a new package with our company and
name of the plugin, and then we need to implement the plugin. The plugin is a class that
derives from MakerPlugin here is the simple Twitter plugin from the code below:
package com.mycompany.plugin.mytweets;

import com.codename1.components.Inf initeProgress;
import com.codename1.components.Mult iButton;
import com.codename1.io.ConnectionRequest;
import com.codename1.io.JSONParser;
import com.codename1.io.NetworkManager;
import com.codename1.maker.MakerPlugin;
import com.codename1.ui.Button;
import com.codename1.ui.Container;
import com.codename1.ui.Display;
import com.codename1.ui.Label;
import com.codename1.ui.TextArea;
import com.codename1.ui.events.ActionEvent;
import com.codename1.ui.events.ActionListener;
import com.codename1.ui. layouts.BorderLayout;
import com.codename1.ui. layouts.BoxLayout;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.uti l .Hashtable;
import java.uti l .Vector;

/**
 * This is simple hello world maker plugin showing how we can get arguments and then
use Codename One
 * to provide all sorts of functionality
 *
 * @author Shai Almog
 */
publ ic class Plugin extends MakerPlugin {

 @Override
 publ ic String getPackageName() {
 return "com.mycompany.plugin.mytweets";

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

191 of 212

 }

 @Override
 publ ic String getDeveloperEmailId() {
 return "youremailhere@x.com";
 }

 @Override
 publ ic String getPluginName() {
 return "My Tweets";
 }

 @Override
 publ ic Container createEmbeddedUI() {
 f inal Container tweets = new Container(new BoxLayout(BoxLayout.Y_AXIS));
 tweets.setScrollableY(true);
 ConnectionRequest t = new ConnectionRequest() {
 private Hashtable h;
 @Override
 protected void readResponse(InputStream input) throws IOException {
 JSONParser jp = new JSONParser();
 h = jp.parse(new InputStreamReader(input));
 }

 @Override
 protected void postResponse() {
 Vector v = (Vector)h.get("results");
 tweets.removeAll() ;
 for(Object currentObj : v) {
 Hashtable current = (Hashtable)currentObj;
 String user = (String)current.get("from_user_name");
 String date = (String)current.get("created_at");
 String text = (String)current.get("text");
 String url = "";
 int indi = text.indexOf("http://t.co/");
 i f (indi > -1) {
 int last = text.indexOf(' ', indi);
 i f (last == -1) {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

192 of 212

 last = last = text.length();
 }
 url = text.substring(indi, last);
 }
 f inal String finalURL = url;
 Container entry = new Container(new BorderLayout()) ;
 entry.setUIID("MultiButton");
 TextArea t = new TextArea(text);
 t.setEditable(false);
 t.setUIID("MultiLine1");
 Button lead = new Button();
 lead.setUIID("Label");
 entry.addComponent(BorderLayout.CENTER, t);
 entry.addComponent(BorderLayout.EAST, lead);
 Container south = new Container(new BorderLayout()) ;
 entry.addComponent(BorderLayout.SOUTH, south);
 Label dateText = new Label(date);
 dateText.setUIID("MultiLine2");
 Label name = new Label(user);
 name.setUIID("MultiLine3");
 south.addComponent(BorderLayout.CENTER, dateText);
 south.addComponent(BorderLayout.EAST, name);
 entry.setLeadComponent(lead);
 tweets.addComponent(entry);
 lead.addActionListener(new ActionListener() {
 publ ic void actionPerformed(ActionEvent evt) {
 i f (finalURL != nul l && finalURL.length() > 0) {
 Display.getInstance().execute(finalURL);
 }
 }
 }) ;
 }
 tweets.animateLayout(350);
 }

 };
 t.setUrl("http://search.twitter.com/search.json");

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

193 of 212

 t.setPost(false);
 t.setContentType("application/json");
 t.addRequestHeader("Accept", "application/json");

 // we pass arguments to the plugin via the meta data, the argument types
 // are declated in the plugin XML
 String user = (String)getMetaData().get("user");
 i f (user == nul l || user.length() == 0) {
 user = "@codename-one";
 } else {
 i f (!user.startsWith("@")) {
 user = "@" + user;
 }
 }
 t.addArgument("q", user);
 tweets.addComponent(new InfiniteProgress()) ;
 NetworkManager.getInstance().addToQueue(t);
 return tweets;
 }
}

Notice the overriden methods above are a part of the plugin interface, once we are in the
plugin itself we can just write any Codename One code that we want although keep in
mind that I try not to block the execution thread... Otherwise I might create an unpleasant
experience when building a tabs based application.
Also notice that I enable scrollability since the parent form won't be accessible we disabled
scrolling there (to avoid nested scrolling issues), if you need scrolling you need to explicitly
declare it.
Its probably obvious but bares stating that the plugin class must be public, have a no
argument constructor (or no constructor which is the same thing) and mustn't be abstract.

You will also need one more file which is the xml descriptor file, in my case its
twitter.mplugin (in the root of the downloaded file) which you can see right here:
<?xml version="1.0" encoding="UTF-8"?>
<plugin makerVer="0.4" name="My Tweets"
package="com.mycompany.plugin.mytweets"
developer="emailUsedForRegistration@domain.com"

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

194 of 212

 developerName="My Company Name" version="1.0"
help="http://website.com/help.html"
cn1lib="https://dl.dropboxusercontent.com/u/57067724/cn1/HelloCodenam
eOnePlugin.cn1lib" class="Plugin">
 <arg name="user" display="Twitter User" type="string"
default="@codename-one" details="The twitter user handle with or without
the @ sign" />;
</plugin>

Notice several things:

● We declare the maker version, this is crucial since if someone hasn't updated
Maker on the device and your plugin expects a specific version... It should fail to
install.

● The package name and the class name must match exactly your class since that is
how we generate the plugin calls on the server!

● The cn1lib entry MUST point at an absolute URL where the plugin can be
downloaded from, the download only happens on the build server so the build will
fail if the file isn't accessible.

● You can define as many arguments as you want but currently all of them must be
strings, we are working on adding more options in the future.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

195 of 212

Appendix: Cloud Object API On The
Desktop
Using the cloud object API is remarkably powerful on the devices, however it becomes
even more powerful when you can import data into the cloud server or communicate with
it from a dedicated client (e.g. push data to the server).

To do so you can use the JavaSE.jar within any Java SE application make sure to invoke
Display.init(new java.awt.Container()); before starting at which point you will be able to use
all the standard methods of the cloud storage API to batch import or export data into/from
the cloud storage.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

196 of 212

Appendix: Casual Game Programming
While game developers have tradit ional ly used C/OpenGL to get every bit of
performance out of a device, Java offers a unique opportunity for casual
game developers. In this art icle we wil l bui ld a simple card game in Java
that can run unchanged on iOS, Android and RIM devices.
Casual games are often the most influential games of all, they cross demographics such
as the ubiquitous solitaire or even the chart topping Angry birds. Putting them in the same
game category as 3D FPS games doesn’t always make sense.
Yes, framerates are important but ubiquity, social connectivity & gameplay are even more
important for this sub genre of the game industry. The mobile aspect highlights this point
further, the way app stores are built releasing often puts your game at an advantage over
its competitor’s. Yet releasing to all platforms and all screen sizes becomes an issue soon
enough.
Java has been familiar for mobile game developers for quite some time for better or worse.
Despite all its issues J2ME was a pretty amazing tool considering the fact that it was last
updated in 2004 (iPhone was introduced in 2007), game developers were able to squeeze
quite a lot of power from that very limited platform. Many of these early J2ME game
developers have since moved to Android game development which is also growing rapidly.
In this article I’m going to go over the process of writing a simple card game for iOS,
Android and RIM devices using Codename One which is an open source platform for
mobile application development in Java. The value of using Codename One here is mostly
in its ability to target iOS which has a far better retention rate and revenue stream than
Android, although the true value is in ubiquity and the ability of our users to share the
application. Codename One itself is not a game development platform and is designed
mostly as an application development platform. However, some developers used the tool
to build casual games.
Typically a game is comprised of a game loop which updates UI status based on game
time and renders the UI. However, with casual games constantly rendering is redundant
and with mobile games it could put a major drain on the battery life. Instead we will use
components to build the game elements and let Codename One do the rendering for us.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

197 of 212

The Game
We will create a poker game for 1 player that doesn’t include the betting process or any of
the complexities such as AI (you can see the game running on the simulator here:
www.youtube.com/watch?v=4IQGBT3VsSQ), card evaluation or validation. This allows us
to fit the whole source code in 270 lines of code (more due to comments). I also chose to
simplify the UI for touch devices only, technically it would be pretty easy to add keypad
support but it would complicate the code and require additional designs (for focus states).
The game consists of two forms: Splash screen and the main game UI.
Codename One has a GUI builder that allows drag and drop development, however we
won’t be using it since its really difficult to convey GUI builder activity in an article.

Gett ing Started
Make sure to select the Hello World (Manual) option since we don’t want to use the GUI
builder.
Also make sure to enter a valid package name pointing to a domain you own in the
common Java convention, this is important since it would be hard to change the name
later on. The package name is used as a unique identifier in most app stores and once the
app is published it can’t be changed!
Once you clicked finish you should have a new project and you should be able to write the
game interaction code. You can press run to see the hello world app and you will notice
the project also has a theme.res file which includes potential project resources. But first
lets go over the issue of dealing with screen resolutions.

Handl ing Mult iple Device Resolutions
In mobile device programming every pixel is crucial because of the small size of the screen,
however we can’t shrink down our graphics too much because it needs to be “finger
friendly” (big enough for a finger) and readable. There is great disparity in the device world,
even within the iOS family the current iPad has more than twice the screen density of the
iPad mini. This means that an image that looks good on the iPad mini will seem either
small or very pixelated on an iPad, on the other hand an image that looks good on the
iPad would look huge (and take up too much RAM) on the iPad mini. The situation is even
worse when dealing with phones and Android devices.
Thankfully there are solutions, such as using multiple images for every density (DPI).
However, this is tedious for developers who need to scale the image and copy it every
time for every resolution. Codename One has a feature called MultiImage which implicitly

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

198 of 212

scales the images to all the resolutions on the desktop and places them within the res file,
in runtime you will get the image that matches your devices density.
There is a catch though... MultiImage is designed for applications where we want the
density to determine the size. So an iPad will have the same density as an iPhone since
both share the same amount of pixels per inch. This makes sense for an app since the
images will be big enough to touch and clear. Furthermore, since the iPad screen is larger
more data will fit on the screen!
However, game developers have a different constraint when it comes to game elements.
In the case of a game we want the images to match the device resolution and take up as
much screen real estate as possible, otherwise our game would be constrained to a small
portion of the tablet and look small. There is a solution though, we can determine our own
DPI level when loading resources and effectively force a DPI based on screen resolution
only when working with game images!
To work with such varied resolutions/DPI’s and potential screen orientation changes we
need another tool in our arsenal: layout managers.
If you are familiar with AWT/Swing this should be pretty easy, Codename One allows you
to codify the logic that flows Components within the UI. We will use the layout managers to
facilitate that logic and preserve the UI flow when the device is rotated.

Resources
To save some time/effort I suggest using the ready made resource files linked in the On
The Web section below. I suggest skipping this section and moving on to the code,
however for completeness here is what I did to create these resources:
You will need a gamedata.res file that contains all the 52 cards as multi images using the
naming convention of ‘rank suite.png’ example: 10c.png (10 of clubs) or ad.png (Ace of
diamonds).
To accomplish this I created 52 images of roughly 153x217 pixels for all the cards then
used the designer tool and selected “Quick Add MultiImages” from the menu. When
prompted I selected HD resolution. This effectively created 52 multi-images for all relevant
resolutions.
I also modified the default theme that came in the application in small ways to create the
white over green color scheme, I opened it in the designer tool by double clicking it and
selected the theme.
I then pressed Add and added a Form entry with background NONE, background color
6600 and transparency 255.
I added a Label style with transparency 0 and foreground 255 and then copied the style to
pressed/selected (since its applied to buttons too).

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

199 of 212

I did the same for the SplashTitle/SplashSubtitle but there I also set the alignment to center,
the font to bold and in the case of SplashTitle to Large font as well.

The Splash Screen
The first step is creating the splash animation as you can see in the screenshots in figure 2.

Figure 2: Animation stages for the splash screen opening animation

The animation in the splash screen and most of the following animations are achieved
using the simple tool of layout animations. In Codename One components are
automatically arranged into position using layout managers, however this isn’t implicit
unless the device is rotated. A layout animation relies on this fact, it allows you to place
components in a position (whether by using a layout manager or by using setX/setY) then
invoke the layout animation code so they will slide into their “proper” position based on the
layout manager rules.
You can see how I achieved the splash screen animation of the cards sliding into place in
Listing 1 within the showSplashScreen() method. After we change the layout to a box X
layout we just invoke animateHierarchy to animate the cards into place.
Notice that we use the callSerially method to start the actual animation. This call might not
seem necessary at first until you try running the code on iOS. The first screen of the UI is
very important for the iOS port which uses a screenshot to speed startup (this is a feature
of the native iOS platform which as of this writing requires 7 sceenshots in different
resolutions/orientations for every application, Codename One generates those shots
automatically and adds them to your app). If we won’t have this callSerially invocation the
screenshot rendering process will not succeed and the animation will stutter.
We also have a cover transition defined here; it’s just a simple overlay when moving from
one form to another.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

200 of 212

The Game UI
Initially when entering the game form we have another animation where all the cards are
laid out as you can see in Figure 3. We then have a long sequence of animation where the
cards unify into place to form a pile (with a cover background falling on top) after which
dealing begins and cards animate to the rival (with back only showing) or to you with the
face showing. Then the instructions to swap cards fade into place.
Figure 3: Game form startup animation and deal animation

This animation is really easy to accomplish although it does have several stages. In the first
stage we layout the cards within a grid layout (13x4), then when the animation starts (see
the UITimer code within showGameUI()) we just change the layout to a layered layout, add
the back card (so it will come out on top based on z-ordering) and invoke animate layout.
Notice that here we use animateLayoutAndWait, which effectively blocks the calling thread
until the animation is completed. This is a VERY important and tricky subject!
Codename One is for the most part a single threaded API, it supports working on other
threads but it is your responsibility to invoke everything on the EDT (Event Dispatch
Thread). Since the EDT does the entire rendering, events etc. if you block it you will
effectively stop Codename One in its place! However, there is a trick: invokeAndBlock is a
feature that allows you to stop the EDT and do stuff then restore the EDT without “really”
stopping it. Its tricky, I won’t get into this in this article (this subject deserves an article of
its own) but the gist of it is that you can’t just invoke Thread.sleep() in a Codename One
application (at least not on the EDT) but you can use clever methods such as
Dialog.show(), animateLayoutAndWait etc. and they will block the EDT for you. This is
really convenient since you can just write code serially without requiring event handling for
every single feature.
Now that we got that out of the way, the rest of the code is clearer. Now we understand
that animateLayoutAndWait will literally wait for the animation to complete and the next
lines can do the next animation. Indeed after that we invoke the dealCard method that
hands the cards to the players. This method is also blocking (using and wait methods
internally) it also marks the cards as draggable and adds that drag and drop logic which
we will later use to swap cards.

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

201 of 212

Last but not least in the animation department, we use a method called replace to fade in
a component using a transition.
To handle the dealing we added an action listener to the deck button, this action listener is
invoked when the cards are dealt and that completes the game.

Summary
It is really easy to create a functional and attractive mobile game in Java and have it work
on all devices. Adding networking and social interaction would be relatively easy and the
place where using Java really shines. While normally game developers deal with graphics
systems and game loops, you can still create a very attractive casual game while staying
within the comfort zone of components. The value here is in easy support for orientation
changes and various resolutions.
Developing this game demo took me one afternoon with most of the time being spent at
cutting the card images to the right size, I hope you will find this useful and join us on the
Codename One discussion forum with questions/comments.

package com.codename1.demo.poker;

import com.codename1.ui.Button;
import com.codename1.ui.Component;
import com.codename1.ui.Container;
import com.codename1.ui.Dialog;
import com.codename1.ui.Display;
import com.codename1.ui.Form;
import com.codename1.ui. Image;
import com.codename1.ui.Label;
import com.codename1.ui.TextArea;
import com.codename1.ui.animations.CommonTransit ions;
import com.codename1.ui.events.ActionEvent;
import com.codename1.ui.events.ActionListener;
import com.codename1.ui.geom.Dimension;
import com.codename1.ui. layouts.BorderLayout;
import com.codename1.ui. layouts.BoxLayout;
import com.codename1.ui. layouts.FlowLayout;
import com.codename1.ui. layouts.GridLayout;
import com.codename1.ui. layouts.LayeredLayout;
import com.codename1.ui.plaf.UIManager;

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

202 of 212

import com.codename1.ui.ut i l .Resources;
import com.codename1.ui.ut i l .UITimer;
import java.io.IOException;
import java.uti l .ArrayList;
import java.uti l .Arrays;
import java.uti l .Col lections;
import java.uti l .List;

/**
 * Demo app showing how a simple poker card game can be written using Codename One,
this
 * demo was developed for an SD Journal article.
 * @author Shai Almog
 */
publ ic class Poker {
 private stat ic f inal char SUITE_SPADE = 's';
 private stat ic f inal char SUITE_HEART = 'h';
 private stat ic f inal char SUITE_DIAMOND = 'd';
 private stat ic f inal char SUITE_CLUB = 'c';

 private Resources cards;
 private Form current;
 private f inal stat ic Card[] deck;

 stat ic {
 // we initialize constant card values that will be useful later on in the game
 deck = new Card[52];
 for(int iter = 0 ; iter < 13 ; iter++) {
 deck[iter] = new Card(SUITE_SPADE, iter + 2);
 deck[iter + 13] = new Card(SUITE_HEART, iter + 2);
 deck[iter + 26] = new Card(SUITE_DIAMOND, iter + 2);
 deck[iter + 39] = new Card(SUITE_CLUB, iter + 2);
 }
 }

 /**
 * We use this method to calculate a "fake" DPI based on screen resolution rather than
its actual DPI

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

203 of 212

 * this is useful so we can have large images on a tablet
 */
 private int calculateDPI() {
 int pixels = Display.getInstance().getDisplayHeight() *
Display.getInstance().getDisplayWidth();
 i f (pixels > 1000000) {
 return Display.DENSITY_HD;
 }
 i f (pixels > 340000) {
 return Display.DENSITY_VERY_HIGH;
 }
 i f (pixels > 150000) {
 return Display.DENSITY_HIGH;
 }
 return Display.DENSITY_MEDIUM;
 }

 /**
 * This method is invoked by Codename One once when the application loads
 */
 publ ic void init(Object context) {
 try{
 // after loading the default theme we load the card images as a resource with
 // a fake DPI so they will be large enough. We store them in a resource rather
 // than as files so we can use the MultiImage functionality
 Resources theme = Resources.openLayered("/theme");

UIManager.getInstance().setThemeProps(theme.getTheme(theme.getThemeResourceNa
mes()[0])) ;
 cards = Resources.open("/gamedata.res", calculateDPI()) ;
 } catch(IOException e) {
 e.printStackTrace();
 }
 }

 /**
 * This method is invoked by Codename One once when the application loads and
when it is restarted

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

204 of 212

 */
 publ ic void start() {
 i f (current != nul l){
 current.show();
 return;
 }
 showSplashScreen();
 }

 /**
 * The splash screen is relatively bare bones. Its important to have a splash screen for
iOS
 * since the build process generates a screenshot of this screen to speed up perceived
performance
 */
 publ ic void showSplashScreen() {
 f inal Form splash = new Form();

 // a border layout places components in the center and the 4 sides.
 // by default it scales the center component so here we configure
 // it to place the component in the actual center
 BorderLayout border = new BorderLayout();

border.setCenterBehavior(BorderLayout.CENTER_BEHAVIOR_CENTER_ABSOLUTE);
 splash.setLayout(border);

 // by default the form's content pane is scrollable on the Y axis
 // we need to disable it here
 splash.setScrollable(false);
 Label title = new Label("Poker Ace");

 // The UIID is used to determine the appearance of the component in the theme
 title.setUIID("SplashTitle");
 Label subtitle = new Label("By Codename One");
 subtitle.setUIID("SplashSubTitle");

 splash.addComponent(BorderLayout.NORTH, title);
 splash.addComponent(BorderLayout.SOUTH, subtitle);

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

205 of 212

 Label as = new Label(cards.getImage("as.png"));
 Label ah = new Label(cards.getImage("ah.png"));
 Label ac = new Label(cards.getImage("ac.png"));
 Label ad = new Label(cards.getImage("ad.png"));

 // a layered layout places components one on top of the other in the same dimension,
it is
 // useful for transparency but in this case we are using it for an animation
 f inal Container center = new Container(new LayeredLayout()) ;
 center.addComponent(as);
 center.addComponent(ah);
 center.addComponent(ac);
 center.addComponent(ad);

 splash.addComponent(BorderLayout.CENTER, center);

 splash.show();

splash.setTransitionOutAnimator(CommonTransitions.createCover(CommonTransitions.SL
IDE_VERTICAL, true, 800));

 // postpone the animation to the next cycle of the EDT to allow the UI to render fully
once
 Display.getInstance().callSerially(new Runnable() {
 publ ic void run() {
 // We replace the layout so the cards will be laid out in a line and animate the
hierarchy
 // over 2 seconds, this effectively creates the effect of cards spreading out
 center.setLayout(new BoxLayout(BoxLayout.X_AXIS));
 center.setShouldCalcPreferredSize(true);
 splash.getContentPane().animateHierarchy(2000);

 // after showing the animation we wait for 2.5 seconds and then show the game
with a nice
 // transition, notice that we use UI timer which is invoked on the Codename One
EDT thread!
 new UITimer(new Runnable() {
 publ ic void run() {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

206 of 212

 showGameUI();
 }
 }) .schedule(2500, false, splash);
 }
 }) ;
 }

 /**
 * This is the method that shows the game running, it is invoked to start or restart the
game
 */
 private void showGameUI() {
 // we use the java.util classes to shuffle a new instance of the deck
 f inal List<Card> shuffledDeck = new ArrayList<Card>(Arrays.asList(deck));
 Collections.shuffle(shuffledDeck);

 f inal Form gameForm = new Form();

gameForm.setTransitionOutAnimator(CommonTransitions.createCover(CommonTransition
s.SLIDE_VERTICAL, true, 800));
 Container gameFormBorderLayout = new Container(new BorderLayout()) ;

 // while flow layout is the default in this case we want it to center into the middle of
the screen
 FlowLayout fl = new FlowLayout(Component.CENTER);
 fl.setValign(Component.CENTER);
 f inal Container gameUpperLayer = new Container(fl) ;
 gameForm.setScrollable(false);

 // we place two layers in the game form, one contains the contents of the game and
another one on top contains instructions
 // and overlays. In this case we only use it to write a hint to the user when he needs
to swap his cards
 gameForm.setLayout(new LayeredLayout()) ;
 gameForm.addComponent(gameFormBorderLayout);
 gameForm.addComponent(gameUpperLayer);

 // The game itself is comprised of 3 containers, one for each player containing a grid

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

207 of 212

of 5 cards (grid layout
 // divides space evenly) and the deck of cards/dealer. Initially we show an animation
where all the cards
 // gather into the deck, that is why we set the initial deck layout to show the whole
deck 4x13
 f inal Container deckContainer = new Container(new GridLayout(4, 13));
 f inal Container playerContainer = new Container(new GridLayout(1, 5));
 f inal Container rivalContainer = new Container(new GridLayout(1, 5));

 // we place all the card images within the deck container for the initial animation
 for(int iter = 0 ; iter < deck.length ; iter++) {
 Label face = new Label(cards.getImage(deck[iter].getFileName())) ;

 // containers have no padding or margin this effectively removes redundant
spacing
 face.setUIID("Container");
 deckContainer.addComponent(face);
 }

 // we place our cards at the bottom, the deck at the center and our rival on the north
 gameFormBorderLayout.addComponent(BorderLayout.CENTER, deckContainer);
 gameFormBorderLayout.addComponent(BorderLayout.NORTH, rivalContainer);
 gameFormBorderLayout.addComponent(BorderLayout.SOUTH, playerContainer);
 gameForm.show();

 // we wait 1.8 seconds to start the opening animation, otherwise it might start while
the transition is still running
 new UITimer(new Runnable() {
 publ ic void run() {
 // we add a card back component and make it a drop target so later players
 // can drag their cards here
 f inal Button cardBack = new Button(cards.getImage("card_back.png"));
 cardBack.setDropTarget(true);

 // we remove the button styling so it doesn't look like a button by using setUIID.
 cardBack.setUIID("Label");
 deckContainer.addComponent(cardBack);

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

208 of 212

 // we set the layout to layered layout which places all components one on top of
the other then animate
 // the layout into place, this will cause the spread out deck to "flow" into place
 // Notice we are using the AndWait variant which will block the event dispatch
thread (legally) while
 // performing the animation, normally you can't block the dispatch thread (EDT)
 deckContainer.setLayout(new LayeredLayout()) ;
 deckContainer.animateLayoutAndWait(3000);

 // we don't need all the card images/labels in the deck, so we place the card
back
 // on top then remove all the other components
 deckContainer.removeAll() ;
 deckContainer.addComponent(cardBack);

 // Now we iterate over the cards and deal the top card from the deck to each
player
 for(int iter = 0 ; iter < 5 ; iter++) {
 Card currentCard = shuffledDeck.get(0);
 shuffledDeck.remove(0);
 dealCard(cardBack, playerContainer,
cards.getImage(currentCard.getFileName()), currentCard);
 currentCard = shuffledDeck.get(0);
 shuffledDeck.remove(0);
 dealCard(cardBack, rivalContainer, cards.getImage("card_back.png"),
currentCard);
 }

 // After dealing we place a notice in the upper layer by fade in. The trick is in
adding a blank component
 // and replacing it with a fade transition
 TextArea notice = new TextArea("Drag cards to the deck to swap\ntap the
deck to finish");
 notice.setEditable(false);
 notice.setFocusable(false);
 notice.setUIID("Label");
 notice.getUnselectedStyle().setAlignment(Component.CENTER);

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

209 of 212

 gameUpperLayer.addComponent(notice);
 gameUpperLayer.layoutContainer();

 // we place the notice then remove it without the transition, we need to do this
since a text area
 // might resize itself so we need to know its size in advance to fade it in.
 Label temp = new Label(" ");
 temp.setPreferredSize(new Dimension(notice.getWidth(), notice.getHeight())) ;
 gameUpperLayer.replace(notice, temp, nul l) ;

 gameUpperLayer.layoutContainer();
 gameUpperLayer.replace(temp, notice, CommonTransitions.createFade(1500));

 // when the user taps the card back (the deck) we finish the game
 cardBack.addActionListener(new ActionListener() {
 publ ic void actionPerformed(ActionEvent evt) {
 // we clear the notice text
 gameUpperLayer.removeAll() ;

 // we deal the new cards to the player (the rival never takes new cards)
 whi le(playerContainer.getComponentCount() < 5) {
 Card currentCard = shuffledDeck.get(0);
 shuffledDeck.remove(0);
 dealCard(cardBack, playerContainer,
cards.getImage(currentCard.getFileName()), currentCard);
 }

 // expose the rivals deck then offer the chance to play again...
 for(int iter = 0 ; iter < 5 ; iter++) {
 Button cardButton = (Button)rivalContainer.getComponentAt(iter);

 // when creating a card we save the state into the component itself
which is very convenient
 Card currnetCard = (Card)cardButton.getClientProperty("card");
 Label l = new Label(cards.getImage(currnetCard.getFileName())) ;
 rivalContainer.replaceAndWait(cardButton, l,
CommonTransitions.createCover(CommonTransitions.SLIDE_VERTICAL, true, 300));
 }

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

210 of 212

 // notice dialogs are blocking by default so its pretty easy to write this logic
 i f (!Dialog.show("Again?", "Ready to play Again", "Yes", "Exit")) {
 Display.getInstance().exitApplication();
 }

 // play again
 showGameUI();
 }
 }) ;
 }
 }) .schedule(1800, false, gameForm);
 }

 /**
 * A blocking method that creates the card deal animation and binds the drop logic
when cards are dropped on the deck
 */
 private void dealCard(Component deck, f inal Container destination, Image
cardImage, Card currentCard) {
 f inal Button card = new Button();
 card.setUIID("Label");
 card.setIcon(cardImage);

 // Components are normally placed by layout managers so setX/Y/Width/Height
shouldn't be invoked. However,
 // in this case we want the layout animation to deal from a specific location. Notice
that we use absoluteX/Y
 // since the default X/Y are relative to their parent container.
 card.setX(deck.getAbsoluteX()) ;
 int deckAbsY = deck.getAbsoluteY();
 i f (destination.getY() > deckAbsY) {
 card.setY(deckAbsY - destination.getAbsoluteY());
 } else {
 card.setY(deckAbsY);
 }
 card.setWidth(deck.getWidth()) ;
 card.setHeight(deck.getHeight()) ;

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

211 of 212

 destination.addComponent(card);

 // we save the model data directly into the component so we don't need to keep
track of it. Later when we
 // need to check the card type a user touched we can just use getClientProperty
 card.putClientProperty("card", currentCard);
 destination.getParent().animateHierarchyAndWait(400);
 card.setDraggable(true);

 // when the user drops a card on a drop target (currently only the deck) we remove it
and animate it out
 card.addDropListener(new ActionListener() {
 publ ic void actionPerformed(ActionEvent evt) {
 evt.consume();
 card.getParent().removeComponent(card);
 destination.animateLayout(300);
 }
 }) ;
 }

 publ ic void stop() {
 current = Display.getInstance().getCurrent();
 }

 publ ic void destroy() {
 }

 stat ic class Card {
 private char suite;
 private int rank;

 publ ic Card(char suite, int rank) {
 this.suite = suite;
 this.rank = rank;
 }

 private String rankToString() {

Codename One Developer Guide version 2.0
11 December 2013

© Codename One 2012. All rights Reserved. http://www.codenameone.com

212 of 212

 i f (rank > 10) {
 switch(rank) {
 case 11:
 return "j";
 case 12:
 return "q";
 case 13:
 return "k";
 case 14:
 return "a";
 }
 }
 return "" + rank;
 }

 publ ic String getFileName() {
 return rankToString() + suite + ".png";
 }
 }
}

